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A dynamic network consists of a directed graph with
capacities, costs, and integral transit times on the arcs.
In the minimum-cost dynamic flow problem (MCDFP),
the goal is to compute, for a given dynamic network with
source s, sink t, and two integers v and T, a feasible
dynamic flow from s to t of value v, obeying the time
bound T, and having minimum total cost. MCDFP con-
tains as subproblems the minimum-cost maximum dy-
namic flow problem, where v is fixed to the maximum
amount of flow that can be sent from s to t within time T
and the minimum-cost quickest flow problem, where is T
is fixed to the minimum time needed for sending v units
of flow from s to t. We first prove that both subproblems
are NP-hard even on two-terminal series-parallel graphs
with unit capacities. As main result, we formulate a
greedy algorithm for MCDFP and provide a full charac-
terization via forbidden subgraphs of the class � of
graphs, for which this greedy algorithm always yields an
optimum solution (for arbitrary choices of problem pa-
rameters). � is a subclass of the class of two-terminal
series-parallel graphs. We show that the greedy algo-
rithm solves MCDFP restricted to graphs in � in polyno-
mial time. © 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

A dynamic network is defined by a directed graph G
� (N, A) with sources, sinks, and nonnegative capacities

ua, costs ca, and nonnegative integral transit times �a for
every arc a � A. In a feasible dynamic flow, at most ua

units of flow can be sent along the arc a within each integral
time step. The flow which leaves the tail of arc a at time �
and is sent along arc a reaches the head of a at time � � �a.

The minimum-cost dynamic flow problem is defined by
a dynamic network with a single source s, a single sink t,
and two nonnegative integers, the time bound T and the flow
value v. All flow units sent from the source s must arrive at
the sink t no later than at time T. The minimum-cost
dynamic flow problem is to find a feasible dynamic flow f
sending v units of flow from s to t in such a way that the cost
of f over all time steps is minimum.

Two special cases of the minimum-cost dynamic flow
problem are obtained if T and v are not chosen indepen-
dently. In the minimum-cost maximum dynamic flow prob-
lem, v is set to the maximum value of a feasible dynamic
flow with time bound T, and in the minimum-cost quickest
flow problem, T is set to the minimum time such that there
exists a feasible dynamic flow with value v and time bound T.

Dynamic flow problems arise in many applications, for
example, in production–distribution systems, communica-
tions systems, truck and railway scheduling, and building
evacuation problems (see the surveys by Aronson [1] and
Powell et al. [16] for further details). Recently, some au-
thors (see, e.g., [5, 6]) preferred to use the term flows over
time instead of the term dynamic flows to avoid misunder-
standings with the notion of dynamic graph problems used
by theoretical computer scientists.

1.1. Previous and Related Work

The minimum-cost dynamic flow problem is equivalent
to a traditional minimum-cost flow problem on a related,
exponentially large time-expanded graph G(T). Most
known methods for solving the minimum-cost dynamic
flow model work directly on G(T) and, thus, their running
time is only pseudopolynomial (as it depends polynomially
on T rather than on log T).

An alternative solution method which takes into account
the multiperiod structure of the problem was developed by
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Aronson and Chen [2]. Their forward-network simplex pro-
cedure finds a minimum-cost dynamic flow even in the
more general case of time-dependent capacities and costs.
However, this method again is not polynomial and thus fails
as T becomes large.

If all arc costs are zero, the minimum-cost maximum
dynamic flow problem turns into the well-known maximum
dynamic flow problem and the minimum-cost quickest flow
problem turns into the quickest-flow problem. Both prob-
lems can be solved in (strongly) polynomial time (see Ford
and Fulkerson [7] and Burkard et al. [4]). Multiterminal
generalizations of these problems were considered in Hoppe
and Tardos [10, 11].

In the multicommodity case, already the versions without
costs turn out to be NP-hard (see Hall et al. [9]). It is not
even known whether there always exists an optimal solution
which can be described in polynomial space.

A different version of the minimum-cost dynamic flow
problem was considered in Orlin [14]. In his model, the time
horizon is infinite, that is, T � �, and flow conservation is
required only for all time steps � � maxa�A�a. Each arc a
is assigned a convex cost function and the aim is to find a
feasible infinite-horizon flow minimizing the average cost
per period. Orlin showed that such a flow can be found in
polynomial time. This result relies on the property that there
always exists a stationary optimal flow, that is, the flow on
the arcs does not change as the time progresses. No equiv-
alent result holds in the finite horizon case.

Since many dynamic flow problems are known to be
NP-hard, the issue of approximability plays an important
role. Recently, Fleischer and Skutella [5, 6] obtained fully
polynomial time-approximation schemes for the minimum-
cost quickest flow problem and the quickest multicommod-
ity flow problem. The main idea behind these approxima-
tion algorithms is the concept of a condensed time-
expanded network where a coarser discretization is used
than for the full time-expanded network.

1.2. Organization of the Paper

In Section 2, we give a formal description of the mini-
mum-cost dynamic flow problem and introduce the basic
notation used throughout this paper. In Section 3, we prove
that both the minimum-cost quickest flow problem and the
minimum-cost maximum dynamic flow problem are NP-
hard even for two-terminal series-parallel graphs with unit
capacities. In Section 4, we propose a greedy algorithm and
provide an exact characterization of the class of graphs for
which this approach yields an optimal solution. The paper is
concluded with a short discussion in Section 5.

