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Temperature anisotropy in a driven granular gas
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Abstract. – When smooth granular material is fluidized by vertically shaking a container,
we find that the temperature in the direction of energy input always exceeds the temperature
in the other directions. An analytical model is presented which shows how the anisotropy can
be traced back to the inelasticity of the interparticle collisions and the collisions with the wall.
For a dilute granular gas, the model compares very well with molecular-dynamics simulations.
It is concluded that any non-isotropic driving of a granular gas in a steady state necessarily
causes anisotropy of the granular temperature.

As compared to an ordinary, molecular gas, the hallmark of a granular gas is its permanent
dissipation of energy due to inelastic collisions. Whereas an isolated molecular gas will sustain
its motion for an infinite amount of time, the only true equilibrium state of granular matter is
the one where it is at rest. Hence a steady supply of energy is required to keep a granular gas
alive, giving rise to prototypical non-equilibrium systems with many striking phenomena [1,2].
The one addressed in this letter is the crucial temperature anisotropy within a granular gas. It
is observed to be a significant effect in both numerical simulations [3–8] and experiments [9–12].
Although it has been studied in the context of a random restitution coefficient model [13,14],
a theoretical explanation is still lacking. Here we provide such an explanation, in which for
analytical convenience we will restrict ourselves to a dilute granular gas, fluidized by vertically
vibrating a container.

So what causes the anisotropy? We approach this question by a theoretical model in
combination with event-driven molecular-dynamics (MD) simulations, and show that the
anisotropy results from the following characteristic feature of such a gas: The distribution
of energy from the vibrating bottom towards the horizontal directions occurs through the
very same mechanism that also constitutes one of the major sources of energy dissipation,
i.e., the collisions between the particles. This result carries over to any granular gas with a
non-isotropic energy source.

The setup we will consider in our present work consists of a granular gas in a container with
a square-shaped bottom of side length L in the x-y plane and infinitely high, vertical sidewalls.
Gravity acts with g = 9.81m/s2 and the gas is fluidized by vertical vibrations of the bottom
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Fig. 1 – (Colour on-line) Solid lines: temperature components (1) from MD simulations of the driven
granular gas model as specified in the main text with sinusoidal driving and parameters f = 72.648Hz,
a = 1.00mm, N = 50, rp = 1.18mm, and L = 2.265 cm. (a) ep = 0.9 and ew = 1 (reflective sidewalls).
(b) ep = 0.95 and ew = 0.95 (dissipative sidewalls). Dashed lines: counting only particles that move
downward, i.e. restricting the average in (1) to negative vz-values. At large z the statistics deteriorates
since particles rarely reach such heights. The curves Tx(z) and Ty(z) practically coincide.

about z = 0 with amplitude a and frequency f —typically of triangular (piecewise linear,
symmetric) or sinusoidal shape. The gas consists of N identical hard spheres with radius rp
and mass m. We restrict ourselves to the case [3, 15–20] that only normal restitution [1, 2]
contributes to the dissipative processes, with restitution coefficients ep for particle-particle
and ew for particle-wall collisions, while collisions with the vibrating bottom are taken to be
perfectly elastic. In addition we limit ourselves to dilute granular gases, where we have a low
filling factor (number of layers in the system at rest) and vigorous driving to avoid problems
connected to density inversion and large deviations from constant temperature [20–22].

After initial transients have died out, we expect (and observe) a stationary probability
distribution ρ(r,v) of the particle positions r := (x, y, z) and velocities v := (vx, vy, vz). The
quantities of central interest are the temperature components

Ti(z) :=
m

k
〈v2

i 〉, (1)

where i ∈ {x, y, z} and k is Boltzmann’s constant. This Ti(z) is directly proportional to the
average kinetic energy of the particles in a horizontal layer at height z in either of the three
spatial directions i.

