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Introduction

In two-dimensional topological conformal field theory the following remarkable
system of third-order nonlinear partial differential equations for a function F of N

variables emerged [48, 12]

FiF
−1
1 Fj = FiF

−1
1 Fj , i, j = 1, . . . , N. (1)

Here Fi is the matrix

(Fi)jk = ∂3F

∂ai∂aj∂ak

. (2)

Moreover, it is required that F1 is a constant and invertible matrix. Usually this
system is called the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) system, for a
physical review paper see for instance [11]. Although extremely difficult to solve in
general, this overdetermined system of nonlinear partial differential equations ad-
mits exact solutions. For instance, within the theory of Frobenius manifolds, a sub-
stantial class of polynomial solutions has been constructed associated to Coxeter
groups [44, 14].

Generalizations of this system, not requiring F1 to be constant, have been in-
troduced and studied in the context of four- and five-dimensional N = 2 super-
symmetric gauge theory (see [34–36]). In 1994, Seiberg and Witten [45] solved
the low energy behaviour of pure N = 2 Super-Yang–Mills theory in terms of
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the prepotential F . The essential ingredients in their construction for each simple
Lie algebra g of rank N are: a family of Riemann surfaces Cg, a meromorphic
differential λSW and a special selection of 2N cycles on Cg. The prepotential is
defined in terms of the period integrals of λSW as

ai =
∫

Ai

λSW,
∂F

∂ai

=
∫

Bi

λSW, (3)

where the ai play the role of moduli parameters of the family of surfaces. These
formulae define the prepotential F (a1, . . . , aN) implicitly.

This paper consists of two main parts, the first of which is used to review the
construction of the Seiberg–Witten prepotential. One of the keys to understand-
ing the prepotential is the relation with integrable systems. In particular, the pure
4-dimensional theory is related to the periodic Toda chain [17, 38]. There is a
complete lexicon translating the main objects of Seiberg–Witten theory to those of
the Toda chain and vice versa. Essentially, the prepotential identifies the Liouville
torus inside the Jacobian of the spectral curve. In our review of the three main
ingredients of the prepotential (the curves, meromorphic differential and the cycles)
we will focus on technical aspects. It is shown explicitly that the derivatives of
the Seiberg–Witten differential with respect to the moduli are holomorphic, and
following [22] we define a subset of 2N special cycles Ai, Bj . We complete this
set of cycles to a full canonical set with the property that the period integrals of the
Seiberg–Witten differential over the nonspecial A cycles is zero. The possibility to
complete the set in this way is actually necessary to define the prepotential.

The second part of the paper concerns the generalized Witten–Dijkgraaf–
Verlinde–Verlinde (or WDVV) equations. The main goal is to review the proof
that the Seiberg–Witten prepotentials satisfy this highly nontrivial system of partial
differential equations. The two main aspects of the proof are the construction of a
family of associative and commutative algebras on the one hand, and the relation
of its structure constants to the prepotential on the other. It is explained how to
find the family of algebras for any simple Lie algebra [35, 19] and we discuss two
methods to relate its structure constants to the prepotential. The first method [26]
uses Picard–Fuchs equations related to Landau–Ginzburg theory (or the theory of
isolated singularities) and its validity is therefore restricted to simply laced Lie
algebras. It is not immediately clear how to proceed in nonsimply laced cases, but
we complete a proof suggested in [26] for the cases of BN and CN . The second
method [36] involves a residue formula and is valid for any simple Lie algebra.

1. The Seiberg–Witten Data

The prepotentials considered in this paper originally arose as the solution to N = 2
supersymmetric Yang–Mills theory, also called Seiberg–Witten theory [45]. Al-
though this physical context is essential for a full understanding of the prepoten-
tials, it would take too much time to expose it here in full detail. For reviews on the
subject, see, for example, [3, 5, 10].
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On the other hand, the prepotentials can be described in the framework of an
integrable system called the periodic Toda chain [17, 38]. We will assume that the
reader either has the necessary physical background or has some knowledge of
integrable dynamical systems. In this paper we use the Toda chain context, as the
background and motivation for answering certain questions which are relevant in
the construction of the prepotentials.

The mathematical definition of the prepotential for a simple Lie algebra g in-
volves three main ingredients:

− The first ingredient is a family of Riemann surfaces given in terms of a set of
affine curves

Cg = {
(x, z) ∈ C2 | P(x, z, u1, . . . , uN) = 0

}
, (4)

where the ui serve as complex moduli parameters, N is the rank of g and a
Riemann surface in the family Cg has genus g � N .

− The second ingredient is a specific meromorphic differential λSW on Cg which
is called the Seiberg–Witten differential. Its derivatives with respect to the
moduli are holomorphic differentials on curves in the family Cg.

− The third ingredient is a particular choice of 2N independent cycles on Cg

out of a total 2g. In terms of a canonical basis {Ai, Bj } of the first homology
group, the choice consists of N cycles of type A and N cycles of type B

in such a way that the restriction of the intersection form to this subset is
nondegenerate: Ai ◦ Bj � δij .

In the rest of this section, we will explain the construction of the family of curves,
the Seiberg–Witten differential and the choice of cycles. Once these ingredients are
introduced, we define the prepotential in terms of period integrals of λSW over the
chosen 2N cycles. Since varying the moduli will influence the period integrals, the
(locally defined) prepotential is a function on moduli space.

1.1. A SIMPLE EXAMPLE: TYPE A LIE ALGEBRA

The Seiberg–Witten data and the construction of the prepotential is complicated
and technical for general simple Lie algebras. To get warmed up, we first give the
relatively simple example of Lie algebra g = AN here separately.

1.1.1. The Family of Curves

A Riemann surface can be looked upon in various ways. Due to the Lie algebraic
nature of our setup, we will often consider it as an algebraic curve in P2. On the
other hand, we need the realization of the Riemann surface in terms of a complex
manifold in order to study the holomorphic differentials on it. We will use the usual
relation between these two realizations, see, for example, [6, 28].

An affine curve C in C2 is defined through a polynomial P as

C = {
(x, y) ∈ C2 | P(x, y) = 0

}
. (5)
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The corresponding algebraic curve in P2 is given by adding the appropriate points
at infinity. In terms of affine curves, a family of Riemann surfaces C is by definition

C = {
(x, y) ∈ C2 | P(x, y, u1, . . . , uN) = 0

}
, (6)

where for generic values of the complex parameters u1, . . . , uN the genus of a
curve in the family C is fixed to some number g. For special values however, the
genus may decrease. Denoting by M the manifold CN \ � with the special values
of the ui removed, we can look upon the family as a fibration of Riemann surfaces
over M. The space M is called the moduli space of the family and the ui are called
the moduli.

Returning to the specific example under consideration, the family of Riemann
surfaces CAN

is given by

CAN
= {

(x, y) ∈ C2 | P(x, y, ui) = y2 − W(x, ui)
2 + 4 = 0

}
,

(7)
W(x, ui) = xN+1 + u1x

N−1 + · · · + uN−1x + uN.

The curves in the family (7) are hyperelliptic, which makes their investigation
relatively simple. Moreover, as a matter of fortunate coincidence in the type AN

case the rank N of the Lie algebra equals the genus g of the curves and these are
the main reasons why it serves as the simplest example.

To get an idea of the structure of the moduli space M, we mention that for all
Lie algebras M is known to be a Kähler manifold with Kähler metric defined in
terms of the prepotential. If we denote the prepotential, which we will introduce
later, by F (a1, . . . , aN) then the metric is given in terms of the coordinates ai by

(ds)2 =
∑
i,j

Im

(
∂2F

∂ai∂aj

)
dai dāj . (8)

In fact, manifolds with Kähler metric of the form (8) are known as rigid special
Kähler manifolds [8]. The above relation is the reason for the name prepotential,
since it serves as the basic building block for the Kähler potential.

1.1.2. The Seiberg–Witten Differential and its Derivatives

Moving on to the second ingredient in the construction of the prepotential F , the
Seiberg–Witten differential λSW is given by

λSW = log

(
y + W(x)

2

)
dx. (9)

The special property of λSW is that its derivatives with respect to the moduli are all
holomorphic. We will first explain what it means to differentiate (see [33]).

We can regard the equation P(x, y, u) = 0 as defining implicitly the function
y(x, uk). The derivative of y with respect to the moduli gives

∂y

∂uk

= −Puk

Py

, (10)
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where Puk
= ∂P/∂uk. Using x as a local coordinate on the Riemann surface, we

can extend this differentiation to differential forms ω = φ dx by

∂

∂ui

(φ dx) =
(

∂φ

∂ui

+ ∂φ

∂y

∂y

∂ui

)
dx. (11)

Alternatively, we can use y as a local coordinate and regard P = 0 as implicitly
defining x(y, ui). We can calculate the derivative of ω = −φ

Py

Px
dy again and see

if we get the same answer as in (11). In general this is the case only up to total
differential forms d(

φPui

Px
) so that taking a derivative of differential forms with

respect to the moduli is unique only in cohomology.
Now we come back to the derivatives of λSW, which we will show to be coho-

mologous to a set of linearly independent holomorphic differentials. Using x as a
local coordinate, the derivatives of λSW are

∂λSW

∂uk

= 1

y + W

(
W

y
+ 1

)
∂W

∂uk

dx = xN−k dx

y
(12)

and it is well-known that these give a basis of the holomorphic differentials of the
hyperelliptic Riemann surfaces in the family CAN

(see also Appendix A).

1.1.3. The Special Cycles

For a generic simple Lie algebra the rank is smaller than the genus of the family of
curves and a selection of 2N of the 2g cycles has to be made. For type AN no such
selection is necessary, and therefore we can immediately proceed to the definition
of the prepotential.

1.1.4. The Prepotential for Type A Lie Algebra

We consider the period integrals of λSW over a set of canonical A cycles of the
curve

ai =
∮

Ai

λSW. (13)

The ai are moduli dependent and we can use their definition as a local change of
variables on the moduli space. The Jacobian of this transformation is nonzero since

∂ai

∂uj

=
∮

Ai

∂λSW

∂uj

(14)

and a matrix built from the integrals of all holomorphic differentials over all A

cycles is always nondegenerate (see, e.g., [16]). Here we have pulled differentiation
with respect to moduli through the integration sign. The justification for this is that
the integral does not depend on the particular cycle Ai but only on its homology
class. This allows to choose a representative of this class which encircles the branch
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cuts widely, so that changing the position of a branch point slightly doesn’t change
the cycle. This then allows to differentiate with respect to the moduli under the
integration sign.

One can calculate the derivatives of λSW with respect to the variables ai by using
the chain rule and we find that the ∂λSW/∂ai form a canonical set of holomorphic
differential forms since∮

Aj

∂λSW

∂ai

= ∂aj

∂ai

= δij . (15)

We introduce the integrals of λSW over the B cycles

bj =
∮

Bj

λSW. (16)

Differentiating the bj with respect to the moduli we find

∂bj

∂ai

=
∮

Bj

∂λSW

∂ai

= �ij , (17)

where �ij is the period matrix of the Riemann surface, which according to Rie-
mann’s bilinear relations is symmetric (see, e.g., [16]). Therefore the bj can be
integrated locally and

bj = ∂F

∂aj

. (18)

The function F (a1, . . . , aN) is called the prepotential.

DEFINITION 1. Associated to the type AN Lie algebra, we define the family
of curves CAN

by (7) and a meromorphic differential λSW by (9). For a choice of
canonical basis of cycles, the prepotential F (a1, . . . , aN) is defined locally on the
moduli space M by

ai =
∮

Ai

λSW,

(19)
bj =

∮
Bj

λSW = ∂F

∂aj

.

1.1.5. Duality

Different choices of A and B cycles give different locally defined prepotentials.
As we will see later, all of these prepotentials simultaneously satisfy the WDVV
equations and in that respect the particular choice of cycles is immaterial to us.

The fact that F cannot be extended to a global function on the moduli space
was known already to Seiberg and Witten [45] for the simplest case of A1. Instead
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of F being a function on M, one finds that (ai, bj ) is a section of a flat bundle
over M with structure group � ⊂ Sp(2N, Z) × U(1). Let us elaborate on this flat
bundle. Since the moduli space M is constructed as a submanifold of CN , it will
in general have a nontrivial fundamental group. One can circle along the nontriv-
ial homotopy elements and pick up a monodromy on the cycles of the Riemann
surface. Typically, the homology element encircles a gap of complex codimension
one in CN in which one or more cycles of the Riemann surface get pinched. The
monodromy is given by the Picard–Lefschetz theorem, which prescribes that the
effect of a pinched cycle δ on another cycle ζ is

ζ → ζ − (ζ ◦ δ)δ,

where ◦ denotes the intersection of the two. A small calculation shows that un-
der these transformations a canonical homology basis remains canonical, in other
words the monodromy operator is symplectic.

Together with the transformation on λSW, which may undergo a change in phase,
this explains why the structure group of the bundle is a subgroup of Sp(2N, Z) ×
U(1). The matrix of transformed variables

∂b̃j

∂ãi

is therefore again symmetric and can be integrated locally to a new function
F̃ (ã1, . . . , ãN). This leads to different functions F locally for each patch of M. In
the physics literature, a lot of effort is spent on determining the monodromies and
the cycles for each patch. Our point of view however concerns only the WDVV
equations, therefore we will put all choices of cycles (and all resulting prepoten-
tials) in one equivalence class.

1.2. THE SEIBERG–WITTEN FAMILY OF RIEMANN SURFACES

In the original sense, dynamical integrable systems are Hamiltonian systems of
particles with interactions whose equations of motion can be explicitly solved.
A relatively simple approach towards solving such systems has had remarkable
succes: this approach is called the isospectral deformation method or the method
of Lax pairs [31]. The idea is that the equations of motion are equivalent to

dL

dt
= [L, M] (20)

in terms of a set of matrices L and M . If one can find such matrices, then as time
passes by the matrix L changes by a conjugation into U(t)LU(t)−1. The spectrum
of L is therefore time independent and so are the functions Tr(Lk). If there are
enough functionally independent traces which are in involution, then this proves
the integrability of the system.



