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The application of multidimensional item response theory (IRT) models to longitudinal
educational surveys where students are repeatedly measured is discussed and exempli-
fied. A marginal maximum likelihood (MML) method to estimate the parameters of a
multidimensional generalized partial credit model for repeated measures is presented. It
is shown that model fit can be evaluated using Lagrange multiplier tests. Two tests are
presented: the first aims at evaluation of the fit of the item response functions and the sec-
ond at the constancy of the item location parameters over time points. The outcome of the
latter test is compared with an analysis using scatter plots and linear regression. An analy-
sis of data from a school effectiveness study in Flanders (Belgium) is presented as an
example of the application of these methods. In the example, it is evaluated whether the
concepts “academic self-concept,” “well-being at school,” and “attentiveness in the
classroom” were constant during the secondary school period.

Keywords: longitudinal data; repeated measures; panel data; item response theory;
generalized partial credit model; multidimensional IRT models; marginal maximum
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In educational and psychological research, changes over time are often investigated
by performing longitudinal analyses for observations collected at several time

points. For example, in educational research a goal can be to determine the develop-
ment of achievement in mathematics of pupils over time. To investigate such a devel-
opment, pupils may be presented one or more mathematics tests at several time points.
The item responses on these tests can be related to a latent variable math achievement
via an item response theory (IRT) model (see, for instance, Lord, 1980). In longitudi-
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nal designs, it is usually assumed that the positions of the students on the latent scale
change over time. However, repeated measures have the complication that the
responses on different time points are not independent. Therefore, for the analysis of
repeated measures Andersen, (1985) suggested an extended Rasch model for dichoto-
mously scored items, where the item responses at each time point are modeled with a
unidimensional IRT model, and the latent variables of each time point are correlated.
Adams, Wilson, and Wang (1997; also see Wang & Wu, 2004) have discussed a more
general multidimensional IRT model, which can also be applied to polytomous items.
This model can also be used to analyze test data with items measuring more than one
latent variable and test data consisting of several subscales each measuring one spe-
cific latent variable. With some minor adjustments, the latter case can be used to ana-
lyze repeated measures. For analyzing repeated measures, the multidimensional IRT
model provides direct estimates of the relations between the latent variables at several
time points, and the accuracy of the parameters estimates is enhanced by the often
strong relationship between the latent variables.

In the present study, repeated measures are modeled using the Generalized Partial
Credit Model (GPCM; Muraki, 1992), which is a model for polytomous items with
ordered response categories. A marginal maximum likelihood (MML) estimation pro-
cedure, adapted to take into account the dependencies of the responses of different
time points, is used to estimate the item and population parameters. It is shown that
model fit can be evaluated using Lagrange multiplier (LM) tests. The first LM test pre-
sented evaluates the fit of the item response functions within time points, whereas a
second LM test evaluates the constancy of the item location parameters over time
points. The results of the latter test are compared with an analysis using linear
regression and scatter plots.

In this article, change over time is modeled by assuming that the latent ability
parameters have a multivariate normal distribution. This assumption pertains to the
dependence between these parameters over time points. The change is estimated
along with the item parameters from a likelihood function that is marginalizing over
the ability parameters. There are several alternatives to this approach. For instance,
Embretson (1991) proposed a two-step procedure based on the Rasch model where
the item parameters are first estimated by conditional maximum likelihood and then
the person parameters are estimated with the estimates of the item parameters imputed
as fixed constants. The reasons for not pursuing this approach here is that it is difficult
to compute standard errors for the change parameters in a two-step procedure (see
Verhelst & Glas, 1995, pp. 185-186). Furthermore, in this approach the Rasch model
must fit the data, and in educational settings this is seldom the case. The latter argu-
ment also holds for an approach by Fischer and Parzer (1991; also see Fischer &
Ponocny, 1994), where the change is modeled by imposing linear restrictions on item
parameters, and an approach by Fischer (2003), where conditional maximum likeli-
hood estimates of item parameters and individual change parameters are computed
simultaneously.
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The estimation and testing procedure is exemplified using data of a Flemish school
effectiveness study. In this survey, the achievement on mathematics and Dutch lan-
guage ability were measured along with “Academic self-concept,” “well-being at
school,” and “attentiveness in the classroom” (Van Damme, De Fraine, Van Landeg-
hem, Opdenakker, & Onghena, 2002). The examples presented here pertain to the lat-
ter three scales. Using a varimax rotated factor analysis; the questionnaire measuring
the noncognitive concepts was divided into several scales, each measuring a different
concept. It is important to stress that the example serves a didactical purpose and has
no pretension of being a contribution to the substantive theory of the topic. The main
goal in the example is to show how to evaluate latent variables over time. In the next
section, the multidimensional GPCM is presented. Then the MML estimation proce-
dure is outlined and methods for testing model fit are discussed. Next, examples are
given of the estimation and testing procedure. Finally, some conclusions are drawn.