In evaluating our MD simulations we replace ensemble averages in (1) by time averages and
work in units with m = 1 and k = 1. A representative result is depicted in fig. 1: As expected
for symmetry reasons, the horizontal temperature components Tx(z) and Ty(z) are practically
indistinguishable. In contrast, the vertical temperature component Tz(z) is significantly larger
than Tx(z) and Ty(z). For perfectly elastic particle-wall collisions (fig. 1a) the z-dependence
of the temperature components is very weak except for a region directly above the bottom.
There, the energy-input by the driving leads to increased upward particle velocities, as shown
by the dashed lines in fig. 1a. For inelastic particle-wall collisions (fig. 1b) the z-dependence of
the temperature components is more pronounced. Yet, in both cases the differences between
vertical and horizontal temperatures are more important than the z-dependences.

Our theoretical analysis of the observed temperature differences starts with the well-known
conservation laws of energy and momentum for a dilute granular gas, derived from Boltzmann’s
equation [15–17]. For a stationary system, they read, in terms of the local heat flux J(r) and
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Fig. 2 – (Colour on-line) Horizontal (solid red and blue dots) and vertical (open, black dots) velocity
distributions of particles in a layer between z = 0 and z = 5mm obtained by MD simulations for the
same system as in fig. 1a but with f = 30Hz and L = 4.8 cm. The solid lines are Gaussian fits. The
plotted distributions have the largest deviations from the Gaussian shape, due to the proximity of
the bottom (z ≤ 5mm). Higher in the system (z > 5mm) they are even closer to Gaussian.

stress (or pressure) tensor P(r):

∇ · J(r) = I(r) , ∇ · P(r) = n(r)f(r) . (2)

Here, I(r) is the local energy dissipation rate per unit volume, n(r) is the local particle density,
and the force f(r) = −mgez. Integrating the first equation (2) over the container volume V , we
obtain with Gauss’ theorem that the energy dissipation rate due to particle-particle collisions
Qpp :=

∫
V
I(r) dr must be equal to the total flux of energy through the boundaries. The latter

can be decomposed in the influx Qin := L2 Jz(0) of energy through the vibrating bottom of
area L2 and the energy dissipation rate Qw due to particle-wall collisions. This gives

Qin = Qpp +Qw. (3)

Crucial to the present model is that the temperature components Ti defined in (1) are
treated separately. To our knowledge, all existing theories for driven granular gases in a
steady state without net flow of material are based upon the assumption of an isotropic
temperature, and many of them also on isotropic stress [15–17,20](1).

The temperature components Ti are related to the diagonal elements of the stress tensor
by a generalized ideal gas law: Pii = nkTi [15–17]. Motivated by our MD simulations, we
assume that each temperature component Ti is approximately constant within the entire
container volume (see also [18, 26]). Because of symmetry the stress tensor is diagonal and
Tx = Ty =: Thor, with which the second equation (2) can now be readily integrated to yield

n(r) =
Nmg

L2kTz
exp

[
−mgz

kTz

]
. (4)

Furthermore, as exemplified by fig. 2, our MD simulations show that the particle velocity
components can be assumed as Gaussian distributed in very good approximation for a wide

(1)Only in the context of the normal-stress differences observed in steady plane Couette flow of granular
material [23], has an anisotropic stress tensor [24] or Maxwell-Boltzmann velocity distribution [25] been used.
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range of parameter values [27](2). Altogether, we thus arrive at the following approximative
distribution function for particle position and velocity:

ρ(r,v) =
n(r) m3/2√
(2πk)3T 2

horTz

exp

[
−m(v2

x + v2
y)

2kThor
− mv2

z

2kTz

]
. (5)

The next main idea is to determine the two unknowns Tz and Thor in (5) by means of
two energy balance relations. The first of them is (3). To obtain the second, we observe that
particle-particle collisions cause not only energy dissipation but also a transfer of kinetic energy
from the horizontal direction into the vertical direction, and vice versa. In the steady state the
net effect must be an average loss of kinetic energy per time unit Qz in the vertical direction
which is exactly balanced by the incoming energy flux Qin through the vibrating bottom:

Qin = Qz . (6)

The remaining, rather technical task is to explicitly determine all the energy fluxes Q
appearing in (3) and (6) with the help of the approximation (5). In order to evaluate Qz, we
first note that the change of kinetic energy in the vertical direction in a single particle-particle
collision is

qz =
2∑

j=1

m

2
(
(vj · ez)2 − (v∗

j · ez)2
)
, (7)

where vj and v∗
j are the velocities of the two colliding particles (j = 1, 2) before and after the

collision, respectively. Due to our assumption that only normal restitution contributes to the
dissipative processes, we have v∗

j = vj+(−1)j(1+ep)[(v1−v2)·n]n/2, where n is the collision
normal vector. To determine Qz one essentially has to introduce this result for v∗

j into (7) and
then average according to (5). More precisely, first qz in (7) is multiplied by the collisional
volume per unit time (1/2)π(2rp)2|v2 − v1|δ(|r1 − r2| − 2rp), where the factor 1/2 arises since
collisions only can happen if (v2 − v1) · n < 0. Next we multiply with (1/2)ρ(r1,v1)ρ(r2,v2)
according to (5) and integrate over all vj and rj (within the container volume). The factor
1/2 is needed since every collision appears twice in the above considerations. This gives, after
a substantial amount of algebra,

Qz = (1 + ep) (Nrp/L)2g
√
πmkTz F (Thor/Tz), (8)

F (ϑ) :=

∞∫
0

ds

∞∫
0

dt
√
s+ t

(8− 4ep)s− (1 + ep)t
6ϑ

√
s exp[s+ t/ϑ]

.

A similar averaging of the total energy loss in a single particle-particle collision qpp =
(m/2)

∑2
j=1(v

2
j − (v∗

j )
2) yields

Qpp = (1− e2p) (Nrp/L)2g
√
πmkTz G(Thor/Tz), (9)

G(ϑ) :=

∞∫
0

ds

∞∫
0

dt
[s+ t]3/2

ϑ
√
s exp[s+ t/ϑ]

.

(2)In [28, 29], large deviations from Gaussian velocity distributions, especially near the vibrating bottom,
have been reported. Our simulations show that they are rooted in the discontinuous, sawtooth shape of the
vibrations considered in [28,29]. This is the main reason that we focus on continuous shapes of the driving in
the present work.
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Fig. 3 – (Colour on-line) Ratio of horizontal and vertical temperatures vs. particle-particle restitution
coefficient. Solid line: theoretical prediction (12). Dashed line: theoretical asymptotic behavior (13).
Symbols: MD simulations for the same system as in fig. 1a with N = 20 (�) and N = 50 (•)
particles. For the simulations Thor and Tz are defined as the mean horizontal and vertical velocity
fluctuations in the entire system. For ep �= 0.9, the frequency f was adjusted such that Tz was
(approximately) the same for all ep. Inset: same, but for fixed ep = 0.9 and variable local solid
fraction σ := (4/3)πr3

p max[n(r)], either by varying particle number N (♦, at r = 1.18mm) or radius
rp (�, at N = 50).

In the same spirit one can evaluate the total dissipation rate due to particle-wall collisions Qw

with the result
Qw = 4 (1− e2w)N (kThor)3/2/(L

√
2πm) (10)

Finally, a somewhat lengthy but straightforward calculation yields the following expression
for the energy input rate at the perfectly elastic, vibrating bottom of the container:

Qin = 2N gm3/2 u2ψ(γ)/
√
πkTz, (11)

where γ :=
√
2kTz/mu2, u =: π

√
2 af for sinusoidal driving of the bottom, and u := 4 af

for triangular driving. In both cases, for large γ (which is the typical situation in the dilute
systems under study) the function ψ(γ) approaches unity(3).