56 L. K. HOEVENAARS

Here we consider a dynamical integrable system known as the periodic Toda
chain, which involves particles with exponential nearest neighbour interaction. It
was shown to be related to Seiberg–Witten theory in [17, 38], the analysis of this
section will follow closely that of [38]. The periodic Toda chain is a system that
can be associated to any simple Lie algebra g with rank denoted by N . Associated
with g is a so-called affine Lie algebra g(1) which is the Lie algebra of Laurent
polynomials in a variable z with coefficients in g. In terms of a root system R1 for
g(1), the Hamiltonian reads

H = 1

2

N+1∑
i=1

p2
i −

∑
α∈R

e−(α,q), (21)

where q = q0α0 +· · ·+qNαN is a linear combination of the simple roots, α0 being
the affine root which is absent in the root system of g (see also Figure 1). The center
of mass decouples from this system, leaving only an N -dimensional phase space.

A certain Lax pair for this system (for more information see, e.g., [43]) involves
the matrix L given by

L = ρ(A),
(22)

A =
N∑

i=1

(dihi + ciei + fi) + ze0 + c0

z
f0.

Here the ei, fi are the simple root generators of g corresponding to αi and −αi

respectively. The hi are the elements of the Cartan subalgebra and e0 is the affine
root generator. The ci, di are the so-called Flaschka coordinates on the phase space,
with the property that a certain product

µ =
N∏

i=0

c
ni

i (23)

is time independent, thus leaving again 2N phase space variables (see Figure 1
for the specific values of the ni). Roughly speaking, the parameter µ plays the
role of the energy scale in Seiberg–Witten theory. Finally, the parameter z that
appears in L is called a spectral parameter and regardless of its value Equations (20)
are equivalent to the equations of motion. Due to the spectral parameter one can
consider the spectral equation for L

P(x, z) = det[L(z) − x · I ] = 0 (24)

as a family of affine curves, with the phase space variables acting as moduli. Such
spectral curves are time independent since they describe the spectrum of L, and
they play an essential role in solving the dynamical system.

Roughly speaking, the family of Riemann surfaces Cg necessary for the Seiberg–
Witten data is given by the spectral curve (24) for the periodic Toda chain, whose
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Figure 1. The left side contains the affine Dynkin diagrams for simply laced Lie algebras, the
right side shows the twisted affine Dynkin diagrams for nonsimply laced Lie algebras. These
are obtained by dividing out the automorphism of the Dynkin diagram of the corresponding
simply laced algebra. The affine roots are coloured black and the numbers ni which occur in
the definition (23) of µ are indicated for each root.

Lax pair is defined in terms of the affine Lie algebra g(1) with the parameter z

playing the role of the loop variable. Due to a physical requirement however, we
should not consider the affine algebra g(1) but its dual (g(1))∨ which is obtained
by replacing roots with coroots. One of the consequences is that the degree of µ

becomes the dual Coxeter number rather than the Coxeter number itself. For the
simply laced algebras, the distinction is absent and one can continue directly. For
the nonsimply laced algebras, (g(1))∨ can be obtained from a simply laced algebra g̃

by dividing out an automorphism group π of g̃ [27]. In terms of the Dynkin diagram
of g̃ the automorphism group consists either of reflections (A2N−1, E6, DN+1) or
rotations (D4), see Figure 1. The spectral curve (24) is now given in terms of those
roots of g̃ that are invariant under π . For instance, instead of the highest (long) root
of g, one considers the highest (short) root of g̃ invariant under π .

DEFINITION 2. The family of Seiberg–Witten curves for four-dimensional
N = 2 supersymmetric Yang–Mills theory with gauge group g is given by the
spectral curves (24) associated with the periodic Toda chain for (g(1))∨ and the
smallest representation ρ.

The Lax operator (23) can be assigned a natural degree by using the princi-
pal grading of the Lie algebra [27] and by assigning degrees 1, 2, h∨

g to di, ci, z

respectively, where h∨
g is the dual Coxeter number of the Weyl group of g. This

 Later on, we will argue that the choice of representation is in fact irrelevant.
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Table I. A list of the Coxeter numbers, dual Coxeter numbers and exponents of the
simple Lie algebras.

Lie algebra g (ĝ)∨ hg h∨
g Exponents

AN A
(1)
N

N + 1 N + 1 1, 2, . . . , N

BN A
(2)
2N−1 2N 2N − 1 1, 3, . . . , 2N − 1

CN D
(2)
N+1 2N N + 1 1, 3, . . . , 2N − 1

DN D
(1)
N

2N − 2 2N − 2 1, 3, . . . , 2N − 3, N − 1

E6 E
(1)
6 12 12 1, 4, 5, 7, 8, 11

E7 E
(1)
7 18 18 1, 5, 7, 9, 11, 13, 17

E8 E
(1)
8 30 30 1, 7, 11, 13, 17, 19, 23, 29

F4 E
(2)
6 12 9 1, 5, 7, 11

G2 D
(3)
4 6 4 1, 5

choice makes the Lax operator L homogeneous of degree 1. We denote this Lie
algebraic degree of an object φ by [φ]L. The grading is respected by Equation (24)
and since this equation is Weyl invariant the coefficients of xkzl in P(x, z) are
polynomials (of a particular degree) in the Casimir invariants uk of g. Since there
are N = rank(g) invariants, the spectral curve can be viewed as a family of curves
depending on the N moduli uk. Some Lie algebraic data is given in Table I.

The list of Seiberg–Witten curves is [38, 24]

AN z + µ

z
+ xN+1 + u1x

N−1 + · · · + uN = 0,

BN x

(
z + µ

z

)
+ x2N + u1x

2N−2 + u2x
2N−4 + · · · + uN = 0,

CN

(
z − µ

z

)2

+ x2(x2N + u1x
2N−2 + u2x

2N−4 + · · · + uN) = 0,

DN x2

(
z + µ

z

)
+ x2N + u1x

2N−2 + · · · + uN−2x
4 + uNx2 + u2

N−1 = 0,

(25)

E6
1

2
x3

(
z + µ

z
+ u6

)2

− q1(x)

(
z + µ

z
+ u6

)
+ q2(x) = 0,

F4 − 8

(
z + µ

z

)3

+ s1(x)

(
z + µ

z

)2

+ s2(x)

(
z + µ

z

)
+ s3(x) = 0,

G2 3

(
z − µ

z

)2

+ 2(2ux2 − x4)

(
z + µ

z

)
− x8 + 2ux6 − u2x4 + vx2 = 0.

Although the prepotential for G2 depends only on two variables and therefore triv-
ially satisfies the WDVV equations, we have included the Seiberg–Witten curves
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for G2 in the list. The curves for E7 and E8 have been omitted because they are big
and cumbersome. The expressions for si(x), qi(x) can be found in Appendix C.
Note how for simply laced Lie algebras the z dependence is characterized by

P

(
z + µ

z
, x, u1, . . . , uN

)
= P

(
z + µ

z
= 0, x, u1, . . . , uN + z + µ

z

)
. (26)

As we will see, there is a direct relation between the A–D–E Seiberg–Witten curves
for any representation on the one hand and the A–D–E Landau–Ginzburg superpo-
tentials [46, 12] or miniversal deformations of isolated singularities [4] on the other.
Equation (26) helps establish this relation, and the twisting procedure necessary to
define the Seiberg–Witten curves for the nonsimply laced Lie algebras disturbes
it. If it wasn’t for this twisting, there would be a relation with the corresponding
boundary singularities [49].

For the classical Lie algebras there exists a change of variables that gives the
curves in the following standard hyperelliptic form (see also Section 1.1)

Type AN : y = z − µ

z

y2 = (
xN+1 + u1x

N−1 + u2x
N−2 + · · · + uN

)2 − 4µ.

Type BN : y = x

(
z − µ

z

)

y2 = (
x2N + u1x

2N−2 + u2x
2N−4 + · · · + uN

)2 − 4µx2.

Type CN : y = 1

x

(
z2 − µ2

z2

)

y2 = (
x2N + u1x

2N−2 + · · · + uN

)(
x2

(
x2N + u1x

2N−2 + · · · + uN

) + 4µ
)
.

Type DN : y = x2

(
z − µ

z

)

y2 = (
x2N + u1x

2N−2 + · · · + uN−2x
4 + uNx2 + u2

N−1

)2 − 4µx4.

The curves for E6, F4 and G2 however are not hyperelliptic. There is a simple test
to see if a curve is hyperelliptic or not: taking tensor products ωi ⊗ ωj of holo-
morphic 1-forms, one obtains so-called quadratic holomorphic differentials (see
Appendix A). The number of holomorphic 1-forms on any curve equals its genus g,
but only for hyperelliptic curves their tensor products span a (2g − 1)-dimensional
subspace of the holomorphic quadratic differentials. For any other type of curves
the span is bigger. For generic values of the moduli ui all curves within one family
have the same genus, and a list of these genera is given in Table II.

If Seiberg–Witten theory is to be related to the periodic Toda chain, the choice of
representation (which does not appear in the definition of the Toda Hamiltonian)
should be irrelevant. This issue is part of a bigger picture concerning the rela-
tion between the spectral curves and the Liouville torus promised by integrability
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Table II. The genera for the Seiberg–Witten curves of ADE type.

g AN BN CN DN E6 F4 G2

g N 2N − 1 2N 2N − 1 34 46 11

of the system. Adler and van Moerbeke [1] first raised this issue and suggested
that the Liouville torus is a subvariety of the Jacobians of each of the spectral
curves, regardless of the specific representation used. This program was subse-
quently worked out by a number of mathematicians such as Kanev, Mérindol,
Beauville and especially Donagi [13]. As shown in [38], identifying the Liouville
torus within the Jacobian of spectral curves is crucial for the understanding of
Seiberg–Witten prepotentials. It provides us with a motivation for the definition of
the Seiberg–Witten differential as well as the choice of cycles.

Decomposition of the Jacobians of Spectral Curves

There is a number of reasons why the Jacobians of spectral curves split into pieces.
Although there is an infinite number of irreducible representations and therefore
an infinite number of spectral curves, the Jacobian of each of these spectral curves
contains a 2N -dimensional Abelian subvariety called the distinghuished Prym.
Following Donagi [13], we will describe here briefly how to find this Prym variety.
Later we will see that the choice of Seiberg–Witten differential and the choice of
cycles gives us a direct method of identifying the distinghuished Prym.

− A spectral curve Cg,ρ for an irreducible representation ρ splits into irreducible
curves, with a component Cg,λ for each Weyl orbit of the weights of ρ. Here
λ denotes the highest weight in the orbit. Still, there is an infinite number of
Weyl orbits of weights.

− There is a finite collection of so-called parabolic curves Cg,P which are bi-
rationally equivalent to the Cg,λ. A parabolic curve is parametrized by the
parabolic subgroup WP of the Weyl group W that stabilizes the weight λ.
Each parabolic curve can be expressed in terms of a single much larger curve
Ĉ, called the cameral curve. This curve has a natural Weyl group action and
the quotients Ĉ/WP are the parabolic curves.

− The representation of the Weyl group on the (tangent bundle of the) Jacobian
Jac(Ĉ) splits into irreducible representations, thus splitting the Jacobian into
Prym subvarieties. Consequently the Jacobian of a parabolic curve also splits.
Among the factors of the Jacobian there is for any parabolic curve a piece
coming from the reflection representation of the Weyl group. This represen-
tation has multiplicity one in the decomposition of the Weyl group action
into irreducibles and therefore the Jacobian of all parabolic curves contains a
unique subvariety called the distinghuished Prym. Donagi and Ksir [30] then
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go on to calculate the dimension of the distinghuished Prym and find that it is
twice the rank of g, which is precisely the dimension of the phase space of the
periodic Toda chain.

Following [38], we describe in the next subsection a direct way of identifying the
distinghuished Prym in terms of the Seiberg–Witten differential and a choice of
cycles.

1.3. MORE ABOUT THE SEIBERG–WITTEN CURVES

It is convenient to view the spectral curve as a branched cover of the z sphere. For
generic values of the moduli and z, the Lax operator L = ρ(A) is the representation
of a regular semisimple element A of the Lie algebra. This implies that a Cartan
subalgebra of g can be defined by means of the centralizer of L. Since all Cartan
subalgebras are conjugate, L is conjugate to an element v(z) · h = ∑N

i=1 vi(z)hi in
the standard Cartan subalgebra. The eigenvalues x of L(z) are therefore given by
x = v(z) · ωk where the ωk denote the weights of the representation. The spectral
curve can now be denoted by

dim ρ∏
k=1

(x − v(z) · ωk) = 0. (27)

If the weight space of one of the weights ω is more than one-dimensional, we
remove all but one factor x − v(z) · ω. Since the weights form a Weyl invari-
ant subset of the root space, the spectral curve splits according to their Weyl or-
bits. Representations with only one Weyl orbit of weights are called miniscule. If
the representation is not miniscule, we focus on the piece containing the highest
weight λ. The resulting curve is called a parabolic cover CP of P1 (on which z

lives). The parabolic subgroup WP of the Weyl group is identified as the stabilizer
group of the highest weight λ.