2. DEFINITIONS AND PRELIMINARIES

2.1. Dynamic Networks and Dynamic Flows

Let G � (N, A) be a directed (multi) graph with node set
N and arc set A where each arc a � A is characterized by

its tail t(a) and its head h(a); a is directed from t(a) to
h(a). For each node i, we denote the set of arcs a with t(a)
� i by A�(i) and the set of arcs a with h(a) � i by A�(i).
If there is a single arc a with t(a) � i and h(a) � j, this
arc will also be referred to by (i, j).

A path P in G from node j to node k is an alternating
sequence of nodes and arcs such that P � (i0, a1, i1,
a2

. . . ap, ip), i0 � j, and ip � k, and for each r � 1, . . . ,
p, either arc ar has head ir and tail ir�1 or else it has head
ir�1 and tail ir. In the former case, the arc is called a
forward arc of the path; in the latter case, it is called a
backward arc. A path is called directed if every arc is a
forward arc and simple if no node is repeated.

A cycle is a path for which the initial node i0 coincides
with the final node ip. G is said to be acyclic if it does not
contain a directed cycle, that is, a cycle with forward arcs
only.

A dynamic network � � (G, u, �, c, s, t) consists of a
directed (multi) graph G with source s and sink t and three
numbers attached to each arc a � A, namely, a nonnegative
real capacity ua, a nonnegative integer transit time �a, and
a cost ca. Given a directed path P � (i0, a1, i1, a2

. . . ap,
ip), let �(P) � ¥r�1

p �ar
denote its transit time, and c(P)

� ¥r�1
p car

, its cost. The cost of an arbitrary path and,
respectively, cycle, is given by the sum of the cost of its
forward arcs minus the sum of the cost of its backward arcs.

For simplicity, we assume that no arc enters the source s
and no arc leaves the sink t. Moreover, we assume that there
exists a directed path in G from the source s to any node i,
i � s, as well as a directed path from any node i, i � t to
the sink t.

Let fa(� ) denote the flow which leaves the tail node t(a)
at time � along the arc a. This flow arrives at the head node
h(a) at time � � �a. To allow the flow to arrive in an inner
node i � s, t at time �1, then wait there for some time and
leave node i again at time �2 � �1, we introduce so-called
holdover arcs modeled by loops a with h(a) � t(a) � i.
These loops get a transit time of one, infinite capacity and an
arbitrary nonnegative cost which can be chosen depending
on what is needed in the actual application. (In many cases,
zero-cost holdovers are most natural.)

For notational convenience, let IT denote the set {0,
1, . . . , T} and let A0 denote the union of the original arc set
A and the set of loops introduced for modeling holdovers.
Following Ford and Fulkerson [7], the mapping f : A0

� {0, . . . , T} 3 IR0
� is said to be a feasible dynamic flow

(or just dynamic flow) if the following two groups of
constraints are satisfied:

�
a�A0

t�a	�i

fa��	 � �
a�A0

h�a	�i

fa�� � �a	 � 0 for all i � N�
s, t�, � � IT

(1)

0 � fa�� 	 � ua for all a � A0, � � IT, (2)

where, for notational convenience, we assume throughout
that fa(� ) � 0 for � � 0. Equations (1) require that, for any
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time � � {0, . . . , T} and any node i � s, t, the amount
of flow which enters node i at time � equals the amount of
flow which leaves node i at time �. The inequalities (2)
require that the capacity constraints are fulfilled for each arc
a � A and each time that � � {0, . . . , T}.

Note that the flow conservation constraints (1) imply that
the net amount which leaves the source equals the net
amount which enters the sink, that is,

�
��0

T �
a�A��s	

fa�� 	 � �
��0

T �
a�A��t	

fa�� � �a	 �: v f. (3)

v f is called the value of the dynamic flow f.

2.2. Problem Statement

Given a dynamic network � � (G, u, �, c, s, t), a
nonnegative integral time bound T, and a nonnegative in-
tegral flow value v, the minimum-cost dynamic flow problem
(MCDFP) is to determine a feasible dynamic flow f with
value v f � v and minimum total cost cf, where

cf � �
��0

T �
a�A0

cafa�� 	. (4)

The minimum-cost maximum dynamic flow problem re-
sults from MCDFP by setting v to the maximum value
vmax(T) of a feasible dynamic flow with time bound T.

The minimum-cost quickest flow problem results if, for
given v, the time-bound T is set to the minimum time
Tmin(v) such that there exists a feasible dynamic flow with
time bound Tmin(v) and value v.

2.3. Static Flows and Time-expanded Graphs

To distinguish traditional flows in G from dynamic
flows, traditional flows will, henceforth, be referred to as
static flows. A mapping g : A � IR0

� is said to be a
(feasible) static s, t-flow in G � (N, A) if g satisfies the
flow conservation constraint ¥a�A�(i) ga � ¥a�A�(i) ga

� 0 for every node i � s, t and the capacity constraint 0
� ga � ua for every arc a � A. A path P from s to t in G
is said to be an augmenting path with respect to the flow g
if ga � ua holds for all forward arcs a of path P and ga

� 0 holds for all backward arcs a of P. A minimum-cost
augmenting path is an augmenting path with minimum cost.