Multidimensional IRT Models

Usually, in IRT models it is assumed that there is one (dominant) latent variable θ
that explains test performance. However, it may be a priori clear that multiple latent
variables are involved or the dimensionality of the latent variable structure might not
even be clear at all. In these cases, multidimensional IRT models can serve confirma-
tory and explorative purposes. An example is the mathematical “story problem”
(Reckase, 1985), where both mathematical and verbal skills are required to obtain a
correct answer. A test with items related to more than one latent variable is often
labeled a within-item-multidimensional test (Adams et al., 1997). Adams et al. (1997)
examined another class of multidimensional IRT models, between-item-multidimen-
sional models, in which one test can be divided into subtests or scales where the
responses to the items of each scale can be described by a unidimensional IRT model.
The latent variables measured by the different scales are assumed to correlate.
Andersen (1985) applied a between-item-multidimensional IRT model to analyze
longitudinal data. In this case, the division into subtests is easy, as the same test is used
at different points in time.

These models are typified as follows. Let a test have k items (i =1, . . . , k) with item i
having mi + 1 response categories indexed as j = 0, . . . , mi. The response of a person,
indexed n, is presented by an mi-dimensional stochastic vector xni with elements

X
n j i

nij =
1 if person gives a response in category of item ,

0 otherwise,

⎧
⎨
⎩

with n = 1, . . . , N and j = 1, . . . , mi. Note that if the person scores in category j = 0, the
response to item i is given by the response vector xni = 0.

A generalization of the GPCM to a Q-dimensional model (Andersen, 1985;
Reckase, 1985, 1997) is given by
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for j = 1, . . . , mi, where ai = (ai1, . . . , aiq, . . . , aiQ ) is a Q-dimensional vector of discrimi-
nation parameters; bi = (bi1, . . . , biq, . . . , bim) is an mi-dimensional vector of location
parameters, and �n = (θn1, . . . , θnq, . . . , θnQ ) is a Q-dimensional vector of latent variable
parameters. For j = 0, the nominator of Formula 1 is equal to one and the denominator
remains the same. Note that if Q equals one, a unidimensional GPCM is obtained. The
model described by Formula 1 is a within-item-multidimensional model, where Q
latent variables are involved in the item response.

The within-item-multidimensional model can be adapted to a between-item-multi-
dimensional model by imposing restrictions on the discrimination parameters. That is,
the discrimination parameter corresponding to the latent variable that is relevant for
the item response is a free parameter, and the other discrimination parameters are set
equal to zero. Besides identifying the latent dimensions, also the location of the latent
scale must be fixed. This can be done by setting the mean of the ability distribution
equal to zero. Béguin and Glas (2001) and Holman and Glas (2005) showed that the
ensemble of these restrictions suffices to identity the model.

Because the model is equivalent with a full-information factor analysis model
(Takane & de Leeuw, 1987), the discrimination parameters are often called factor
loadings. In case of repeated measures, Andersen (1985) used a between-items multi-
dimensional model where each repeated administration of the test was associated with
a separate latent variable. So it is assumed that the characteristics of the test do not
change over time, which means that the item parameters should be constant over time.
This can be realized using a between-item-multidimensional model with linear
restrictions on the item parameters. Furthermore, the covariance matrix of the ability
dimensions accounts for the dependence between the item responses over time points.