We will now discuss the pieces of plumbing that connect the different sheets of
the foliation, starting with the finite values of x. For generic values of z, we know
that L(z) is a regular semisimple element of g conjugate to v(z) · h. By using the
action of the Weyl group, we can take Im(v) · h to be in the fundamental Weyl
chamber. Naturally v(z) is in general not a rational function, so Equation (27) can’t
be used effectively to study the Seiberg–Witten curve as an algebraic variety. The
equation can help however with the identification of the branch points. Branch
points of the curve occur for those z for which ∂P/∂x = 0, in other words if two
eigenvalues of ρ(L) come together. This happens for example when v(z) · h hits
a wall of the fundamental Weyl chamber, i.e. when v(z) · αk = 0 for some simple
root αk. If this is the case, then the weight ωi and its reflection ωj = σαk

ωi give the
same eigenvalue since

v · ωj = v · σαk
ωi = σαk

v · ωi = v · ωi. (28)
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Figure 2. The z-sphere is given twice for a rank 4 simple Lie algebra together with the branch
points: z = 0, ∞ and the z±

i
. The curve C in the left picture is trivial and is therefore closed

when lifted to the Riemann surface. Since all branch cuts are of square root type the same is
true for C′ in the right picture.

From the expression (23) for the Lax operator one finds [38] that the curves exhibit

a symmetry z → µ/z where µ was defined in (23). Therefore the branch points
come in pairs to form square root branch cuts. There can also be other branch points
or even singular points for which v(z) · h does not hit a wall of the fundamental
Weyl chamber, and these points are called accidental. There is a criterion in [13] for
absense of accidental singularities, which is almost never satisfied. A pedestrian’s
test would be to calculate the genus directly from the curve and comparing it with
the genus of the parabolic cover using the above description of the plumbing. If
they disagree, there is an accidental singularity and the birational map between the
spectral curve Cg,λ and the parabolic curve Cg,P is not an isomorphism. Usually
the spectral curve contains more singularities than the parabolic curve, and one has
to desingularize the spectral curve.

The preceding recipe tells us how to connect the sheets of the cover for finite
values of z. For z = 0 and z = ∞ there is also a good description of what happens
in terms of the root system of g. On the P1 base on which z takes its values we have
given branch points z±

i corresponding to each simple root αi of g, whose various
lifts to the sheets of the foliation make up the branch cuts for finite values of x.
Of course any lift of a closed curve C on the z sphere encircling all the branch

 There exist other Lax operators from which the symmetry is more apparently visible [43]. One
can of course also check the symmetry directly for the curves 25.
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Figure 3. The Riemann surface for A4 in the antisymmetric 10-dimensional representation.
The genus of the curve is g = 11 and we have labeled the weights by their coefficients in
terms of the fundamental weights. Picture taken from [38].

points must come back to the sheet it started on since we can deform C to a trivial
curve on the z sphere. Because the branch cuts are of square root type, any lift of
the closed curve C ′ in Figure 2 must also come back to the same sheet. Adding
C and C ′ we see that any lift of a closed curve encircling all the z−

i and z = 0
must also come back to the same sheet, so that encircling only z = 0 has the same
effect as encircling all the branch points z−

i . Therefore, starting on the sheet Sω

with weight ω and then making a circle around z = 0, one ends up on the sheet
with weight sω where s is the Coxeter element of the Weyl group of g. So the
branch cut between z = 0 and z = ∞ connects all the sheets whose weights are
in one orbit of the cyclic group Zh∨

g
generated by s. In Figure 3 we have given the

example of Lie algebra A4 in the 10-dimensional representation [38]. The weights
are given for each sheet, and two sheets are connected above the αi cut if and only
if their weights are exchanged under σαi

. The Coxeter element s splits the weights
into two groups of 5, which specifies how the sheets are connected at infinity. The
genus of the curve is thus g = 11, which is the same answer as one gets from
a direct calculation using the equation for the spectral curve given in (119). This
shows that there are no accidental points.

As another example, we consider again A4 but now in the 24-dimensional ad-
joint representation. This representation is not miniscule, because the weights split
into two disjoint Weyl orbits: the roots of A4 each of which has multiplicity 1, and
the zero vector which has multiplicity 4. Consequently the Riemann surface splits
into two parts, and we concentrate on the part containing the highest weight. The
genus of the curve is g = 25, see Figure 4. Again accidental points are absent
since a direct calculation of the genus using the spectral curve (119) gives the same
result.

As a final example, consider Figure 5 where the curve for E6 is depicted. The
27 weights of the smallest representation are labeled by the coefficients in the
expansion in terms of fundamental weights [23], so [1, 0, 0, 0, 0, 0] stands for the
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Figure 4. The Riemann surface for A4 in the 24-dimensional adjoint representation. Since the
spectral curve splits into two parts, we have concentrated on the part containing the highest
weight. The genus of the curve is g = 25. As usual we have labeled the weights by their
coefficients with respect to the fundamental weights [23].

Figure 5. The Riemann surface for E6 in the 27-dimensional representation. In the z-plane
the branch cuts are depicted according to the six simple roots of E6 (in standard notation)
and the cut from z = 0 to ∞ is omitted. Above each root there are six pieces of plumbing
connecting the three Coxeter orbits. The genus of the curve is g = 34.

fundamental dominant weight λ1 which is also the highest weight for this represen-
tation. Each weight has multiplicity one, the 27 sheets are connected at z = 0, ∞
by the Coxeter element and the orbits have dimension 12, 12 and 3. Above each
simple root there are 6 square root branch cuts, giving the Riemann surface genus
34 which is the same as the value found in Table II. This shows that there are no
accidental points. For a more elaborate description of the E6 curve see [32].
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1.4. THE SEIBERG–WITTEN DIFFERENTIAL AND ITS DERIVATIVES

The second ingredient of the Seiberg–Witten data is a special meromorphic differ-
ential λSW.

DEFINITION 3. The Seiberg–Witten differential λSW is given by

λSW = log(z) dx = d(x log(z)) − x
dz

z
� −x

dz

z
, (29)

where � denotes equality modulo total differentials.

Since we will mainly be interested in the period integrals of λSW, only its coho-
mology class is important. In the specific case of Lie algebra AN , the differential
form (9) reduces to (29) since

log(y + W) dx − log(2) dx

= log

(
z − µ

z
+ z + µ

z

)
dx − log(2) dx = log(z) dx.

In terms of the Toda system, λSW plays the role of the action differential p dq [38].
The main special property of λSW that we are interested in is that its derivatives
with respect to the moduli parameters uk give holomorphic differentials.

1.4.1. Holomorphic Differentials

In this section it is shown that the derivatives of λSW are holomorphic (see Appen-
dix A for the construction of holomorphic differential forms on a general Riemann
surface). Let a Riemann surface be given by an affine equation

P(x, z) = 0. (30)

In particular, we are interested in the affine curves obtained from the Seiberg–
Witten family (25). In order to make those curves affine, we multiply them with a
monomial zk of minimal degree necessary to make P polynomial. Viewing the
curve as defining implicitly x(z), the branch points are given by Px = 0 and
Pz 
= 0. Consider the differential form

ω = φ(x, z) dz

Px

= −φ(x, z) dx

Pz

. (31)

Denoting the degree of P by [P ] = d, one finds that for φ a polynomial of degree
smaller or equal to d − 3, the differential form ω is nonsingular for all points
except the singularities. In particular, ω is nonsingular in the branch points and due
to the condition on the degree of φ also at infinity. If there are no singular points,
a basis of holomorphic forms can be constructed from the ω as above, and their

 Note the difference between the notation [·] of degrees of polynomials in terms of their variables
and the Lie algebraic degree [·]L.
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number is 1
2(d − 1)(d − 2) which is in accordance with the degree-genus formula

for nonsingular curves (see, e.g., [28]).
We will first check that the derivatives of λSW are holomorphic outside the

singular points. Denote the Seiberg–Witten curves by

P(x, z, u) =
r∑

i=0

(
z2 + µ

)i
zr−iqi(x, u) (32)

and the degree of P is given by

[P ] = [q0] + r. (33)

The derivatives of λSW with respect to the moduli are given by

∂λSW

∂uk

= −
(

∂

∂uk

x

)
dz

z
= Puk

z

dz

Px

. (34)

It can be checked explicitly for every Seiberg–Witten curve in (25) that qr is moduli
independent. Hence Puk

/z is a polynomial and taking into account that it is homo-
geneous in terms of the Lie algebraic grading, in which z has h∨

g times the degree
of x, we find that its polynomial degree is

[
Puk

z

]
� [q0] + r − 1 − [uk]L = d − 1 − [uk]L (35)

and since the uk are the Casimir invariants of the Lie algebra, their Lie algebraic
degree is greater or equal to 2. Therefore the derivatives of λSW are holomorphic
for nonsingular curves.

The restrictions that follow from the singularities are straightforward. In the
affine coordinate patch (not at infinity) one can write x(z) as a convergent power
series if Px 
= 0 using the implicit function theorem. For singular points, using
the method of Puiseux expansions one can write x(z) as a fractional power series
instead, with a number of different series for each individual singularity [28]. The
form ω should be nonsingular when each of these fractional power series is sub-
stituted into it. The singular points at infinity are treated in the same way after a
change of variables on P2 to the relevant coordinate patch.

For the classical Lie algebras we have given the curves in standard hyperelliptic
form in (27) from which it is easy to see that the derivatives of λSW are holo-
morphic. For E6, F4 and G2 explicit computations were done using the computer
algebra package Maple, which show that the derivatives of λSW are nonsingular not
only in the branch points of the curve and at infinity but even in its singular points.
We therefore arrive at the following proposition

PROPOSITION 4. The derivatives of λSW with respect to the moduli are holomor-
phic for all simple Lie algebras.
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As an example, we consider the curve of G2 of genus 11, given in (25). As
explained in Appendix A, the 11 holomorphic forms are φk(x,z) dz

Px
with φk given by:

{φk} = {
x6z, x5z, x4z, x3z, x2z2, x2z, x2, xz, x, xz2, z2 − µ

}
. (36)

On the other hand, the derivatives of λSW are given by

∂λSW

∂u
= Pu dz

zPx

= (
2x6z − 2ux4z + 2x2z2 + 2x2

) dz

Px

,

(37)
∂λSW

∂v
= Pv dz

zPx

= x2z
dz

Px

and can be written as linear combinations of the holomorphic forms. As an aside,
we note that the subspace spanned by the tensor products of holomorphic forms is
40-dimensional. This shows explicitly that the G2 curve is not hyperelliptic, since
in that case the subspace should have dimension 2g − 1 = 21.

1.5. THE SUBSET OF CYCLES

The third and final ingredient of the Seiberg–Witten data is a special subset of 2N

independent cycles. For AN in the fundamental representation one can take all cy-
cles and no selection is necessary. The Seiberg–Witten curves of the other classical
Lie algebras in the fundamental representation possess an involution which makes
it easy to identify the special cycles. For the remaining cases there exists a more
general method [38, 22] based on the action of the Weyl group on the curves. Here
we treat only the simply laced Lie algebras, referring the reader to [22] for the
nonsimply laced ones.

1.5.1. The Special Cycles for the B, C, D Lie Algebras

We regard the curves in their hyperelliptic form (27). Each of them has the in-
volution σ(x) = −x. This helps us to identify the special cycles immediately:
consider the curves as defining implicitly y(x), and draw the branch cuts in the
x-plane in such a way that the cuts come in pairs K±

i related by σ . We denote
the counterclockwise contour around K±

i on the first sheet by C±
i . The special A

cycles are then defined by

Ai = C+
i − C−

i . (38)

The special B cycles are the obvious ones going from K−
i to K+

i on the first sheet
and back again on the second.

 Recently however, there have been suggestions [2] for an alternative hyperelliptic G2 curve.
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1.5.2. Cycles for Simply Laced Lie Algebras

Here we will discuss the more general method of identifying the special cycles,
based on the action of the Weyl group on the family of curves as discussed in
Section 1.2. This method is independent of the particular representation used to
define the Seiberg–Witten curves and it solves the Adler–van Moerbeke problem
of identifying the Liouville torus inside the Jacobian of the Toda spectral curve for
any representation.

First we note that any lift Aω
i of a counterclockwise closed contour Ci around

only the αi cut on the z sphere to the sheet Sω labeled by the weight ω is a
closed curve on that sheet. If αi · ω = 0 then Aω

i is trivial, otherwise it’s not.
Since the branch cuts come in pairs, the cycle Aω

i is homologous to −A
σαi

ω

i . By
multiplying the contribution of each cycle by ω · αi the contributions from the two
different sheets add up since σαi

ω · αi = −ω · αi . It is convenient to introduce the
combinations

Âω
i = 1

2

(
Aω

i − A
σαi

ω

i

)
. (39)

These are the building blocks of the A cycles.

DEFINITION 5. The special A cycles are given by

Ai = Ni,ρ

∑
ω

(ω · αi)A
ω
i = Ni,ρ

∑
ω

(ω · αi)Â
ω
i , (40)

where Aω
i is the lift of Ci to the sheet characterized by the weight ω. The absolute

value of ω · αi determines how many times to wind around the cut and its sign
determines in what direction to wind: a positive value means anti-clockwise and
negative means clockwise. The normalisation factor Ni,ρ is given by

Ni,ρ = 1∑
ω |(ω · αi)|2 . (41)

There is an action of the Weyl group on the cycles, by letting it act on the
weights of the representation. The image of a cycle Ai under a reflection σαj

is

σαj
Ai = Ni,ρ

∑
ω

(σαj
ω · σαj

αi)Â
σαj

ω

i = Ni,ρ

∑
ω

(ω · σαj
αi)Â

ω
i (42)

and therefore the cycles transform in the reflection representation of the Weyl
group.