It is easy to see that a minimum-cost dynamic flow in G
corresponds to a minimum-cost static flow in an enlarged
graph, the so-called time-expanded graph G(T) � (N(T),
A(T)), which is defined as follows: For each node i � N,
we introduce T � 1 copies in N(T), denoted by i(0), . . . ,
i(T), and for each arc a � A0, we introduce max{0, T � �a

� 1} copies, with tail i(� ) and head j(� � �a), �
� 0, . . . , max{0, T � �a � 1}, where i is the tail of the

original arc a and j is the head of a. Each copy of arc a is
assigned a capacity of ua and a cost of ca. Note that if the
loop (i, i) is contained in A0 then A(T) contains the arcs
(i(� ), i(� � 1)) for � � 0, . . . , T � 1. These arcs are
called holdover arcs.

In addition, we add to N(T) a super source s and a super
sink t and link s to all copies of s and all copies of t to t.
These arcs all get zero cost and infinite capacity. A feasible
dynamic flow from s to t in the graph G corresponds to a
feasible static flow from s to t in the time-expanded graph
G(T).

2.4. Temporally Repeated Flows

The size of the time-expanded network increases with
the size of the time bound T and thus is exponentially large
in the size of the input. This raises the question of finding
ways for computing and representing dynamic flows that are
more efficient than the time-expanded network approach.
To that end, Ford and Fulkerson [7] introduced a special
class of dynamic flows with a particularly simple represen-
tation, namely, the class � of temporally repeated flows
which are defined as follows:

Let g be a feasible static s, t-flow and decompose g into a
sum of path flows g(1), . . . , g(q) along directed simple s, t-paths
P1, . . . , Pq (cycles are omitted). Let � :� {g(1), . . . , g(q)}.
Given a time bound T � maxr�1,...,q�(Pr), repeat each path
flow g(r) � � exactly (T � 1 � �(Pr)) times. The resulting
dynamic flow fg,�,T is a feasible dynamic flow and is referred
to as temporally repeated flow which is induced by the static
flow g and its path flow decomposition �.

It is easy to check that the value of the temporally
repeated flow fg,�,T is given by

�
r�1

q

�T � 1 � ��Pr		 � �g�r	� � �T � 1	�g� � �
a�A

�aga, (5)

where �g� denotes the value of the static flow g and �g(r)�, r
� 1, . . . , q, denotes the value of the path flow g(r). Note
that the expression on the right-hand side of (5) only de-
pends on g and is independent of the set of path flows �.

In both the maximum dynamic flow problem and the
quickest flow problem, the search for an optimal flow can be
restricted to the class of temporally repeated flows (cf. Ford
and Fulkerson [7] and Burkard et al. [4], respectively).
Hence, one might hope that this remains true if arc costs are
added to the problem. The following simple example dem-
onstrates that this is not the case.

Example. Consider the graph with node set N � {s, 1, t}
and arc set A � {a1, a2, a3}, where a1 � (s, 1), t(a2) � t(a3)
� 1, and h(a2) � h(a3) � t. Let �a2

� ca3
� 1 and let all

other transit times and costs be zero and all capacities be
one. Let T � 1 and v � 2 [note that T � Tmin(v) and v �
vmax(T), respectively]. The only feasible temporally re-
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peated flow f1 sends one unit of flow along the path P1 � (s,
a1, 1, a3, t) at � � 0, 1. Using path P2 � (s, a1, 1, a2, t) at
� � 0 and path P1 only at � � 1 results in a feasible
dynamic flow f2 with cost cf2 � 1 while cf1 � 2.

2.5. Two-terminal Series-parallel Graphs

A two-terminal series-parallel graph with source s and
sink t is a directed (multi) graph G � (N, A) which either
consists of the single arc (s, t) or can obtained recursively
as follows: If G1 and G2 are two-terminal series-parallel
graphs with sources s1 and, respectively, s2 and sinks t1

and, respectively, t2, then the graph that is obtained by one
of the following operations is also two-terminal series-
parallel:

(a) Parallel composition G1 � G2: Identify the source s1 of
G1 with the source s2 of G2 and the sink of G1 with the
sink of G2. The common source is the source of the
composition and the common sink is its sink.

(b) Series composition G1 � G2: Identify the sink t1 of G1

with the source s2 of G2. The source of G1 is the source
of the composition. The sink of the composition is the
sink of G2.

A linear time recognition algorithm for two-terminal series-
parallel graphs was given in Valdes et al. [17].

Two-terminal series-parallel graphs can also be charac-
terized via forbidden homeomorphic subgraphs. A graph G
contains a subgraph homeomorphic to a graph G, if G can
be obtained from G by a sequence of the following opera-
tions: (O1) remove an arc; (O2) remove an isolated node;
(O3) if a node i has in-degree one and out-degree one, delete
i and replace the two arcs (k, i) and (i, j) by the new arc (k,
j).

Lemma 2.1 (see e.g., Valdes et al. [17]). An acyclic
directed graph G is two-terminal series-parallel if and only
if it does not contain a subgraph homeomorphic to the
graph GF in Figure 1.

3. THE COMPLEXITY OF THE MCDFP

It is easy to see that the general MCDFP is NP-hard:
Finding a minimum-cost dynamic flow of value v � 1
amounts to finding a minimum-cost s, t-path with transit
time �T, that is, to solving a constrained shortest path
problem which is NP-hard (see Garey and Johnson [8]). In
the following, we will derive the stronger result that finding
a minimum-cost quickest flow and, respectively, a mini-
mum cost maximum dynamic flow is NP-hard.