Marginal Maximum Likelihood Estimation

MML is probably the most used technique for estimation of the parameters of the
GPCM. The theory was developed by Bock and Aitkin (1981), Thissen (1982),
Rigdon and Tsutakawa (1983), and Mislevy (1984, 1986), among others. For dichoto-
mously scored items, unidimensional models can be estimated by the software pack-
age Bilog-MG (Zimowski, Muraki, Mislevy, & Bock, 2002); for polytomous items,
estimates can be computed using the software packages Multilog (Thissen, Chen, &
Bock, 2002) or Parscale (Muraki & Bock, 2002). MML estimation procedures are also
available for multidimensional IRT models (Bock, Gibbons, & Muraki, 1988) and
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implemented in TESTFACT (Wood et al., 2002) and ConQuest (Wu, Adams, & Wil-
son, 1997). All these packages compute concurrent MML estimates of all the struc-
tural parameters in the model, and this is the approach that is also pursued in the pres-
ent article. However, it must be mentioned that MML estimates can also be obtained in
two-step procedures such as implemented in Mplus (Muthén & Muthén, 2003).

One of the major advantages of IRT is the possibility to use incomplete designs to
collect data (Kolen & Brennan, 1995; Lord, 1980; Trivellato, 1999). This gives the
researcher the opportunity to cover a broad domain with a large number of items with-
out burdening the students with the need to respond to very long tests. Furthermore,
IRT also provides a straightforward way of handling missing item responses in the
case that the missing item responses are missing at random (MAR), which means that
the missing values are random within observed covariate classes (Rubin, 1976). An
obvious example is accidentally skipped pages of items. However, also the unob-
served item responses in data obtained via computerized adaptive testing and flexi-
level testing, where selected items and tests depend on previous responses, are MAR
(see, for instance, Lord, 1980). To adapt to incomplete designs and missing data, let a
variable dni be defined as

d
n i

ni =
1

0

if ,a response is available for person on item

otherwise.

⎧
⎨
⎩

(2)

If dni = 0, Xnij and P(Xnij) assume arbitrary values that have no consequences for the
computations. If dni = 1, the probability of person n responding in category j of item i is
given by Formula 1. Let xn be the response pattern of person n. Using the assumption of
local independence, the probability of a response pattern xn , xn = (xn1, . . . , xni, . . . , xnk), is

P P X x bn n
j

m

i

k

nij nij n i ij

x
i

nij( | , , ) ( | , , )x a b a� �= =
=−

∏∏
01

d ni (3)

Note that xn determines the values of dni, so these values do not appear on the left side
of Equation 3.

Maximizing a likelihood function defined as the product over the probabilities of
the individual response patterns given by Equation 3 with respect to θ, a and b will
generally not produce consistent estimators because the number of person parameters
goes to infinity if the sample size goes to infinity. Therefore, in MML estimation, the
parameters of an IRT model marginalized with respect to θ are estimated.

It is assumed that the person parameters are sampled from a multivariate normal
distribution with a Q-dimensional vector of means � and a Q × Q covariance matrix Σ.
The density will be denoted by g( | , )� � Σ . In the sequel, the covariance matrix can be
the covariance between scales at a certain time point, the covariance over time points
for a specific scale, and the entire covariance matrix over scales and time points.
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Bock and Aitkin (1981) mentioned that � can be seen as stochastic variables that
could, in principle, be observed. However, � is not observed and therefore the mar-
ginal likelihood function L( , , , | )a b X� � is defined by

L P
n

N

n( , , , ) ( | , , , )a b x a b� � � �=
=

∏
1

,
(4)

where the response patterns of n persons are collected in an N × k matrix X and the
probability of the observed response pattern for person n is given by

P P g dn n( | , , , ) . . . ( | , , ) ( | , )x a b x a b� � � � � � �=∫ ∫ . (5)

Glas (1992) showed that the estimation equations for maximization of Equation 4
can be derived using Fisher’s identity. The application of this identity will be illus-
trated by deriving the estimation equation for the mean of the qth ability dimension, µq.
If the person parameters � n were observed, the maximum likelihood estimate would
be

µ θq nq
n

N

N
=

=
∑1

1

. (6)

Because the person parameters are not observed, we can take the posterior expecta-
tion of Equation 6 to obtain

µ θq
n

N

nq nN
E=

=
∑1

1

( | , , , , )x a b � � , (7)

where the expectation is with respect to the posterior distribution of � n , which is a
function of the response pattern xn, the item parameters a and b, and the population
parameters � and �. Analogously, the estimation equations of the elements of � are
given by