On the other hand, we need a set of B cycles. To define the cycle Bi , we draw
a number of lifts Bω

i to the sheet Sω of the open curve Di going from z = 0 to
z = z−

i on the z sphere. The number and direction of the lifts is again determined
by ω · αi : for example, ω · αi = 1 means one strand going up from z = 0 to z = z−

i

on Sω, while ω ·αi = −2 means two strands going down from z = z−
i to z = 0 (see
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Figure 6. The Riemann surface for A4 in the 24-dimensional adjoint representation, including
the cycles above the fourth simple root. The fourth root and fourth weight are equal and their
norm is two, thus causing two cycles of type A to encircle that branch cut and two strands to
go up to the branch cut to form a special B cycle. The special A cycle is therefore obtained by
adding all type A cycles in the picture and the special B cycle by adding the B type cycles,
denoted by dotted lines.

Figure 6). Then for each Coxeter orbit Ok of sheets, we connect the strands through
the cuts between z = 0 and z = ∞. To prove that this gives a closed curve Bi , we
note that the number of strands going down to z = 0 on Ok equals the number of
strands going up, since

∑
ω∈Ok

(ω · αi) = 0 · αi = 0. Therefore we can connect the
strands on every Coxeter orbit, which shows that Bi is indeed closed. Again, it is
convenient to introduce the linear combination

B̂ω
i = 1

2

(
Bω

i − B
σαi

ω

i

)
. (43)

We are now ready to define the special B cycles, see also Figure 6.

DEFINITION 6. The special B cycles are given by

Bi = Ni,ρ

∑
ω

ω · αiB
ω
i = Ni,ρ

∑
ω

ω · αiB̂
ω
i , (44)

where Bω
i is the lift of the open curve from z = 0 to z−

i to the sheet Sω. The number
ω · αi decides on the direction and number of strands. The curve is then closed up
through the cuts between z = 0 and z = ∞.

The normalisation factor Ni,ρ is chosen in such a way that the period integrals
of λSW are representation independent: on Sω we have λSW = −v(z) · ω dz

z
due to

(29) and therefore∮
Ai

λSW = Ni,ρ

∑
ω

ω · αi

∮
Âω

i

λSW = Ni,ρ

∑
ω·αi>0

ω · αi

∮
(Aω

i −A
σαi

ω

i )

λSW
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= Ni,ρ

∑
ω·αi>0

ω · αi

∮
Ci

(−v(z) · ω + v(z) · σαi
ω)

dz

z

= −Ni,ρ

∑
ω·αi>0

(ω · αi)
2

αi · αi

∮
Ci

2v(z) · αi

dz

z

= −Ni,ρ

∑
ω

(ω · αi)
2

αi · αi

∮
Ci

v(z) · αi

dz

z

= −1

αi · αi

∮
Ci

v(z) · αi

dz

z
(45)

which is indeed representation independent. A similar reasoning shows that the
period integrals of λSW over the B cycles are independent of ρ. This is also true for
the nonsimply laced Lie algebras [22].

To show that the A and B cycles just defined have the proper intersection
numbers, we proceed as follows. It is clear that Ai ◦ Aj = Bi ◦ Bj = 0 and
Ai ◦Bj = −Bj ◦Ai = γiδij for some number γi . To determine the γi , we count the
intersection on each sheet Sω. Up to the normalisation, the number of strands from
the B cycle that cross the closed curve from the A cycle is |ω ·αi | and there are also
|ω · αi | copies of the A cycles. Since the contribution to the intersection is always
positive we find that the contribution from the sheet Sω is |(ω · αi)|2. Summing the
contributions for all sheets and taking into account the normalisation we find

Ai ◦ Bj = (Ni,ρ)
2
∑

ω

|ω · αi |2δij = 1∑
ω(ω · αi)2

δij . (46)

Now consider the bilinear form
∑

ω(ω · x)(ω · y) on the linear space where the
roots take their values. This bilinear form is invariant under the Weyl group and
therefore we find that it equals a multiple of the Euclidean inner product on the
root space. So in the end we find that the intersection matrix

Ai ◦ Bj ∼ 1

αi · αi

δij ∼ δij . (47)

1.6. DEFINITION OF THE PREPOTENTIAL

The Seiberg–Witten data has been introduced, consisting of the family of curves
Cg,ρ (Definition 2), the Seiberg–Witten differential λSW (Definition 3) and a canon-
ical subset of 2N cycles Ai and Bj with the usual intersection numbers (Defini-
tions 5 and 6). We will need the following lemma

LEMMA 7. There exists an additional set of cycles AN+1, . . . , Ag with the ap-
propriate intersection numbers with the special cycles, and with the property that
the period integrals of λSW around them are zero. In particular, this lemma implies
that the special cycles are a subset of a canonical homology basis.
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Proof. For the classical Lie algebras, the additional A cycles are given by the
C-invariant combinations

Ãi = C+
i + C−

− , (48)

see also (38). Since the period integrals are independent of x, we find that C acts
as the identity on them. On the other hand, the involution C sends λSW to −λSW

and therefore we conclude

C

(∮
Ãi

λSW

)
= −

∮
Ãi

λSW = 0. (49)

For the simply laced Lie algebras, there is a special cycle Ai for each root αi . After
our construction of additional cycles, the number of A cycles equals the number of
branch cuts for finite values of x. These are too many cycles since the genus is the
number of branch cuts minus the number of cuts necessary to connect the different
Coxeter orbits of weights. Selecting a subset with g elements (including the special
cycles) gives the set of A cycles promised by the lemma.

Take a simple root αi . There are just as many branch cuts above αi as there are
weights ω with αi ·ω > 0. Corresponding to αi , take a weight ωj so that ωj ·αi > 0.
We introduce the subset �ij of the set of weights � by

�ij = {
ω′ ∈ � | (ω′ · αi) > 0, ω′ 
= ωj

}
. (50)

For every ωk ∈ �ij we define the cycle

Ai(ωk) = A
ωj

i − αi · ωj

αi · ωk

A
ωk

i , (51)

where A
ωj

i is defined in Section 1.5. Together with the special cycle Ai this gives a
number of cycles for each simple root αi equal to the number of branch cuts for αi .
Obviously the intersection of all type A cycles among each other is zero.

We calculate the intersection numbers of the new Ai(ωk) cycles with the special
cycles Bl and find

Ai(ωk) ◦ Bl = Nl,ρ

(
A

ωj

i − αi · ωj

αi · ωk

A
ωk

i

)
◦

∑
ω

αi · ωBω
l

= Nj,ρ

(
αi · ωj − αi · ωj

αi · ωk

αi · ωk

)
δil = 0. (52)

Moreover, the period integrals of λSW over the cycles Ai(ωk) are zero:∮
Ai(ωk)

λSW =
∮

Â
ωj
i

λSW − αi · ωi

αi · ωk

∮
Â

ωk
i

λSW

= −αi · ωi

αi · αi

∮
Ci

αi · v(z)
dz

z
+ αi · ωi

αi · ωk

αi · ωk

αi · αi

∮
Ci

αi · v(z)
dz

z

= 0. (53)
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Repeating this construction of cycles for each simple root, we find that the num-
ber of A cycles now equals the number of branch cuts for finite values of x. As
mentioned before, these are too many since some cycles are needed to connect the
different Coxeter orbits of weights. We can always make a selection such that the
cycles that are left out connect the Coxeter orbits. Thus we end up with a set of g

canonical A cycles promised by the lemma. For the nonsimply laced Lie algebras
the construction of cycles is similar. �

As an example, we consider A4 in the 24-dimensional representation, see Fig-
ure 6. The special A cycle above the fourth simple root is given there. Denoting by
A

ω3
4 the closed cycle on the sheet labeled by ω3, the extra type A cycles become

A4(ω4) = A
ω3
4 − 1

2
A

ω4
4 ,

A4(ω5) = A
ω3
4 − A

ω5
4 ,

A4(ω7) = A
ω3
4 − A

ω7
4 ,

A4(ω10) = A
ω3
4 − A

ω10
4 ,

A4(ω13) = A
ω3
4 − A

ω13
4 ,

A4(ω15) = A
ω3
4 − A

ω15
4 .

Including the special cycle drawn in Figure 6 this gives us 7 type A cycles above
the branch cut labeled by α4.

Using Lemma 7 in combination with Proposition 4, one can define the prepo-
tential. First consider the new variables on the moduli space

ai =
∮

Ai

λSW. (54)

To prove that the change of variables from ui to ai is nonsingular, we note that
the integrals of the holomorphic differentials ∂λSW/∂ui around the cycles AN+1,

. . . , Ag are zero. Since the N by g matrix∮
Aj

∂λSW

∂ui

(55)

must have rank N , we conclude that the determinant of the Jacobi matrix for the
change of variables from ui to ai is nonzero. This is similar to the situation for Lie
algebra AN , which we discussed in Section 1.1. We proceed to define the bj by

bj =
∮

Bj

λSW (56)

and their moduli derivatives

∂bj

∂ai

= �ij . (57)
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Since the special A cycles are a subset of a canonical homology basis and since the
holomorphic forms ∂λSW/∂ai are canonical with respect to this basis∮

Ai

∂λSW

∂aj

= δij , 1 � i � g, 1 � j � N (58)

we find that �ij is an N by N submatrix of the g by g period matrix, and therefore
symmetric. Due to this symmetry we can locally integrate the bj and find the
prepotential F .

DEFINITION 8. The prepotential F (a1, . . . , aN) is defined locally on the moduli
space by

bj = ∂F

∂aj

. (59)

In Section 1.5 it was shown that ai and bj are representation independent, which
shows that although we have chosen the smallest representation to define the fam-
ily of curves we could in fact have used any irreducible representation and the
prepotential is independent of this choice. For any irreducible representation, we
have thus identified through the subset of N special cycles and the Seiberg–Witten
differential a subvariety of the Jacobian. The cycles that make up this Abelian sub-
variety transform in the reflection representation of the Weyl group and its period
matrix is given by �ij . This Abelian subvariety is the distinghuished Prym variety
discussed earlier.

2. The WDVV Equations

The WDVV equations (1) are not suitable for the Seiberg–Witten context, since
there is no special variable a1 giving rise to a constant matrix F1 of third-order
derivatives. However, if a function satisfies (1) one can replace the inverse of F1

by the inverse of any linear combination K = ∑
m αmFm of matrices of third-

order derivatives, and the resulting equation also holds. This leads to the following
definition

DEFINITION 9. The generalized WDVV equations are satisfied by a function
F(a1, . . . , aN) provided

FiK
−1Fj = FiK

−1Fj , i, j = 1, . . . , N (60)

for an arbitrary invertible linear combination K = ∑
m αmFm.

Since the observation in [34] that the perturbative parts of the pure four-dimen-
sional Seiberg–Witten prepotentials satisfy the generalized WDVV system for clas-
sical gauge groups, an extensive literature on the subject has formed. For a partial
list, see [34–36, 39, 19, 21, 40, 47, 41, 37, 42]. Seiberg–Witten theory can be varied
in several directions: the dimension of space-time can be altered, the matter content
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of the theory can be changed and the gauge group can be chosen. In many cases
the corresponding prepotentials or their perturbative limits were shown to satisfy
the generalized WDVV equations, although for example in the four-dimensional
case of matter in the adjoint representation they do not [36]. In this paper, we
restrict ourselves to the case of the pure four-dimensional theory with arbitrary
gauge group [36, 26, 19].

Roughly speaking, the (generalized) WDVV equations express the conditions
for the third-order derivatives of a function F to form the structure constants of an
associative, commutative algebra with unit. More precisely, we introduce objects
Ck

ij through the relation

Fijl =
∑

k

Ck
ijKkl, (61)

where K is the linear combination referred to in the definition of the generalized
WDVV equations.

PROPOSITION 10. The objects Ck
ij form the structure constants of an associative,

commutative algebra with unit.
Proof. One can rewrite the WDVV equations (60) as the commutation relations

[Ci, Cj ] = 0 for the matrices (Ci)
k
j = Ck

ij . This proves associativity of the algebra.
Moreover, clearly Ck

ij = Ck
ji so the algebra is commutative. Existence of a unit is

shown through the observation that
∑

m αmCm = I , the identity matrix. �
For this reason the WDVV equations are also called associativity equations in

the literature. In this section we prove that the pure four-dimensional Seiberg–
Witten prepotentials satisfy the WDVV system by first identifying the associa-
tive commutative algebra as an algebra of holomorphic differential forms on the
Seiberg–Witten curve, and subsequently proving the relation (61) between the pre-
potential and the structure constants of the algebra. There are two methods in the
literature for proving this relation, one based on Picard–Fuchs equations for period
integrals [26] and the other based on a residue formula [36]. We explain and relate
the two.

We note once more that in the choice of special cycles we have the freedom
to make a discrete symplectic transformation, thus changing the definition of the
prepotential. The upcoming proof is independent of this freedom, which therefore
shows that the symplectic transformations form a symmetry group of the WDVV
equations. This fact was also proven more directly in [9].

2.1. THE FAMILY OF ASSOCIATIVE ALGEBRAS

For each simple Lie algebra, we will construct a family of polynomial algebras
over an ideal. Since they are polynomial, they are automatically commutative and
associative. Furthermore, the choice of a unit element will eventually determine
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the precise linear combination K appearing in the WDVV equations (60). See Ap-
pendix B for more information about quotient rings of polynomial rings in several
variables.

We denote the algebraic curves (25) by

P

(
x, z + µ

z
, ui

)
= 0 (62)

and consider them as the double cover of a torus

P(x, w, ui) = 0,
(63)

z + µ

z
= w.

The function P is now a polynomial in the two variables x, w. We introduce the
ideal I = 〈P, Px〉 in C[x, w]. We will check that the Pai

= ∂P/∂ai span a
subalgebra of C[x, w]/I .

DEFINITION 11. For any simple Lie algebra g whose family of Seiberg–Witten
curves is given by P(x, w) = 0, the family of algebras A is defined by taking
a subalgebra of C[x, w]/I where I is the ideal generated by P and Px . These
subalgebras are the ones generated by the Pai

and are automatically associative
and commutative as subalgebras of a polynomial algebra and they have a unit.