Theorem 3.1. The minimum-cost quickest flow problem
and the minimum-cost maximum dynamic flow problem,
respectively, are NP-hard for two-terminal series-parallel
graphs with unit capacities.

Proof. The proof is done by a reduction from the
NP-complete even–odd partition problem EOP (cf. Garey
and Johnson [8]): Given 2d positive integers 	r, r
� 1, . . . , 2d, such that ¥r�1

2d 	r � 2B, does there exist a
set I � {1, . . . , 2d} such that ¥r�I 	r � B and �I � {2h
� 1, 2h}� � 1 for all h � 1, . . . , d?

Let an instance of EOP be given. The corresponding
dynamic flow problem is constructed as follows: First, we
set up a two-terminal series-parallel graph G � (N, A) with
node set N :� {1, 2, . . . , d � 2}, source s � 1, sink t
� d � 2, and arc set A, where for each h � 1, . . . , d the
arc set A contains two parallel arcs a2h�1 and a2h, both with
tail h and head h � 1. In addition, we add the arcs a2d�1

� (1, d � 1) and a2d�2 � (d � 1, d � 2). For each h
� 1, . . . , d, the arc a2h�1 has transit time 	2h�1 and cost
	2h and the arc a2h has transit time 	2h and cost 	2h�1.
Furthermore, arc a2d�1 has transit time 0 and cost B � 1
and arc a2d�2 has zero transit time and zero cost. Finally,
we set all capacities to one and define C � B2 � 2B, v �
B � 1 and T � B [note that v � vmax(T) and T � Tmin(v)]

Claim. There exists a feasible dynamic flow of value v and
cost �C if and only if the above graph G contains a directed
s, t-path P with transit time �(P) � B and cost c(P) � B.

Proof of the claim. Since T � B, paths P from s to t
with �(P) � B are of no use. If all v units of flow are sent
along s, t-paths with cost �B, then the cost of the resulting
dynamic flow will become at least (B � 1)(B � 1) � B2

� 2B � 1 � C. Consequently, a feasible dynamic flow of
value v and cost �C can exist only if there exists an s,
t-path P with �(P) � B and c(P) � B.

Conversely, given an s, t-path P with �(P) � B and
c(P) � B, construct the following dynamic flow f: At time
T � �(P) � B � �(P), dispatch one unit of flow along the
path P, and at time steps � � 0, . . . , B � 1, dispatch one
unit of flow along the path P � (s, a2d�1, d � 1, a2d�2,
t). f is feasible, has value v, and total cost cf � c(P) � B(B
� 1) � B2 � 2B � C.

FIG. 1. The forbidden subgraph GF for two-terminal series-parallel
graphs.
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Proof of Theorem 3.1, continued. It remains to be
shown that there exists an s, t-path P with �(P) � B and
C(P) � B if and only if the given EOP instance is a
“yes”-instance. To that end, note that any s, t-path P with
c(P) � B must contain exactly one of the arcs a2h�1 and
a2h for each h � 1, . . . , d. Hence, �(P) � c(P) � ¥r�1

2d

	r � 2B, which, in turn, implies that the only s,t-paths P
with �(P) � B and cost c(P) � B are those with �(P) � B
and c(P) � B. Such paths correspond in a straightforward
manner to a solution of the EOP: For each r � 1, . . . , 2d,
index r is in set I if and only if arc ar is in path P. ■

Remark 3.1. Note that the structure of the optimal flow in
instance I constructed in the proof above is very simple; the
optimal flow is either a temporally repeated flow or it
deviates from a temporally repeated flow only by sending
flow along an additional path P at a single time unit.
Nevertheless, it is NP-hard to find an optimal flow.

Although the class of temporally repeated flows does, in
general, not contain a minimum-cost maximum dynamic
flow (respectively, a minimum-cost quickest flow), in view
of Theorem 3.1, it still might be interesting to find a tem-
porally repeated flow with minimum cost. Unfortunately, it
turns out that this problem is NP-hard as well. To prove this,
we consider the minimum-cost maximum temporally re-
peated flow problem (MCMTRFP) which can be stated as
follows:

MCMTRFP

Input. A dynamic network � � (G, u, �, c, s, t), a
nonnegative integral time bound T, and a cost bound C.
Let v � vmax(T) denote the maximum amount of flow
that can be sent from s to t within time T.
Question. Does there exist a feasible integral static flow
g and a decomposition � of g into integral path flows
g(1), . . . , g(q) such that the induced temporally repeated
flow f � fg,�,T has flow value v and overall cost cf � C?

Theorem 3.2. The MCMTRFP is strongly NP-hard al-
ready for two-terminal series-parallel graphs with unit ca-
pacities.

Proof. The proof is done by a reduction from the
following variant of 3-PARTITION which is strongly NP-
hard (see Garey and Johnson [8] and Papadimitriou et al.
[15]):

3-PARTITION

Input. Three sets of d positive integers each, {
1, . . . ,

d}, {	1, . . . , 	d}, and {�1, . . . , �d}, each greater
than B/4, where B � (1/d) ¥r�1

d (
r � 	r � �r).
Question. Do there exist two permutations � and  of
{1, . . . , d} such that all sums 
r � 	�(r) � �(r), r
� 1, . . . , d, are equal to B?