In the absence of wall dissipation (ew = 1), eqs. (3), (6), (8)-(11) imply

F (Thor/Tz) = (1− ep)G(Thor/Tz) (ew = 1) . (12)

Closer inspection shows that for any 0 ≤ ep < 1 a unique solution 0 ≤ Thor/Tz < 1 of (12)
exists. In particular, for small 1− ep one finds the leading-order asymptotics

Thor/Tz = 1− (5/2) (1− ep) (ew = 1) . (13)

Thus for ep < 1 and perfectly reflecting walls, the model predicts that the horizontal temper-
ature Thor is always smaller than the vertical temperature Tz. Moreover, the ratio Thor/Tz

solely depends on ep but not on any details of driving shape and strength, particle density,

(3)For triangular driving we have derived the exact result ψ(γ) = (1/4)[2 + 3 exp[−1/γ2] − 6 exp[−4/γ2] +
3 exp[−9/γ2]] + (

√
π/8γ)[(6 + 3γ2) erf(1/γ)− (24 + 2γ2) erf(2/γ) + (18 + γ2) erf(3/γ)]. For sinusoidal driving

we were only able to show that ψ(γ) → 1 for γ → ∞.
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Fig. 4 – (Colour on-line) Horizontal (blue) and vertical (red) temperatures vs. particle number.
Lines: theoretical predictions from (3), (6), (8)-(11) for triangular driving and parameters f = 30Hz,
a = 1.00mm, rp = 1.18mm, L = 4.8 cm, ep = 0.95 and ew = 0.95. Symbols: MD simulations. Inset:
same data in a log-log plot.

particle size, or compartment geometry. The comparison with MD simulations in fig. 3 is
excellent. The inset of fig. 3 shows that the remaining deviations can largely be attributed to
finite-size effects.

In the general case one obtains two transcendental, algebraic equations for the two un-
knowns Thor and Tz by introducing (8)-(11) into (3) and (6). While existence and uniqueness
of solutions can still be demonstrated analytically, their quantitative determination is only
possible numerically. An example is depicted in fig. 4, comparing very well with MD simu-
lations. As expected, dissipative walls tend to reduce the horizontal temperature Thor since
they add a source of dissipation for the horizontal kinetic energy. If we increase the particle
number, the gas becomes denser, and the number of particle-particle collisions will increase
much faster than the number of particle-wall collisions. Therefore, Thor will first increase, in
sharp contrast to the overall temperature [Tz +2Thor]/3 which must decrease with increasing
particle density. Eventually, particle-particle collisions will dominate the system, and Thor/Tz

will asymptotically tend to the value it would have with reflecting walls.
In conclusion, we have numerically observed large differences between the vertical and

horizontal temperatures in vertically driven granular gases subjected to gravity. We intro-
duced a theoretical model based on an approximative Maxwell-Boltzmann distribution with
anisotropic but homogeneous temperature (5), justified by our MD simulations. Both for
reflecting and dissipative walls of the container we find that the theoretical model gives good
quantitative agreement with the simulations.

The difference of the horizontal and vertical temperatures from the isotropic value is a
significant correction, at least of the same order as those resulting from taking into account
the non-constancy of the temperature and density profiles, or from embedding Chapman-
Enskog corrections to the velocity distributions into the theoretical framework [15,16].

At the root of the temperature anisotropy lies the fact that the transfer of kinetic en-
ergy between different spatial directions and its dissipation arise out of the same mechanism:
the collisions between the particles. Thus, the anisotropy of the temperature is a necessary
consequence of the anisotropy of the driving. The present work indicates that one may ob-
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tain an improved hydrodynamic description for dilute granular gases by starting out from
an anisotropic velocity distribution (instead of an isotropic one) in deriving hydrodynamics
equations from Boltzmann’s equation.

The basic concept of the model applies to any situation in which the energy-input in a
granular gas is anisotropic, always predicting a higher kinetic-energy content in the main
direction of energy-input.
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