Since the Seiberg–Witten family of curves is formulated in terms of the ui as
moduli, we will give often give the algebras in terms of the Puj

= ∑
j

∂ai

∂uj
Pai

which
span the same subalgebra as the Pai

. In terms of the uj the structure constants are
defined through

Pui
Puj

=
∑
k,q

Ck
ij (α, u)Puk

αqPuq
mod I, (64)

where
∑

q αqPuq
serves as the unit element of the algebra. The dependence of

the structure constants on the unit element and the coordinates uj is emphasized in
(64). Making the change of coordinates to the ai we find that the structure constants
transform as a (2, 1) tensor into

Ck
ij (β, a) =

∑
l,m,n

∂ul

∂ai

∂um

∂aj

Cn
lm(α, u)

∂ak

∂un

(65)

and the new algebra unit is

∑
p

βpPap
=

∑
p,q

αq

∂ap

∂uq

Pap
. (66)
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2.1.1. Three Realizations of the Same Algebra

It will be useful to have three realizations of the same algebra: to prove that it
exists, we will use the polynomial multiplication

Pui
Puj

=
∑
k,q

Ck
ijPuk

αqPuq
mod P, Px. (67)

To make the connection with flat coordinates and Landau–Ginzburg theory in Sec-
tion 2.2, we will use an algebra of rational functions whose multiplication reads

wui
wuj

=
∑
k,q

Ck
ijwuk

αqwuq
+ Qijwx, (68)

where wui
= −Pui

/Pw and w plays the role of a one-variable Landau–Ginzburg su-
perpotential. Finally, to show in Subsection 2.5 that the algebraic function w(x, ui)

is a superpotential for any choice of the representation, we will regard the algebra
as an algebra of holomorphic forms [36]

∂λSW

∂ui

⊗ ∂λSW

∂uj

=
∑
k,q

Ck
ij

∂λSW

∂uk

⊗ αq

∂λSW

∂uq

+ Q̄ij

Px

dz

z
⊗ dz

z
. (69)

The elements of the left and right-hand sides of this equation are elements of �2,
the space of holomorphic quadratic differentials. See Appendix A for more details.

In the upcoming paragraphs, we will prove the existence of the algebras using
the polynomial algebra (67). For the classical Lie algebras the generators of the
algebra depend only on x (not on w), so that the ideal has one generator. For the
exceptional Lie algebras, all depends on w as well as x and we have to use the
technique of Groebner bases.

Type AN

The family of Riemann surfaces (25) in this case is given by

PAN
(x, w) = w + W(x, ui) = 0, (70)

where W is the AN Landau–Ginzburg superpotential. The ideal I ⊂ C[x, w] is
given by I = 〈w + W, Wx〉. Since Pui

= Wui
depends only on x we find that

we can restrict our attention to C[x]/J where J is the ideal generated by Wx . The
algebra therefore simplifies to

Wui
Wuj

=
N∑

k,q=1

Ck
ij (α, u)Wuk

αqWuq
mod Wx (71)

which is just the well-known type A Landau–Ginzburg algebra (or local algebra of
the type A singularity). The algebra exists because Wx is a degree N polynomial
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in x generating the ideal J in C[x] and the Wui
= xN−i form a basis of C[x]/J .

Since it is a polynomial algebra, it is automatically associative and commutative.
As an example, we give the structure constants Ck

ij (αq = δq,4, u) of A4.

(C3)
k
j =




0 − 3
5u1 − 2

5u2 − 1
5u3

1 0 0 0
0 1 0 0
0 0 1 0


 (72)

and since Pui
= xN−i we find that Ck = C4−k

3 for k = 1, . . . 4.

Type BN

The family of Riemann surfaces in this case is given by

PBN
(x, w) = xw + WBC = xw + x2N + u1x

2N−2 + u2x
2N−4 + · · · + uN

= 0,

where WBC is the type BC Landau–Ginzburg superpotential. The ideal I is given
by I = 〈xw+WBC, w+WBC

x 〉. Since Pui
= WBC

ui
again depends only on x we find

that we can restrict our attention to C[x]/J . To see what J should be, we calculate
a Groebner basis of I in terms of a lexicographical order in which w > x and we
find that the only element in the basis not depending on w is WBC −xWBC

x . To see
that this is an element of I we note that

WBC − xWBC
x = (

xw + WBC
) − x

(
w + WBC

x

)
. (73)

The quotient ring C[x]/J consists of polynomials up to degree 2N and since
WBC−xWBC

x contains only even degree terms the Puk
span a subalgebra consisting

of polynomials of even degree in C[x]/J .
As an example, we give the structure constants Ck

ij (αq = δq,3, u) of the algebra
for B3 and note that this is not the Landau–Ginzburg algebra of type BC [49].
This is no coincidence: due to the twisting procedure from g(1) to (g(1))∨ in the
definition of the Seiberg–Witten family of curves, the relationship between the
Seiberg–Witten algebra and the Landau–Ginzburg algebra is lost for the nonsimply
laced Lie algebras. For the simply laced ones the two algebras are in fact the same,
as we will see.

(C1)
k
j =




− 1
5u2 + 9

25u
2
1

1
5u3 + 3

25u1u2 − 3
25u1u3

− 3
5u1 − 1

5u2
1
5u3

1 0 0




and again Ck+1 = (Ck)
2 for k = 1, 2.
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Type CN

The family of Riemann surfaces in this case is given by

PCN
(x, w) = w2 − 4µ + x2WBC = 0. (74)

The ideal is given by I = 〈w2 − 4µ + x2WBC, 2xWBC + x2WBC
x 〉. Since Pui

depends only on x we find that we can restrict our attention to C[x]/J with J

generated by 2xWBC +x2WBC
x . The quotient ring C[x]/J consists of polynomials

up to degree 2N + 1 and since 2xWBC + x2WBC
x contains only odd degree terms

the polynomials of even degree span a subalgebra in C[x]/J . The dimension of
this subalgebra however is N + 1, and we only have N polynomials Pui

. The Pui

which have degree in x greater or equal to 2 span yet a smaller subalgebra, because
the lowest degree in x occurring in the ideal generator is degree 3.

Type DN

The family of Riemann surfaces in this case is given by

x2w + x2N + u1x
2N−2 + · · · + uN−2x

4 + uNx2 + u2
N−1 = 0. (75)

The ideal I is given by I = 〈x2w + WD, 2xw + WD
x 〉. Since Pui

= WD
ui

depends
only on x we find that we can restrict our attention to C[x]/J . To see what J

should be, we calculate a Groebner basis of I in terms of a lexicographical order
in which w > x and we find that the only element in the basis not depending on w

is 2WD − xWD
x . This is the generator of J , and to see that this is an element of I

we note that

2WD − xWD
x = 2

(
x2w + WD

) − x
(
2xw + WD

x

)
. (76)

The quotient ring C[x]/J consists of polynomials up to degree 2N and since
2WD − xWD

x contains only even degree terms the Puk
span a subalgebra con-

sisting of polynomials of even degree in C[x]/J . Note that this is precisely the
Landau–Ginzburg algebra for type DN .

Type E6

Until now, the polynomial P(x, w, ui) did not contain terms mixing w with the
moduli ui . This allowed us to consider polynomial algebras in one variable. Any
ideal is then generated by just one polynomial and calculations are done by dividing
by this polynomial. For E6 this is no longer the case. Since mixing does occur, we
are forced to use the two-variable ring C[x, w] in which it is no longer guaranteed
that an ideal is generated by one polynomial. Nevertheless one can construct a finite
Groebner basis for the ideal in such a way that calculations in the quotient ring can
be done by using a division algorithm to divide out the elements of the basis, see
Appendix B.
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An additional help in explicit computations is the grading that is present. As
mentioned before, the principal grading of the affine Lie algebra causes the Rie-
mann surfaces and Seiberg–Witten differential to be graded as well, and in turn the
algebra that we are constructing is graded. Since the dependence on the Casimirs
ui is always polynomial, we can predict the dependence of the structure constants
Ck

ij (u) on the Casimirs. The only thing we have to calculate explicitly are the
coefficients of the various terms, which are just numbers. For example, if we take
αq = δq,6 then the algebra becomes

Pui
Puj

=
∑

k

Ck
ij (u)Puk

Pu6 mod I. (77)

The degree of P is 27, the degrees of the Casimirs u1, . . . , u6 are respectively
2, 5, 6, 8, 9, 12 and thus C3

12(u) for example has degree 11. The terms that consti-
tute C3

12 are therefore u3
1u2, u2u3 and u1u5 and only their coefficients need to be

determined.
Explicit computation of the Groebner basis (using a lexicographical term order-

ing) shows that the quotient algebra C[x, w]/I is 57-dimensional, and the algebra
generated by the Pui

is a 6-dimensional subalgebra. The fact that it’s a closed sub-
algebra is by no means trivial. This subalgebra is precisely the Landau–Ginzburg
algebra [15].

Type F4

Again we have used Groebner bases theory together with the grading to deter-
mine the structure constants. Explicit computation of the Groebner basis (using a
lexicographical term ordering) shows that the quotient algebra C[x, w]/I is 78-
dimensional, and the algebra generated by the Pui

is a nontrivial 4-dimensional
subalgebra. Just like in the other nonsimply laced cases this is not the Landau–
Ginzburg algebra of type F4, which is given in [49]. The structure constants
Ck

ij (αq = δq,4, u) are given by [19]:

(CT
1 )k

j
=




u1
(

250
243u

4
1 − 10

9 u1u2 − 7
3u3

) − 25
54u

3
1 + 1

4u2 − 5
3u

2
1 1

100
81 u4

1u2 + 140
27 u3

1u3− u1
(− 5

9u1u2 − 7
3u3

) −6u3 − 2u1u2 0
2
3u1u

2
2 − 4

3u1u4 − 2u2u3

− 2
9u1u2u3 − 2

3u
2
3+ 1

6u4 − 5
27u

2
1u3 − 2

3u1u3 0
100
243u

4
1u3 − 10

27u
2
1u4

10
9 u2

1u
2
3 − 1

3u1u2u4− − 1
2u

2
3 − 5

18u
2
1u4 −u1u4 0

u3u4 + 50
81u

4
1u4




,

 To get a better lay-out, we give the transpose matrices (CT
i
)k
j

= (Ci)
j
k

.
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(CT
2 )k

j =




− 25
54u

3
1 + 1

4u2
5
24u1

3
4 0

u1
(− 5

9u1u2 − 7
3u3

)
1
4u2 0 1

1
6u4 − 5

27u
2
1u3

1
12u3 0 0

− 1
2u

2
3 − 5

18u
2
1u4

1
8u4 0 0


 ,

(CT
3 )k

j =




− 5
3u

2
1

3
4 0 0

−6u3 − 2u1u2 0 −6u1 0

− 2
3u1u3 0 0 1

−u1u4 0 − 9
2u3 0


 ,

(CT
4 )k

j =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

It can be checked explicitly that these are indeed the structure constants of an
associative commutative algebra.

Type G2

Finally, we arrive at the G2 case. Although the WDVV equations are trivially sat-
isfied, we give the family of associative algebras to show how it fits the general
pattern. Since the Groebner basis of the ideal generated by P and Px is not so big,
we can give it explicitly:{

288u2x9 + 192x13 − 384ux11 − 1728x5µ − 12u2x3v − 48u2xµ +
+ 24uvx5 + 576uµx3 + 16u4x5 + 3xv2 − 112x7u3 + 48x7v,

− 288x11 + 528ux9 − 344u2x7 − 90vx5 + 2592µx3 −
− 54vxw − 432xuµ + 114x5u3 − 24x3uv − 10u4x3 + 5u2xv + 10u3xw,

− 162vw2 + 30u3w2 + 288x12u − 528x10u2 −
− 54vx8 + 354u3x8 − 124u4x6 + 144vux6 − 2592ux4µ +
+ 24u2x4v + 10u5x4 + 432u2x2µ − 27x2v2 + 648vµ − 120u3µ

}
. (78)

The resulting structure constants with αq = δq,2 are

C1 =
( − 2

3u
2 − 2

3uv + 16µ

1 0

)
,

C2 =
(

1 0
0 1

)
.

Lie algebra G2 constitutes the only example where due to the twisting procedure
the parameter µ appears explicitly in the structure constants, making it clear once
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more that the direct relation between this algebra and the Landau–Ginzburg algebra
is lost.

After having introduced the prepotential F and family of algebras A separately,
it remains to relate the two. There are two methods known in the literature of doing
this. One method exploits the existence of flat coordinates in the Landau–Ginzburg
context and interprets the relation (61) as Picard–Fuchs equations [26]. It has the
drawback of not being directly applicable to the nonsimply laced Lie algebras, for
which flat coordinates in general do not exist. The other method is more widely
applicable and uses a residue formula [36, 29]. We will explain both methods in
detail below.

2.2. THE GAUSS–MANIN CONNECTION, FLAT COORDINATES AND

PICARD–FUCHS EQUATIONS

This section deals only with the simply laced Lie algebras, because there is a nat-
ural connection between the structure constants of the algebra and the definition of
flat coordinates for them. The nonsimply laced algebras are discussed in the next
section.