Given an instance IP of 3-PARTITION, we now con-
struct an instance IM of MCMTRFP as follows:

Define �max :� maxr�1,...,d{
r, 	r, �r}. We introduce a
graph G � (N, A) with node set N :� {s, 1, 2, t}, source
s, sink t, and the following 3d arcs: For each r � 1, . . . ,
d, there are three arcs ar, ad�r, and a2d�r. The arc ar has
tail s, head 1, transit time 
r, and cost �max � 
r; the arc
ad�r has tail 1, head 2, transit time 	r, and cost �max � 	r;
and, finally, the arc a2d�r has tail 2, head t, transit time �r,
and cost �max � �r. The capacities of all arcs are set to 1.
Let M :� max{
r1

� 	r2
� �r3

; 1 � r1, r2, r3 � d} and
T :� M � B � 1. Finally, set C1 :� 3d(T � 1)�max �
dB(3�max � T � 1) and C :� C1 � dB2.

It remains to be shown that the instance IM of MCMTRFP
constructed above is a “yes”-instance if and only if the
original instance IP of 3-PARTITION is a “yes”-instance.
To that end, the following observations turn out to be
essential:

(i) First, observe that vmax(T) � dM, that is, in instance
IM, at most dM units of flow can be sent from s to t within
time T � M � B � 1. To see this, let gmax denote the static
flow which sends one unit of flow along each arc (i, j) � A.
Obviously, gmax has value d and is the unique maximum
static s,t-flow in G. Using formula (5), it follows that the
value of any temporally repeated flow that is induced by
gmax is equal to (M � B)d � ¥a�A �a � dM [recall that
¥a�A �a � ¥r�1

d (
r � 	r � �r) � dB by construction].
Since the value of any feasible integral static flow g � gmax

is at most d � 1 and M equals the maximum transit time of
a directed s,t-path, a similar calculation shows that the
value of a temporally repeated flow induced by an integral
static s,t-flow g � gmax is at most dM � B � dM. Thus,
vmax(T) � dM follows.

(ii) Since gmax has to be decomposed into integral path
flows and all capacities are one, any path decomposition �
of gmax will consist of exactly d path flows of value 1 each.
Let gmax be decomposed into path flows g(1), . . . , g(d)

along the directed s,t-paths P1, . . . , Pd. Each of these
paths contains exactly one arc of each of the three sets
{a1, . . . , ad}, {ad�1, . . . , a2d}, and {a2d�1, . . . , a3d}.
Suppose that the paths are indexed such that path Pr con-
sists of the arcs ar, ad��(r) and a2d�(r), where � and  are
two permutations of the set {1, . . . , d}. The transit time
and respectively, the cost of path Pr are given by

��Pr	 � 
r � 	��r	 � ��r	,

and, respectively,

c�Pr	 � 3�max � 
r � 	��r	 � ��r	 � 3�max � ��Pr	.

Since we send one unit of flow along each of the paths
P1, . . . , Pd, that is, �g(r)� � 1, r � 1, . . . , d, the cost of
the induced temporally dynamic flow f � fg,�,T is given by
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cf � �
r�1

d

�T � 1 � ��Pr		 � c�Pr	

� �
r�1

d

�T � 1 � ��Pr		 � �3�max � ��Pr		

� 3d�T � 1	�max � �3�max � T � 1	 �
r�1

d

��Pr	

� �
r�1

d

���Pr		
2 � C1 � �

r�1

d

���Pr		
2.

Since C � C1 � dB2, it follows that cf � C if and only if
¥r�1

d (�(Pr))2 � dB2, that is, if and only if

��P1	 � · · · � ��Pd	 � B. (6)

(iii) Finally, observe that a set of s,t-paths P1, . . . , Pd

satisfying (6) corresponds to a solution of the instance IP of
3-PARTITION since the paths P1, . . . , Pd induce two
permutations � and  of {1, . . . , d} such that 
r � 	�(r)

� �(r) � B for all r � 1, . . . , d. ■

We close this section with the following two remarks:

Remark 3.2. The construction in the proof of Theorem
3.2 above can be used to prove that finding a quickest
temporally repeated flow with minimum cost is NP-hard as
well. Instead of fixing the time bound T, we fix the flow value
v � dM, which implies that Tmin(v) � M � B � 1. Hence,
the proof above applies without any further modifications.

Remark 3.3. It is easy to see that the MCMTRFP can be
solved by the integer program give below. Let � denote the
set of directed s,t-paths. We associate a variable zP with
each path P � �, where zP is the amount of flow which is
sent along path P. We then arrive at the following IP:

min �
P��

�T � 1 � ��P		 � c�P	 � zP (7)

s.t. �
P��

�T � 1 � ��P		 � zP � v (8)

�
P��:a�P

zP � ua for all a � A (9)

zP � 0 for all P � �. (10)

If the integrality requirement on the path flow variables zP

is dropped and G contains only a polynomial number of
directed s,t-paths, the integer program IP turns into a linear

program which can be solved in polynomial time in the size
of G.

4. A GREEDY APPROACH TO THE MCDFP

In this section, we first propose a greedy algorithm for
the MCDFP and then give an exact characterization of the
class of graphs for which this greedy algorithm always
succeeds. Algorithm GREEDY consists of the following
two phases:

1. Determine the set � � {P1, . . . , PK} of all directed
s,t-paths in G with transit time �T and number the paths
within � such that c(P1) � c(P2) � . . . � c(PK). Set
r :� 1 and ṽ :� 0.