σ θ µq
n
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E N2

1
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⎡
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and

σ θ θ µ µqq
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=
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⎤

⎦
⎥∑1

1

( | , , , , )x a b � � . (9)

So the estimate of the mean of the ability parameters is given by the sum of the pos-
terior expected values of the person parameters divided by the number of persons and
the variance and covariance are computed as the analogous posterior expected vari-
ance and covariance. Note that the covariance is a measure of the joint variance of the
person parameters of two latent variables and reflects the relation between these two
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latent variables. In the context of longitudinal data, a covariance expresses the rela-
tionship between the same latent variable measured at two different time points and
denotes the stability of the measured latent variable over time.

For solving the estimation equations, the EM (expectation-maximization) algo-
rithm (Dempster, Laird, & Rubin, 1977) can be used. This general iterative algorithm
for ML estimation in incomplete data problems handles missing data, first, by replac-
ing missing values by a distribution of missing values; second, by estimating new
parameters given this distribution; and third, by reestimating the distribution of the
missing values assuming the new parameter estimates are correct. This process is iter-
ated until convergence is achieved. The multiple integrals that appear above can be
evaluated using Gauss-Hermite quadrature. A critical point related to using Gauss-
Hermite quadrature is the dimensionality of the latent space, that is, the number of
latent variables that can be analyzed simultaneously. Wood et al. (2002) indicated that
the maximum number of factors is 10 with adaptive quadrature, 5 with nonadaptive
quadrature, and 15 with Monte Carlo integration. In the present study, it was possible
to use adaptive quadrature points, but for more scales and time points, this procedure
may become infeasible. In the discussion section of this article, two alternative
estimation procedures will be given.

Testing the Model

Inferences from IRT analyses are only valid if the model holds. In principle, the
validity of the model can be tested by estimating the entire model over all scales and
time points simultaneously and computing fit statistics for this encompassing model.
However, evaluation of model fit in such a large encompassing model with many
parameters has the drawback that the sources of misfit may be hard to identify. There-
fore, we propose a bottom-up procedure where model fit is first evaluated for separate
scales and time points and then, if the separate models prove acceptable, proceed with
fitting larger models that include covariance matrices between scales, covariance
matrices between time points, and finally, the entire covariance matrix between all
latent dimensions.

The approach to testing fit to the GPCM presented here is an adaptation of a method
proposed by Glas (1998, 1999). The tests that will be used are based on the LM statis-
tic. The LM statistic is used to test a special model against a more general alternative.
The special model is derived from the general model by fixing one or more parameters
to known constants. Contrary to the likelihood ratio statistic and the Wald statistic, the
LM statistic can be evaluated using the ML estimates (for IRT, the MML estimates) of
the special model only; the parameters of the more general alternative need not be esti-
mated. The statistic is asymptotically chi-square distributed with degrees of freedom
equal to the number of fixed parameters. Glas and Suarez-Falcon (2003) showed that
the Type I error rate and the power of the LM tests are good. For a general description
of the LM test, the reader is referred to Buse (1982). In the present study, the model fit
within time points is evaluated using a LM test to evaluate fit of item response func-
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tions. This LM test is based on MML estimates of the unidimensional IRT model. A
second LM test is performed to evaluate stability of the location parameters over time.
This LM test is based on MML estimates of the multidimensional IRT model. The
analysis using linear regression and scatter plots will be explained as well.

Model Fit Within Time Points

Glas (1999) proposed an LM test to evaluate the appropriateness of the item
response functions ψij. This could be done by estimatingθfor each person, dividing the
students into subgroups based on the estimates of θ, and evaluating for each subgroup
the difference between the observed item response proportions and the estimated
response probabilities. However, Glas and Suarez-Falcon (2003) showed that test sta-
tistics based on partitioning the sample of persons using estimates rather than observ-
able statistics have very poor properties (see also Orlando & Thissen, 2000). There-
fore, a test is considered which is based on a partitioning of the persons using their
partial sum score. Usually, the sum score correlates highly with the estimate of θ.
Therefore, it is reasonable to evaluate whether the item response functions ψij match
the analogous observed proportions in subgroups formed using these sum scores.