Given a family of subvarieties X ⊂ Pn fibered over a moduli space M, there is a
method (dating back to Picard, Fuchs and more recently Griffiths [18]) of obtaining
a set of differential equations for period integrals differentiated with respect to the
moduli. Such equations are called Picard–Fuchs equations. Let X be given by an
affine equation P(x1, . . . , xn) = 0 and take a closed cycle � ⊂ Pn which encloses
X. We consider integrals of the type

ζ (l) =
∫

�

φ

P l
�, (79)

where φ is a polynomial and � is the form on Pn given in local coordinates by

� = dx1 ∧ · · · ∧ dxn (80)

in the coordinate patch where xn+1 
= 0. Differentiating ζ (l) with respect to the
moduli, we get

∂ζ (l)

∂uj

=
∫

�

( ∂φ

∂uj

P l
− l

φ ∂P
∂uj

P l+1

)
�. (81)

The main idea is to perform a series of partial integrations to reduce the powers of
P occurring in the denominator: each term of the form

∫
�

l
ψ ∂P

∂xk

P l+1
� (82)

equals

±
∫

�

d

(
ψ

P l
dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn

)
∓

∫
�

∂ψ

∂uk

P l
�. (83)
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So we have to divide φ∂P/∂uj by the various ∂P/∂xk in order to do those partial
integrations. By chosing a term ordering and constructing a Groebner basis for
the ideal I generated by the ∂P/∂xk one makes sure that the order of division is
irrelevant.

In case X is a miniversal deformation of a singularity of ADE type [4],
C[x1, . . . , xn]/I is called the Jacobian (or local) ring and its dimension the Milnor
number of the singularity. The ∂P/∂ui generate a finite-dimensional subalgebra of
the Jacobian ring and one can consider the integrals

ζ
(l)
i =

∫
�

∂P
∂ui

P l
�. (84)

Using the algebra together with the partial integrations one gets the following set
of differential equations

∂ζ
(l)
i

∂uj

− lCk
ij ζ

(l+1)
k +

∑
n

�
(n)k
ij ζ

(l−n)
k = 0. (85)

More formally this is the equation of a flat connection, called the Gauss–Manin
connection, on a cohomology bundle over M of which the (integrands of) ζ

(l)
i are

sections. One can check the integrability conditions of the connection separately
for each power of P in the denominator, which lead to the following identities on
the structure constants

[Ci, Cj ] = 0,
(86)

∂Ck
ij

∂ul

= ∂Ck
lj

∂ui

,

where Ci is the matrix with coefficients Ck
ij . The first of these equations expresses

the associativity of the algebra, and is automatically fulfilled. The second puts an
integrability condition on the structure constants, so that Ck

ij = ∂2T k

∂ui∂uj
for some set

of functions T k. Saito [44] then goes on to construct the flat coordinates, in terms
of which the connection �

(0)k
ij vanishes.

As an alternative to the integrals over �, one can use the higher-dimensional
analogue of Cauchy’s residue theorem [6] to study period integrals over closed
cycles on X itself, on which P = 0. We will consider the family of Riemann
surfaces C as subvarieties of P2 fibered over M. We have indicated in Section 1.1
how to differentiate cohomology elements with respect to the moduli. We consider
the subring B of the full cohomology ring, generated by ∂λSW

∂ui
and ∂2λSW

∂ui∂uj
with i � j .

It is not hard to see that these are all linearly independent and therefore constitute
a basis {χi} of the subring B. We will need the following lemma
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LEMMA 12 ([15, 25]). For simply laced Lie algebras, the following Picard–Fuchs
equations hold in the cohomology subring B

∂2λSW

∂ui∂uj

−
∑

k

Ck
ij (u)

∂2λSW

∂uk∂uN

+
∂w

∂ui∂uj
− ∂Qij

∂x√
w2 − 4µ

dx = 0, (87)

where the structure constants Ck
ij (u) are defined through (64), using αq = δq,N .

Proof. Using w = z + µ/z, the first-order derivative of λSW equals

∂λSW

∂ui

= ∂ log(z)

∂ui

dx = 1

z

dz

dw

∂w

∂ui

dx =
∂w
∂ui√

w2 − 4µ
dx (88)

and therefore the second-order derivative equals

∂2λSW

∂ui∂uj

=
∂w

∂ui∂uj√
w2 − 4µ

dx −
w ∂w

∂ui

∂w
∂uj

(
√

w2 − 4µ)3
dx. (89)

Substituting the algebra (68) with αq = δq,N , performing a partial integration on

the part containing Qij and noting that ∂2w
∂uk∂uN

= 0 finishes the proof of the lemma.
This last fact follows from (26), which ensures that

∂w

∂uN

= −PuN

Pw

= −1. � (90)

Denoting the basis of B by {χi} we can reformulate the Picard–Fuchs equations
as

∂

∂ui

χj +
∑

k

�k
ijχk = 0 (91)

thus again defining a flat connection. Since

∂2λSW

∂uk∂uN

= − w ∂w
∂uk

∂w
∂uN

(
√

w2 − 4µ)3
dx (92)

we can split up the connection �k
ij = �

(1)k
ij + �

(3)k
ij according to the number of

powers of the square roots occurring in the denominator. For the term with three
powers, the flatness condition reduces to the two identities (86) on the structure
constants of the algebra.

It turns out that the flat coordinates ti from singularity theory precisely cause
�

(1)k
ij (t) = 0, and therefore again get the interpretation of flat coordinates. So

on the one hand, there is the moduli space of the singularity C
N \ � with the

discriminant removed (points for which the deformation of the singularity is still
singular) and on the other hand there’s the moduli space of the Seiberg–Witten
curves C

N \ � with the points removed that correspond to a singular curve. On
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both these (different!) varieties there are the flat coordinates ti which coincide on
C

N\(� ∪ �). In terms of the flat coordinates, the Picard–Fuchs equations read
(

∂2

∂ti∂tj
−

∑
k

Ck
ij (t)

∂2

∂tk∂tN

)∮
�

λSW = 0, (93)

where we integrated over an arbitrary cycle �. We can now prove the following
theorem

THEOREM 13 ([26]). For simply laced Lie algebras, the prepotential F and
structure constants Ck

ij (β, a) are related by

∂3F

∂ai∂aj∂ak

=
N∑

l,m=1

Cl
ij (β, a)βmFklm. (94)

Therefore the prepotential F (a1, . . . , aN) satisfies the WDVV system.
Proof. Changing the coordinates from ti to ai in Equation (93), we find

∑
i,j

(
∂ai

∂tr

∂aj

∂ts
−

N∑
t

Ct
rs(t)

∂ai

∂tt

∂aj

∂tN

)
∂2

∂ai∂aj

∮
�

λSW +

+
∑

i

(
∂2ai

∂tr∂ts
−

∑
t

Ct
rs(t)

∂2ai

∂tt ∂tN

)∮
�

∂λSW

∂ai

= 0. (95)

Ordinarily, the two halves of this equation need not vanish separately. However,
since

ai =
∮

Ai

λSW (96)

we find that ai satisfies (93) and therefore the second half of Equation (95) van-
ishes. Taking the cycle � = Bk and defining βm = ∂am/∂tN , the first half can be
rewritten as

∂3F

∂ai∂aj∂ak

=
∑

l,m,r,s,t

(
∂tr

∂ai

∂ts

∂aj

Ct
rs(t)

∂al

∂tt

)(
∂am

∂tN

)
∂3F

∂ak∂al∂am

=
∑
l,m

Ck
ij (β, a)βm

∂3F

∂ak∂al∂am

. � (97)

2.3. PICARD–FUCHS EQUATIONS FOR THE NONSIMPLY LACED ALGEBRAS

For simply laced Lie algebras, the family of associative algebras A is precisely
the Landau–Ginzburg algebra. This gives us the direct connection between the flat
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coordinates and the algebra, expressed in equation (93). For nonsimply laced Lie
algebras, the associative algebras are not the Landau–Ginzburg algebras [49]. For
example, there is only one Landau–Ginzburg algebra of type BC whereas there
are two separate algebras in the Seiberg–Witten context. Nevertheless we can show
that for the classical B and C algebras, a similar relation to (94) still holds, now
connecting the Landau–Ginzburg flat coordinates to the Seiberg–Witten algebras.
This allows us to continue the proof.

PROPOSITION 14 ([20]). For the nonsimply laced Lie algebras of type BN and
CN the relation (94) holds. Therefore the corresponding prepotentials satisfy the
WDVV equations.

Proof. We first define the BC Landau–Ginzburg algebra. In terms of its flat
coordinates the multiplication structure reads

φi(t) = −∂WBC

∂ti
,

(98)
φi(t)φj (t) = Ĉk

ij (t)φk(t) + QijW
BC
x .

Furtermore, it is not hard to show that Qij is divisable by x and we express Qij as
a linear combination

Qij = x
∑

k

Dk
ij (t)φk. (99)

In [26] the following set of Picard–Fuchs equations was obtained
(

∂2

∂ti∂tj
−

N∑
k=1

Ĉk
ij (t)

∂2

∂tk∂tN
−

N∑
k=1

N∑
n=1

εdntn

h∨
g

Dk
ij

∂2

∂tk∂tn
+

+
N∑

k=1

Dk
ij

1

h∨
g

(1 − dk)
∂

∂tk

)∮
�

λSW = 0, (100)

where the Ĉk
ij (t) are the structure constants of the BC Landau–Ginzburg theory,

the dn are the degrees of the Lie algebra and ε = 1 (−1) for BN (CN). Making a
change of coordinates to the ai just like we did for simply laced algebras and using
the fact that the ai satisfy (100), we get

∑
i,j

[
∂ai

∂tr

∂aj

∂ts
−

∑
t

Ĉt
rs(t)

∂ai

∂tt

∂aj

∂tN
−

−
∑
k,n

Dt
rs

εdntn

h∨
g

∂ai

∂tn

∂aj

∂tt

]
∂2

∂ai∂aj

∮
�

λSW = 0. (101)

Unfortunately, this is not in the form of (95) and we cannot continue as before. We
do see however that the fourth term in (100) does not contribute to (101). So we go
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back to the first three terms of (100) and with the benefit of hindsight we introduce
new objects γ k

ij (t) as

Ĉk
ij (t) = γ k

ij (t) −
∑
k,q

Dl
ij

εdntn

h∨
g

γ k
nl. (102)

Substituting this into the first three terms of (100) one obtains(
∂2

∂ti∂tj
− γ k

ij (t)
∂2

∂tk∂tN

)∮
�

λSW +

+
∑
l,n

Dl
ij

εdntn

h∨
g

(
∂2

∂tl∂tn
− γ k

ln(t)
∂2

∂tk∂tN

)∮
�

λSW. (103)

This expression consists of two parts. Making the change of coordinates to the a

variables gives two equations that have to vanish separately, one for each of the
two parts of (103). Each of these equations then boils down to the relation

Fijk = γ l
ij (a)

∂am

∂tN
Fklm (104)

and proves that the WDVV equations hold if the γ k
ij (t) are well-defined and if they

are the structure constants of some associative algebra. This is the subject of the
following lemma.

LEMMA 15. The objects γ k
ij (t) defined through relation (102) exist and they are

precisely the structure constants Ck
ij (t) of the Seiberg–Witten algebra in terms of

the coordinates ti . The Seiberg–Witten algebras were defined separately for BN

and CN in Section 2.1.
Proof. We will restrict ourselves to the BN case here, the proof for CN is very

similar. We will rewrite (98) in such a way that it becomes of the form

φi(t)φj (t) =
r∑

k=1

γ k
ij (t)φk(t) + Rij

[
x∂xW

BC − WBC
]
. (105)

As a first step, we use (102):

φiφj = [
Ĉi · −→

φ + Di · −→
φ x∂xWBC

]
j

=
[(

γi − Di ·
r∑

n=1

2ntn

2r − 1
γn

)
· −→

φ + Di · −→
φ x∂xWBC

]

j

=
[
γi · −→

φ − Di ·
r∑

n=1

2ntn

2r − 1
γn · −→

φ + Di · −→
φ xWBC

]

j

. (106)

The notation
−→
φ stands for the vector with components φk and we use a matrix

notation for the structure constants. There are two things about this equation that
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we would like to change: the first thing is that we want the structure constants to be
defined by the first term, so we would like the middle term to vanish. The second
thing is that we want the third term to contain the generator WBC − xWBC

x of the
ideal J . As a first step towards resolving both these problems, we will take part
of the third term and cancel it with the middle term. To do this, we will use the
following equation which expresses that WBC is homogeneous in the Lie algebraic
grading

xWBC
x +

∑
n

2ntn
∂WBC

∂tn
= 2NWBC. (107)

Using this equation we can cancel the middle term of (106) with part of the third
term at the expense of introducing new terms which then have to be canceled
etcetera. This recursive process will end however and yield the desired result. First
we split up the third term of (106) as follows
[
Di · −→

φ xWBC
x

]
j

=
[
− 1

2N − 1
Di · −→

φ xWBC
x +

(
1 + 1

2N − 1

)
Di · −→

φ xWBC
x

]
j

=
[
− Di

2N − 1
· −→

φ

(
2NWBC −

N∑
n=1

2ntnφn

)
+ 2NDi

2N − 1
· −→

φ xWBC
x

]

j

. (108)

Using the Landau–Ginzburg algebra (98) we rewrite the products of φ occurring
here, thus rewriting (106) as

φiφj =
[
γi · −→

φ − Di

2N − 1
·
∑

n

2ntn(γn · −→
φ − Ĉn · −→

φ ) −

− Di

2N − 1
·
∑

n

2ntnDn · −→
φ xWBC

x

]
j

+ 2NDi

2N − 1
· [

xWBC
x − WBC

]
j
.

(109)

We now use (102) again to rewrite the second term in the first line. Then we find

φiφj =
[
γi · −→

φ − Di

2N − 1
×

×
∑

n

2ntnDn

(
−

∑
m

2mtm

2N − 1
γm · −→

φ + −→
φ xWBC

x

)]
j

+

+ 2NDi

2N − 1
· [

xWBC
x − WBC

]
j
. (110)

Note that by cancelling one term, we automatically calculate modulo
xWBC

x − WBC . We can now repeat the whole process on the term between round
brackets in (110). This is a recursive process and each step will introduce an extra
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factor of
∑

n 2ntnDn. To see that the recursive process stops, we will prove that this
is a nilpotent matrix.