2. Repeat the following step as long as ṽ � v: At each time
� � 0, . . . , T � �(Pr), send as much flow as possible
along path Pr. Update the flow value ṽ and set r :� r
� 1.

Remark 4.1. For the special case ca � �a for all a � A,
the above greedy algorithm and the earliest arrival algo-
rithm obtained independently by Minieka [13] and Wilkin-
son [18] are similar in spirit. The main difference is that our
algorithm uses only directed paths, that is, only forward
arcs to augment flow, while the earliest arrival flow algo-
rithm uses also backward arcs.

Remark 4.2. Instead of computing the set � in advance,
it is sufficient to compute the paths one by one, sorted
increasingly by their cost. However, this observation does
not improve the worst-case running time of algorithm
GREEDY.

Obviously, algorithm GREEDY is, in general, not a
polynomial time algorithm since its running time depends
on the cardinality of the set �. More specifically, the run-
ning time of algorithm GREEDY can be bounded as fol-
lows:

Lemma 4.1. Let � � {P1, . . . , PK}, K  � K, be the set
of directed s,t-paths used by algorithm GREEDY to build
up a feasible dynamic flow of value v and let TIME(�)
denote the time needed for computing the set �. Further-
more, let L denote the maximum number of arcs of a path in
�. Then, the overall running time of algorithm GREEDY is
O(TIME(�) � LK2).

Proof. In general, the amount of flow sent along an
s,t-path P � � will vary with the time �. However, it is
easy to see that the flow on any arc a � A changes its value
over the time interval [0, T] at most 2K � 1 times. [Note
that each path can add at most two new pieces/intervals to
the function fa(�).] Hence, the amount of flow to be aug-
mented along a path P � � can be computed in O(LK)
time [O(K) time is needed per arc of the path]. Summing
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over all paths and noting that K � K gives the claimed
time bound. ■

Algorithm GREEDY is closely related to the greedy
algorithm of Bein et al. [3] for solving the static minimum-
cost flow problem on two-terminal series-parallel networks.
The algorithm in [3] is an augmenting path algorithm which
successively sends flow along the minimum-cost augment-
ing path which does not contain any backward arcs.

Observation 4.2. Algorithm GREEDY can be viewed as
compact realization of the the greedy algorithm of Bein et
al. [3] applied to time-expanded graph G(T) after the re-
moval of the holdover arcs.

In other words, the dynamic flow obtained by algorithm
GREEDY belongs to the class of flows which can be ob-
tained by applying the algorithm of [3] to the time-expanded
G(T) without holdover arcs. The advantage of algorithm
GREEDY is that it works on the static graph G and not on
the typically much larger time expanded graph G(T).

The correctness of Observation 4.2 follows easily from
the lemma below which states that, under the assumptions
made in this paper, the holdover arcs may be removed from
G(T) without affecting the optimal solution of MCDFP:

Lemma 4.3. Fleischer and Skutella [6].* If all arcs a
� A0�A, that is, the arcs which model holdover arcs, have
nonnegative cost, there always exists a minimum-cost dy-
namic flow which does not use holdover arcs.

Since we assumed that ca � 0 for all a � A0�A, the
lemma allows us to assume, henceforth, that A0 � A, that
is, there are no holdover arcs.

Bein et al. [3] characterized the class of graphs for which
their greedy algorithms always determines an optimal flow
in the following way:

Proposition 4.4 (Bein et al. [3]). Let G be an acyclic
directed graph. The greedy algorithm in [3] solves the static
minimum-cost flow problem for any choice of the problem
parameters (arc capacities, arc costs, and flow value) if and
only if G is two-terminal series-parallel.

It is easy to see that the time-expanded graph G(T) of a
two-terminal series-parallel graph G is, in general, not two-
terminal series-parallel. Hence, Proposition 4.4 cannot be
used to obtain a characterization of the class of graphs for
which algorithm GREEDY determines a minimum-cost dy-

namic flow. It will be our next aim to obtain such a char-
acterization. To that end, the following definitions are needed:

A graph G is called greedy if and only if the algorithm
GREEDY determines a minimum-cost dynamic flow in G
for any choice of the problem parameters (arc capacities ua,
arc costs ca, arc transit times �a, flow value v, and time
bound T). The graph GR depicted in Figure 2 is called the
rolling-pin graph. The primitive cycle graph GC results from
GR by reversing arc a3 (cf. Fig. 3).

We start with some easy-to-prove properties of the class
of greedy graphs:

Observation 4.5. G is greedy if and only if each of its
subgraphs is greedy. G is greedy if and only if any graph
which results from G by subdividing arcs is greedy.

Observation 4.6. Graphs G which contain a subgraph
that is homeomorphic to (i) the rolling-pin GR or to (ii) a
directed cycle or to (iii) GF (cf. Fig. 1) are not greedy.

Proof. (i) By Observation 4.5, it suffices to show that
the graph GR is not greedy. Let s � i1, t � i4 and set �a2

� 1, ca3
� 1 and all other transit times and costs to zero

and all capacities to one. Let T � 1 and v � 2. GREEDY
first selects the two directed s,t-paths P1 � (s, a1, i2, a2,
i3, a4, t) and P2 � (s, a1, i2, a3, i3, a4, t) with c(P1) � 0,
c(P2) � 1, �(P1) � 1, and �(P2) � 0. Next, GREEDY
sends one unit of flow along path P1 at time 0, but then it
gets stuck because P2 cannot be used to increase the flow
value to v � 2.

(ii) Next, assume that G contains a homeomorphic di-
rected cycle Q as subgraph. This yields that G contains a
subgraph homeomorphic to the primitive cycle graph GC

defined above (since Q must be reachable via a directed
path from s and since t must be reachable via a directed path
from Q). Again, it suffices to show that GC is not greedy.
Let s � i1, t � i4 and set �a3

� 1, ca3
� �1, and ca � �a

� 0 for all arcs a � a3. Let ua � 1 for all arcs a and

* This result has been stated already in [12], but no proof was provided due
to space restrictions and due the fact that the proof we had in mind was
quite simple. It turned out, however, that this proof contained a flaw. A
correct proof has been provided for a more general case than stated here by
Fleischer and Skutella [6]. The results of our paper can be obtained without
this lemma, but in a less elegant way, which involves additional case
distinctions in the proof of Theorem 4.1.

FIG. 2. The rolling-pin graph GR.

FIG. 3. The primitive cycle graph GC.
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choose again T � 1 and v � 2. GREEDY fails for GC since
it starts with path P1 � (s, a1, i2, a2, i3, a3, i2, a2, i3, a4,
t) with c(P1) � �1 and �(P1) � 1 and then gets stuck as
above.

(iii) Because of (ii), we know that every greedy graph G
is acyclic. Hence, the claim follows from Proposition 4.4.
(For the graph GF, the greedy approach already fails in the
static case.) ■

The following theorem presents the main result of this
paper, a forbidden subgraph characterization of the class of
greedy graphs:

Theorem 4.1. A graph G is greedy if and only if G is
two-terminal series-parallel and does not contain a sub-
graph homeomorphic to the rolling-pin graph GR.

Proof.
“f”: Follows from Observation 4.6.
“d”: Suppose that the graph G is not greedy. Then, there

must exist an instance I of MCDFP for which algorithm
GREEDY fails. Due to Observation 4.2 and Lemma 4.3,
this means that, for instance I, at least once there does not
exist a minimum-cost augmenting path in the time-ex-
panded graph G(T) using forward arcs only.

Let f be the dynamic flow obtained by GREEDY im-
mediately before such a situation arises for the first time and
let P be a minimum-cost augmenting path in G(T) from s
to t with respect to the flow f. We furthermore assume that
P has the additional property that it contains a minimum
number of blocks of backward arcs, where two backward
arcs a and a of a path P are said to belong to the same
block if all arcs of P which lie between a and a are
backward arcs. Since augmenting cycles with zero cost can
be omitted and augmenting cycles with negative cost con-
tradict the optimality of f, we may assume w.l.o.g. that P
is a simple path.

Let B be the last block of backward arcs encountered
when traversing the path P from s to t and denote the first
arc of B by a1 and the last arc of B by a2. Furthermore, let
arc a3 with tail u and head w be the immediate predecessor
of arc a1 along P and let a4 with tail v and head x be the
immediate successor of arc a2. Obviously, both a3 and a4

are forward arcs.
Let i, j, k, and � be the nodes in G which correspond to

the nodes u, v, w, and x in G(T). Then, the following three
properties hold:

(a) i � k, j � k and k � �,
(b) j � s and k � t,
(c) G contains a unique directed path from j to k.

Property (a) follows directly from the acyclicity of G and
the fact that there are no holdover arcs. To prove property
(b), suppose the contrary. First, assume that j � s, that is,
v is a copy of the source s. Let P be the subpath of path P
from s to v. Since the arc (s, v) is an artificial arc in G(T)

with zero cost and infinite capacity and P is a minimum-
cost path from s to v, it follows that c(P) � 0. Consider
the cycle Q formed by P and the (backward) arc (s, v).
This cycle is an augmenting cycle since the flow f sends a
positive amount of flow along the arc (s, v) [note that the
backward arc a2 has tail v and (s, v) is the only arc
entering v]. Due to the optimality of f, the cost of Q must
be 0, which implies that c(P) � 0. Let P̃ be the path
obtained from P by replacing the subpath P by the arc (s,
v). Since c(P) � c(P̃) holds by construction, P̃ is again a
minimum-cost augmenting path, but it contains a smaller
number of blocks of backward arcs than does P (actually, it
contains no backward arcs at all), which leads to a contra-
diction. In an analogous way, it can be shown that the
assumption k � t leads to a contradiction as well.

To prove property (c), suppose that G contains two
distinct directed paths from j to k. Since j � s and k � t,
this implies that G contains a homeomorphic rolling-pin
(since no arc enters s and no arc leaves t, but j must be
reachable by a directed path from s and k must be reachable
by a directed path from j) and leads to an immediate
contradiction.

Thus, we may, henceforth, assume that j � s, k � t and
that there is a single directed path in G from j to k. Since G
is acyclic, the following relation � defines a partial order on
the node set N:

i � j :N G contains a directed path from i to j.

By the above assumptions, it follows that the nodes i, j, k,
and � are pairwise distinct and are ordered such that i � k,
j � k, and j � �. Furthermore, neither j � i nor � � k can
hold since this would imply that the path P contains a cycle
or that G contains two directed paths from j to k. It remains
to distinguish the following four cases:

CASE 1. i � j and k � �. It is easy to check that, in this
case, there exist directed paths from i to j and k, from j to
k and �, and from k to �, such that these five paths have no
inner nodes in common. Thus, G contains a subgraph ho-
meomorphic to GF (set i1 :� i, i2 :� j, i3 :� k, and i4 :�
�), which contradicts the assumption that G is two-terminal
series-parallel.