The degree of Qij is [Qij ] = 2N + 1 − 2(i + j). Dividing by x the degree
becomes 2N − 2(i + j). Since [φk] = 2N − 2k one cannot divide Qij/x by φk for
j � k and therefore the matrices Di defined in (99) are strictly lower triangular.
Any sum of such matrices is also lower triangular and thus nilpotent. �

2.4. THE RESIDUE FORMULA

An alternative to the approach of Picard–Fuchs equations is given by the residue
formula [36], whose origins lie in the theory of integrable systems [29].

A common way of proving Riemann’s bilinear relations on a Riemann surface
C is to cut open the surface to obtain a fundamental 4g-sided polygon � and use
Cauchy’s residue theorem on �. We will use the same method to obtain a residue
formula for the third-order derivatives of F .

We start by rewriting Fijk = ∂3F
∂ai∂aj ∂ak

and with ωi = ∂λSW
∂ai

we find

Fijk = ∂

∂ak

Fij = ∂

∂ak

g∑
m=1

∮
Am

ωi

∮
Bm

ωj

=
∑
m

∮
Am

∂ωi

∂ak

∮
Bm

ωj +
∑
m

∮
Am

ωi

∮
Bm

∂ωj

∂ak

= 0 +
∑
m

∮
Am

ωi

∮
Bm

∂ωj

∂ak

=
∑
m

(∮
Am

ωi

∮
Bm

∂ωj

∂ak

−
∮

Bm

ωi

∮
Am

∂ωj

∂ak

)

=
∑

res

(
χi

∂ωj

∂ak

)
. (111)

In the last line we have cut open the Riemann surface and the residues are taken
inside the fundamental polygon �. Since � is simply connected, the holomorphic
differential ωi is exact and we denote ωi = dχi . In the derivation of this formula
we have used∮

Ai

∂λSW

∂aj

= δij , i = 1, . . . , g, j = 1, . . . , N. (112)

This relation holds for all Lie algebras due to the particular construction of
cycles in Section 1.5 and Lemma 7. So it is essential that we have a complete set
of A cycles (not just the subset of special cycles) with the above property in order
to take the residues in the entire fundamental polygon.
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We can work out Fijk further and find

PROPOSITION 16 ([36]). The following residue formula holds

Fijk =
∑

res

(
ωi ⊗ ωj ⊗ ωk

dx ⊗ dz
z

)
=

∑
res

(
Pai

Paj
Pak

(zPz)2Px

dx

)
. (113)

Proof. We can calculate ∂ωj

∂ak
= ∂2λSW

∂aj ∂ak
keeping in mind that we can throw away

any terms that do not contribute to the residue. Due to the second differentiation
of λSW, poles arise at the zeroes of Px . These mark the branch points of the curve,
so we need precisely two factors Px in the denominator to get a contribution to the
residue. We then find up to terms that do not contribute to the residue

∂2λSW

∂aj∂ak

= − ∂2x

∂aj∂ak

dz

z
= ∂

∂aj

(
Pak

Px

)
dz

z

= Paj ak

Px

dz

z
− d

dx

(
Paj

Pak

Px

)
dz

zPx

� − d

dx

(
Paj

Pak

Px

)
dz

zPx

. (114)

Performing a partial integration we find [36]

∑
res

(
χi

∂ωj

∂ak

)
=

∑
res

(
−χi

d

dx

(
Paj

Pak

Px

)
dz

zPx

)

=
∑

res

(
dχi

dx

Paj
Pak

P 2
x

dz

z

)

=
∑

res

(
Pai

Paj
Pak

(zPz)2Px

dx

)
(115)

and this ends the proof. �
In the proof of the residue formula, the calculation of the second-order deriva-

tives of λSW is similar to the one for the Picard–Fuchs method. The crucial differ-
ence however is that some terms can be neglected because they do not contribute
to the residue. This makes the residue formula applicable also for the nonsimply
laced Lie algebras. After having obtained the above proposition, the proof that F
satisfies the WDVV system becomes trivial.

COROLLARY 17. The relation (94) follows from the definition of the algebra
together with the residue formula of Proposition 16. Therefore we conclude again
that the prepotential F satisfies the WDVV system, using now the residue formula
instead of the Picard–Fuchs equations.
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2.5. REPRESENTATION INDEPENDENCE OF THE FAMILY OF ASSOCIATIVE

ALGEBRAS

We have shown in Section 1.5 that the period integrals of λSW over the first N cycles
of type A and the first N cycles of type B are independent of the representation ρ

of g chosen to define the family of spectral curves. Therefore also the prepotential
F and the proof of the WDVV equations are representation independent.

Since a family of associative algebras is connected to a function satisfying
the WDVV equations, this strongly suggests that the family A defined in Sec-
tion 2.1 exists for any representation and is independent of it. If so, then the spectral
equation

P(x, w, ui) = 0 (116)

implicitly defines a one-variable Landau–Ginzburg superpotential w(x, ui). This
provides us with a straightforward calculation of an arbitrary number of different
one-variable Landau–Ginzburg superpotentials (see also [14], Chapter 4).

PROPOSITION 18. For any irreducible representation ρ the family A of algebras
(69) is defined and is independent of ρ. Therefore the implicitly defined function
w(x, ui) is a one-variable Landau–Ginzburg superpotential for any ρ.

Proof. Since the period integrals of λSW are representation independent, the
derivation of the residue formula (113) is representation independent. Since the
WDVV equations hold, we find that

∑
res

(
ωi ⊗ ωj ⊗ ωm

dx ⊗ dz
z

)
=

∑
k,l

Ck
ij (a)

∂al

∂tN

∑
res

(
ωk ⊗ ωl ⊗ ωm

dx ⊗ dz
z

)

thus showing that the algebra (69)

ωi ⊗ ωj =
∑
k,l

Ck
ij (a)

∂al

∂tN
ωk ⊗ ωl mod

dz

z
(117)

is representation independent. �
As an example, we will consider the Lie algebra A4 in the 5- and 10-dimensional

representations. The spectral curves are given by

P5 = w + x5 + u1x
3 + u2x

2 + u3x + u4, (118)

P10 = w2 + (−11x5 − 4u1x
3 − 7u2x

2 + (−u2
1 + 4u3)x + 2u4 − u1u2

)
w −

− x10 − 3x8u1 + x7u2 + (−3u2
1 + 3u3)x

6 + (−11u4 + 2u1u2)x
5 +

+ (u2
2 + 2u1u3 − u3

1)x
4 + (−4u2u3 − 4u4u1 + u2

1u2)x
3 +

+ (−7u4u2 + u2
2u1 − u2

1u3 + 4u2
3)x

2 + (−u3
2 + 4u4u3 − u4u

2
1)x −

− u2
4 + u2

2u3 − u4u1u2. (119)
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Defining the ideal I = 〈P, Px〉 ⊂ C[x, w], explicit computations show that in-
deed the subalgebras of C[x, w]/I generated by the Pui

have precisely the same
structure constants (72).

Appendix A. Holomorphic Differentials

We will give a procedure to calculate a basis for the space of holomorphic differ-
ential forms on an arbitrary Riemann surface, see, e.g., [6, 28].

The projective plane P2 is given by equivalence classes [x, y, z] in C
3\(0, 0, 0),

the equivalence relation being (x, y, z) � (λx, λy, λz) for any λ ∈ C
∗. The pro-

jective plane is a 2-dimensional complex manifold with three coordinate patches
Ux, Uy, Uz given by x 
= 0, y 
= 0 and z 
= 0 respectively and the local coordinates
are given by (

y

x
, z

x
), ( x

y
, z

y
) and ( x

z
,

y

z
). Once an object (function, differential form)

is given in one coordinate patch, one simply uses the transformations between them
to find out what it looks like in another patch. For instance, the transformation from
the patch x 
= 0 to the patch y 
= 0 is given by (y, z) → ( 1

x
, z

x
).

Riemann surfaces can be embedded in P2, the downside to this being that the
embedded curves are singular whereas the Riemann surface is not. The advantage
for our purposes however is that it is relatively easy to calculate a basis of the space
of holomorphic differential forms. So let an arbitrary Riemann surface be given by
an affine equation of degree d

P (x, z) = 0 (120)

which expresses the part of the curve in P2 in the patch y 
= 0. The singular points
are given by P = Px = Pz = 0, and outside of these points using the implicit
function theorem one expresses locally x(z) if Px 
= 0 or z(x) if Pz 
= 0. In another
patch, say x 
= 0, the curve is given by the numerator of

P

(
1

y
,
z

y

)
= 0. (121)

One should check that besides being holomorphic in each coordinate patch,
the differential form is also holomorphic in the singular points. Starting with the
coordinate patches, we suggest the following forms given in the patch y 
= 0

ω = φ(x, z) dx

Pz(x, z)
(122)

with φ a polynomial. It may seem that ω is singular in the branch points for which
Pz = 0. However, since Px 
= 0 for those branch points one can use the implicit
function theorem to express x(z) locally. So one should really use z as a local
coordinate and one finds

ω = φ(x, z) dx
dz

dz

Pz

= −φ(x, z) dz

Px

(123)
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and therefore ω is nonsingular at the branch points.
In the other coordinate patches we need only consider points with y = 0.

Making a transformation to the patch x 
= 0 for example we find that

ω = φ( 1
y
, z

y
) d( 1

y
)

Pz(
1
y
, z

y
)

. (124)

Expanding ω around y = 0 one finds

ω = −y−[φ]y−2 dy

yd−1
R(y, z), (125)

where [φ] denotes the polynomial degree of φ and R(0, z) 
= 0, ∞. This expression
is holomorphic at y = 0 if and only if [φ] � d − 3. A similar calculation can be
made for the coordinate patch z 
= 0 without further constraints on φ. A useful
way of summarizing the effect of the change of coordinates from y 
= 0 to x 
= 0
is by introducing the homogeneous degree d − 3 polynomial φ̄(x, y, z) such that
φ̄(x, 1, z) = φ(x, z). In terms of the homogeneous polynomial P(x, y, z) we then
find

ω = φ̄(x, 1, z) dx

Pz(x, 1, z)
, ω = φ̄(1, y, z) dy

Pz(1, y, z)
(126)

in the respective coordinate patches. This allows for an easy comparison of the
restrictions on φ̄ due to the singular points in different coordinate patches.

Up to now, the only restriction on the polynomial φ̄(x, y, z) is on its total de-
gree. The other constraints all come from the singular points and we will give an
algorithm how to find them. To check holomorphicity for nonsingular points, we
used the implicit function theorem to identify one of the variables as independent
and express the other variable in terms of a power series. In the singular points the
implicit function theorem is not applicable and there is no power series. However,
after an idea of Newton one can express one of the variables as a fractional power
series in the other variable. In fact, there can be several possible fractional series
and we must consider each of them. Such an expansion is called a Puiseux expan-
sion and it allows us to find conditions on φ due to the singular points. We will
assume that singular points only occur in the patch z 
= 0 and we describe only
the case where the singular point is [0, 0, 1]. From this procedure it should be clear
what to do if the singularities are elsewhere.

ALGORITHM ([28]).

1. Construct the so-called Newton polygon. In the first quadrant of Z
2 mark points

(a, b) if P(x, y) has nonzero coefficient of xayb. We call the collection of such
points �(P ), and for each line segment connecting a pair of points in �(P ) we
consider the convex subset of R

2 obtained by taking the points to the right and
above this line segment. The Newton polygon is the union of all these convex
subsets.
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2. If (0, β0) is the only point of the Newton polygon then all Puiseux expansions
are zero, and we are done. If not, then there will be some point in the polygon
with y-coordinate smaller than β0 because P(x, y) is irreducible. Therefore all
edges of the polygon have negative slope and the following procedure should
be followed for all edges with finite nonzero slope −1/µ0.

3. Assigning degrees [x] = 1 and [y] = µ0 one can write

P(x, y) = P0(x, y) + Q0(x, y)

with P0 homogeneous of degree µ0β0 and P1 of higher degree. P0 has at least
two terms and therefore substituting y = txµ0 yields a polynomial equation in
t which has a nonzero root, say t0. Different nonzero roots may lead to different
Puiseux expansions, so we keep track of all possible values. As a first term in
the Puiseux expansion, we get y0 = t0x

µ0 .
4. Make the substitutions x = x

q0
1 and y = xµ0(t0 + y1) = x

p0
1 (t0 + y1) where

µ0 = p0/q0 and then

P(x, y) = P0(x, y) + Q0(x, y) = 0 + Q0(x, y) = x
p0β0
1 P1(x1, y1).

5. Start again at step number 1 but now with the polynomial P1(x1, y1) and re-
peating this process over and over we obtain

y = t0x
µ0 + t1x

µ0+ µ1
q0 + t2x

µ0+ µ1
q0

+ µ2
q0q1 + · · · .

Remark 19. If β1 is the smallest number such that y
β1
1 has nonzero coefficient

in P1(x1, y1) then we have β1 � β0. Therefore, at some point we must reach βn = 1
and then qn = qn+1 = · · · = 1. So indeed, we get a fractional power series.

Having all power series y = ∑∞
k=1 akx

k/r for all singular points, one can make
a choice of local parameter t in such a way that x = t r and y = ∑∞

k=1 akt
k.

Substituting this in our differential form ω the constraints on its coefficients can be
calculated explicitly.