CASE 2. i � j and k � �. Let P1 be a directed path in G
from s to i and P2 be a directed path from s to j. Since i �
j, there exists a node i � i, j such that the subpath P1 of
P1 from i to i and the subpath P2 of P2 from i to j have
no inner nodes in common. Similarly, there exists a node �
� k, � and paths P3 from � to � and P4 from k to � which
have no inner node in common. It can easily be checked that
this implies that G contains a subgraph homeomorphic to
GF (set i1 :� i, i2 :� j, i3 :� k, and i4 :� �), which
again leads to a contradiction.

In the remaining two cases, Case 3, where i � j and k � �
holds, and Case 4, where i � j and k � � holds, a subgraph
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homeomorphic to GF and, hence, a contradiction can be
obtained in an analogous way by combining the arguments
in Cases 1 and 2. ■

Note that, while the time expanded graph G(T) of greedy
graphs G is, in general, not two-terminal series-parallel, it is
“almost” two-terminal series-parallel in the following sense:

Theorem 4.2. Let G be a two-terminal series-parallel
graph which does not contain a homeomorphic rolling-pin
and let H be any subgraph of the time-expanded graph G(T)
which is homeomorphic to the graph GF. Denote the four
essential nodes of H, that is, those nodes which cannot be
eliminated by contracting directed paths to single arcs, by
u, v, w, and x in such a way that u corresponds to node i1
of GF, v to i2, w to i3, and x to i4. Then, at least one of the
following two properties is fulfilled: (ii)

(i) u equals the super source s of G(T) and v is a copy
of the source s.

(ii) x equals the super sink t of G(T) and w is a copy of
the sink t.

Proof. The proof is similar to the proof of Theorem
4.1, but simpler. We may henceforth assume that G is
acyclic since, otherwise, G is not two-terminal series-par-
allel. Hence, it follows that v and w are the copies of two
distinct nodes of G, say i and j. (Recall that we may assume
that there no holdover arcs.) We now distinguish two cases:

CASE 1. There exist two distinct directed paths in G from i
to j and i � s and j � t. This implies the existence of a
homeomorphic rolling-pin in G.

CASE 2. Either i � s or j � t or there exists a unique
directed path in G from i to j. Then, either G is not
two-terminal series-parallel (in this case, we are again fin-
ished) or at least one of the properties (i) and (ii) above is
fulfilled. ■

A consequence of Theorem 4.1 is that the number of
directed s,t-paths in a greedy graph G is polynomial in the
number of nodes and arcs of G. Hence, the first step of
algorithm GREEDY can be performed in polynomial time.
Since greedy graphs are acyclic, any directed path in a
greedy graph with n nodes has at most n � 1 arcs. Using
Lemma 4.1 immediately yields the following corollary:

Corollary 4.3. For a greedy graph G, algorithm
GREEDY solves the MCDFP on G in polynomial time.

Theorem 4.1 gives a characterization of greedy graphs in
terms of forbidden subgraphs. In the following, we will
present an alternative characterization which describes how
greedy graphs can be built up from certain primitives by
series and parallel compositions. To that end, the following

property of greedy graphs, which is an immediate conse-
quence of Theorem 4.1, turns out to be essential:

Observation 4.7. The parallel composition of two greedy
graphs is greedy again. Furthermore, if G is greedy, then
also the reverse graph G� is greedy (where G� results from
G by exchanging the role of the source s and the sink t and
reversing the direction of each arc of G).

In the alternative characterization of the class of greedy
graphs, the following classes of graphs play a key role:

● A graph G is called a pumpkin if it is the parallel com-
position of h � 1 directed paths. G is called a balloon if
it is a series composition of the form G � G1 � G2, where
G1 is a pumpkin and G2 is a directed path.

● The class of Type 1 graphs contains (i) all pumpkins, (ii)
all graphs G � G1 � G2, where G1 is a Type 1 graph and
G2 a directed path, and (iii) all graphs G � G1 � G2,
where G1 and G2 are Type 1 graphs.

● The class of Type 2 graphs contains all graphs G � G1 �

G2, where G1 is a parallel composition of an arbitrary
number of balloons and G2 is a pumpkin.

Theorem 4.4. A graph G is greedy if and only if either G
or its reverse graph G� can be represented as a parallel
composition of an arbitrary number of Type 1 graphs and
Type 2 graphs.

An important subclass of the class of greedy graphs is the
class of augmented trees which are obtained from an in-tree
with root t (i.e., a directed tree where all arcs are directed
toward the root) by adding a source s and linking s to all
leaves of the in-tree.

5. DISCUSSION

In this paper, we proved that the MCDFP is NP-hard for
general two-terminal series-parallel graphs and identified a
subclass of the class of two-terminal series-parallel graphs
for which the problem can be solved in polynomial time by
a greedy algorithm. It remains to narrow the gap between
the classes of hard and efficiently solvable instances of the
MCDFP on two-terminal series-parallel graphs.

Another open problem concerns MCDFP with a fixed
network topology. In this variant, the underlying network G
� (N, A) is fixed a priori and the input consists only of the
capacities, costs, transit times, flow value, and time bound.
Even for this very restricted version of MCDFP, a polyno-
mial time solution is currently out of sight.
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