A.1. HOLOMORPHIC q-DIFFERENTIALS

A holomorphic differential ω on C can be thought of as a holomorphic section of
the canonical line bundle K over C. In each coordinate patch U , ω is given by a
function f (x) in terms of a local coordinate x. On the overlap with a chart with
coordinate z, the transition function of the canonical bundle is given by ∂z/∂x. The
space of holomorphic q-differentials �q (see, e.g., [16]) is the space of holomor-
phic sections of K⊗q , the qth tensor product of the canonical bundle with itself. Its
transition functions are given by ( ∂z

∂x
)q . There is a natural product �p×�q → �p+q

given by (f (x) dxp, g(x) dxq) → f (x)g(x) dxp+q which we sometimes denote by
the tensor product, thus leading to the notation in (69). In general not all holomor-
phic 2-differentials are products of holomorphic 1-forms. For hyperelliptic curves
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Figure 7. The Newton polygon corresponding to the singularity [0, 0, 1] of the example curve.

for example the subspace of products is only (2g − 1)-dimensional whereas it is
known that dim(�2) = 3g − 3 for any type of curve with genus g > 1.

A.2. EXAMPLE: P(x, y) = 2xy5 + 5y2 − 3x2

The differentials are

ω = φ(x, y) dx

10xy4 + 10y
,

where φ is of degree less or equal to 3 and we will derive the constraints on φ due to
the singularities. In principle we can solve the equations {P = 0, Px = 0, Py = 0}
by using Groebner bases but in this case it is easily seen that x = y = 0 is the only
finite singular point. Making P homogeneous we get

P = 2xy5 + 5y2z4 − 3x2z4

and the solutions at infinity (z = 0) are [0, 1, 0] and [1, 0, 0]. Since at [1, 0, 0]
we have {P = 0, Py = 0, Pz = 0} this leaves us with a total of 2 singular points
[0, 0, 1], [1, 0, 0] and we will discuss them separately.

− [0, 0, 1]: This point can be treated immediately by the algorithm given above.
The Newton polygon is given in Figure 7. Therefore µ0 = 1, β0 = 2 and
substituting y = t0x and looking at the lowest order terms we must solve
5t2

0 −3 = 0 which has 2 solutions. Substituting x = x1 and y = x(t0 +y1) we
get P1(x1, y1) = 2x4

1(t0 + y1)
5 + 10t0y1 + 5y2

1 and therefore µ1 = 4, β1 = 1.

Since β1 has reached its smallest value now, we find that the total solution will
be

y =
∞∑

k=1

akx
k

and therefore x is itself a good local parameter. We find that y = xR(x) where
R(x) is nonzero for x = 0 and we have around the singularity

ω = φ(x, y) dx

xQ(x)
,
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Figure 8. The Newton polygon corresponding to the singularity [1, 0, 0] of the example curve.

where Q(x) is nonzero at x = 0. There are no other edges to consider than
this one, so the only restriction coming from this singularity is that φ(x, y)

should not have a constant term.
− [1, 0, 0]: First we look at P(1, y, z) = 2y5 + 5y2z4 − 3z4. Now we can treat

this case in a completely similar way as before by just exchanging symbols
x → z, y → y. The Newton polygon is given in Figure 8.
So we get µ0 = 4/5 and β0 = 5 and substituting y = t0z

µ0 and looking
at the lowest-order terms we must solve 2t5

0 − 3 = 0 which has 5 solutions.
Substituting z = z5

1 and y = z4
1(t0 +y1) we get P1(y1, z1) = 2(t0 +y1)

5 −3+
5z8

1(t0 + y1)
2. Therefore µ1 = 8, β1 = 1 and since β1 has reached its smallest

value now (and therefore µ1 is an integer), we need not go further. We find
that the total solution will be

y =
∞∑

k=1

akz
k/5.

So a good local parameter is t , where z = t5 and y = t4R(t) where R(0) 
= 0.
Substituting this into ω we get

ω = −z(d−3)−dφ
φ(1, y, z) dz

Qy(1, y, z)
= φ(1, t4, t5)5t4 dt

t16Q(t)
,

where Q(0) 
= 0. So preventing a pole at t = 0 and keeping into account
that φ has degree 3 means that we can only have z3, yz2, y2z, y3. Making
these homogeneous of degree 3 and then going to the coordinate patch x 
= 0
means we have 1, y, y2, y3. There are no other edges to consider than this one,
so these are the only conditions for this singularity.

Combining the restrictions from the two singularities one finds g = 3 and the
holomorphic forms

ω1 = y dx

10xy4 + 10y
, ω2 = y2 dx

10xy4 + 10y
, ω3 = y3 dx

10xy4 + 10y
.

Note tbat this curve is hyperelliptic since the span of tensor products of these three
forms is (2g − 1)-dimensional.
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Figure 9. The Newton polygon corresponding to the singularity [0, 0, 1] of the G2
Seiberg–Witten curve.

A.3. HOLOMORPHIC 1-FORMS FOR THE G2 SEIBERG–WITTEN CURVE

The curves are given by the degree 10 polynomial equation

z2

(
3

(
z − µ

z

)2

+ 2(2ux2 − x4)

(
z + µ

z

)
− x8 + 2ux6 − u2x4 + vx2

)
= 0.

Explicit calculation shows that the only singular points [x, y, z] are [0, 0, 1],
[1, 0, 0], [0, 1,

√
µ], [0, 1, −√

µ].
− For the first of these singularities [0, 0, 1] we intend to express x(y) and the

corresponding Newton polygon is given in Figure 9. One easily finds that
t = y1/4 is a good local parameter and x = t3R(t) with R(0) 
= 0. We find

ω = φ̄(x, y, 1) dy

Px(x, y, 1)
= φ(t3, t4)t3 dt

t21Q(t)
(127)

for some rational function Q(t) with Q(0) 
= 0. For this to be holomorphic at
t = 0, φ̄(x, y, z) should be given by one of the following 18 expressions:

y7, zy6, y6x, z2y5, zy5x, y5x2, z2y4x, zy4x2, y4x3,

z2y3x2, zy3x3, y3x4, zy2x4, y2x5, zyx5, yx6, zx6, x7.

The number of constraints following from this singular point (called its delta
invariant) is therefore 36 − 18 = 18, with 36 the number of polynomials in
two variables of degree less or equal to d − 3 = 7.

− The second singularity [1, 0, 0] can be treated similarly. We consider z(y)

as a fractional power series, and (see Figure 10) we find that a good local
parameter is t = z1/5 and y = t4R(t) with R(0) 
= 0. The form ω therefore
becomes

ω = φ̄(1, y, z) dz

Py(1, y, z)
= φ(t4, t5)t4 dt

t14Q(t)
(128)

with Q(0) 
= 0. We find that φ(y, z) should not be given by one of the fol-
lowing 5 expressions: y2, y, yz, 1, z. The delta invariant for this singularity is
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Figure 10. The Newton polygon corresponding to the singularity [1, 0, 0] of the G2
Seiberg–Witten curve.

Figure 11. The Newton polygon corresponding to the singularities [0, 1, ±√
µ] of the G2

Seiberg–Witten curve. We have changed coordinates so that the singularity is placed at
[0, 1, 0].

therefore 5 and φ̄(x, y, z) is now restricted to the following set of 13:

y7, zy6, y6x, z2y5, zy5x, y5x2, z2y4x,

zy4x2, y4x3, z2y3x2, zy3x3, y3x4, zy2x4.

− For both the singularities [0, 1, ±√
µ], there are no fractional power series

required since ordinary power series suffice. In Figure 11 we have depicted
the Newton polygons for P(x, ẑ) with ẑ = z ± √

µ. The Puiseux expansions
read x = t, z = (∓√

µ + αt)R(t) with (R(0) 
= 0 and for some number α.
The form ω becomes

ω = φ(x, z) dz

Px(x, 1, z)
= φ(t, ∓√

µ + αt) dt

tQ(t)
(129)

with Q(0) 
= 0. Terms in φ(x, z) with no dependency on x should read
(z ± √

µ)zj . The combined effect of these two singularities is therefore that
from the set of 13 possible φ̄(x, y, z) the terms y7, zy6, z2y5 are replaced with
the single term (z+√

µy)(z−√
µy)y5, thus confirming that the genus is this

curve is 11.

In the coordinate patch y 
= 0 the holomorphic forms are therefore given by
ω = φ(x, z) dx/Pz with

φ(x, z) = {x6z, x5z, x4z, x3z, x2z2, x2z, x2, xz, x, xz2, z2 − µ}. (130)
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Appendix B. Term Orderings and Groebner Bases

As preparation for the definition of the associative commutative algebras, we dis-
cuss some basic aspects of the theory of ideals in polynomial rings, see, e.g., [7].
For polynomial rings C[x] in one variable, ideals I are always generated by a single
element. This generator is up to a constant uniquely identified as the element of the
ideal with minimal degree in x. To determine whether a polynomial is in the ideal
or not we divide this polynomial by the generator. If there is a zero remainder the
polynomial is in I , otherwise not.

For polynomial rings in two or more variables the situation is more difficult. It
can be shown that every ideal is finitely generated, but the number of generators
usually exceeds one. Also, division by the generators has become less clear: in
C[x] one divides by looking at the highest degree term in x and the rest simply
follows. Here it is not clear which term has highest degree. To fix this one intro-
duces a term ordering, a total ordering which prescribes what is the leading term
of a polynomial. For instance, the lexicographical ordering in C[x, y] sais that one
should first look at the powers of x occurring in the polynomial and if there are
equal powers then further distinction is made using the powers of y.

Having introduced the term ordering, one can divide polynomials by the ideal
generators to determine whether or not they are in I . However, the order of division
influences the outcome: the remainder after several divisions can contain different
representatives of the same equivalence class in C[x, y] depending on the order of
division. A Groebner basis of generators for the ideal is a particular basis with two
special properties: the first one is that the order of division is irrelevant, the outcome
is always the same. The second property is that an element of the ideal gives zero
remainder after division regardless of the term ordering. After the construction
of a Groebner basis, membership of the ideal can therefore be decided using a
straightforward division algorithm.

We will now briefly describe Buchberger’s algorithm [7] to obtain a Groebner
basis from a given set of generators p1, . . . , pn. First one defines the S-polynomial
S(p1, p2) of two polynomials. Multiply p1 and p2 with monomials of minimal
degree (with respect to the term ordering) such that their leading terms become
equal. Then subtract one from the other and this gives S(p1, p2). For instance, in
the lexicographical term ordering we have

S
(
x4 + y2x2 + y2x + yx, yx2 + y3x

)
(131)

= y
(
y2x2 + y2x + yx + x4

) − x2
(
y3x + yx2

)
(132)

= −y3x3 + y3x2 + y3x + y2x. (133)

The algorithm to produce a Groebner basis is now as follows: first one takes the
basis p1, . . . , pn and divides the polynomials amongst each other in random order.
If a division is possible then we replace that polynomial by its remainder. Then we
add the S-polynomial of two random elements in the basis and divide it in random
order by the other basis elements, again replacing it by its remainder if division is
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possible. We repeat this process over and over again, until every S-polynomial of
basis elements is itself in the basis. The result is a Groebner basis.

Appendix C. The Seiberg–Witten Curves for E6 and F4

The E6 curve reads

PE6 = 1

2
x3

(
z + µ

z
+ u6

)2

− q1(x)

(
z + µ

z
+ u6

)
+ q2(x) = 0,

where the polynomials q1 and q2 are given by

q1 = 270x15 + 342u1x
13 + 162u2

1x
11 − 252u2x

10 + (26u3
1 + 18u3)x

9 −
− 162u1u2x

8 + (6u1u3 − 27u4)x
7 − (30u2

1u2 − 36u5)x
6 +

+ (27u2
2 − 9u1u4)x

5 − (3u2u3 − 6u1u5)x
4 −

− 3u1u
2
2x

3 − 3u2u5x − u3
2,

q2 = 1

2x3
(q2

1 − p2
1p2),

p1 = 78x10 + 60u1x
8 + 14u2

1x
6 − 33u2x

5 +
+ 2u3x

4 − 5u1u2x
3 − u4x

2 − u5x − u2
2,

p2 = 12x10 + 12u1x
8 + 4u2

1x
6 − 12u2x

5 +
+ u3x

4 − 4u1u2x
3 − 2u4x

2 + 4u5x + u2
2.

The curve for F4 on the other hand reads

PF4 = −8

(
z + µ2

z

)3

+ s1(x)

(
z + µ2

z

)2

+ s2(x)

(
z + µ2

z

)
+ s3(x) = 0,

where the si(x) are given by

s1(x) = −636x9 − 300u1x
7 − 48u2

1x
5 − 5u3x

3 + 2u4x,

s2(x) = −168x18 − 348u1x
16 − 276u2

1x
14 + (−116u3

1 + 14u3)x
12 +

+ (−92u4 − 20u4
1 − 8u1u3)x

10 + (−42u1u4 − 6u2
1u3)x

8 +
+

(
−4u6 − 10

3
u2

1u4 − 2

3
u2

3

)
x6 +

(
1

3
u3u4 − 2

3
u6u1

)
x4,

s3(x) = x27 + 6u1x
25 + 15u2

1x
23 + (20u3

1 + u3)x
21 +

+ (5u4 + 4u1u3 + 15u4
1)x

19 + (6u2
1u3 + 12u1u4 + 6u5

1)x
17 +

+
(

1

3
u2

3 + 5u6 + 4u3
1u3 + 26

3
u2

1u4 + u6
1

)
x15 +

+
(

4

3
u3

1u4 + 19

3
u6u1 + u4

1u3 + 4

3
u3u4 + 2

3
u2

3u1

)
x13 +
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+
(

1

3
u2

1u
2
3 − 1

3
u4

1u4 − 15

4
u2

4 + 3u6u
2
1

)
x11 +

+
(

1

3
u6u3 − 4

9
u2

1u3u4 + 1

27
u3

3 − 13

6
u2

4u1 + 13

27
u6u

3
1

)
x9 +

+
(

−1

9
u2

3u4 − 1

2
u6u4 + 1

9
u6u1u3 − 7

36
u2

1u
2
4

)
x7 +

+
(

1

12
u2

4u3 − 1

6
u6u1u4

)
x5 +

(
− 1

54
u3

4 − 1

108
u2

6

)
x3.
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