Let the item of interest be labeled i, while the other items are labeled g = 1, . . . , i – 1,
i + 1, . . . , k. Let x n

i( ) be the response pattern of person n without item i, and let r n
i( )( )x be

the unweighted sum score on this partial response pattern, that is,

r jxn
i

ngj
j

m

g

k g

( )( )x =
=≠
∑∑

11

.

Based on the partial sum score r n
i( )( )x , the sample is divided into Si subgroups si =

1, . . . , Si. As an alternative model to the null model, which is the unidimensional
GPCM, a model is considered where the probability of responding in category j of
item i conditional on the subgroup s is given by
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a j j b
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i n is ij
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(10)

for j = 1, . . . , mi. Under the null model, the additional parameter δis is equal to zero.
Notice that parameter δis is multiplied by θ, so in the model its role is analogous to that
of θ. The alternative model entails that the latent parameter θ is insufficient to describe
the response behavior, and some shift related to the response level must be incorpo-
rated. Following Glas (1999), it can be inferred that the first-order derivative of the
likelihood with respect to δis is given by

− +
= =
∑∑ ∑∑jx jEnij
j

m

n s
ij n n

j

m

n s1 1| |

( ( ) | , , , , )ψ θ µ σx a b , (11)
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where ψij(θn) is the GPCM specified by Equation 1 with Q = 1. Dividing both terms in
Equation 11 by the number of persons in subgroup s, we obtain a test based on the dif-
ference between the observed average score on item i in score level group s and its pos-
terior expectation. The expected value is computed using the GPCM without the addi-
tional parameters, the null model, given the MML estimates. If for item i the difference
between the observed and expected values is large, the GPCM model does not fit the
data for that item. That is, the additional parameter δis is required to obtain model fit, so
the null hypothesis δis = 0 is rejected.

It must be remarked that the alternative model has to be identified. This is accom-
plished by setting the last additional parameter δis equal to zero. Therefore, the LM sta-
tistic is based on Si – 1 residuals, and it has an asymptotic χ2 distribution with Si – 1
degrees of freedom. It should be noted that this LM statistic gives insight in model fit
for moderate sample sizes. For large sample sizes, this statistic becomes less interest-
ing because its power becomes so large that even the smallest deviations from the
model become significant. In that case, the effect size becomes more important than
the significance probability of the test. As effect size, we considered the difference
between the observed and expected average score on an item in a score level group.

Model Fit Over Time Points

One of the purposes of the methods discussed here is to evaluate trends over time,
for instance by testing the null hypothesis that the means of the ability distributions of
a scale over time points are equal. Testing this hypothesis is only meaningful if the
measurement instrument does not change over time—more specifically, if the item
parameters are constant over time.

For if the position of the item location parameters on the latent scale change, the
reference point for evaluation of change in the ability parameters becomes illusive.
The fact that the item and population parameters are concurrently estimated using
MML makes it possible to test this hypothesis. We present two methods to evaluate the
stability of the scales.

It should be noted that items that show parameter drift should not necessarily be
removed from the analysis. Keeping them in the analysis as different items at different
time points may still support the precision of the estimate of the trend in the ability
parameters. However, both from a conceptual viewpoint (the concept to which the
trend refers) as from the viewpoint of reliability it is essential to have a substantial
number of anchor items that remain stable.

The LM Test

The LM test to evaluate the fit of the item response functions can be adapted to eval-
uate the stability of the item parameters over time. We will first discuss a test for the
stability of the location parameters bij. The location parameters are estimated using
MML with the responses of all time points. The null model is the multidimensional
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GPCM with linear restrictions on the item parameters that impose the constancy of the
parameters over time points. As alternative to the null model, a model is considered
where the probability of responding in category j of item i conditional on time point q
is given by

P X q
a j j b

nij nq i i iq
i nq iq ij( | , , , , )

exp( )

ex

= =
+ −

+
1

1

θ δ
θ δ
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i nq iq ih

i

a h h b
=

∑ + −
1

θ δ

for j = 1, . . . , mi. Under the null model, the additional parameter δiq is equal to zero. The
alternative model, where δiq ≠ 0, entails that the latent parameter θnq is insufficient to
describe the response behavior on time point q. For this LM test, the first-order deriva-
tive of the likelihood with respect to δiq is defined as

− +
= =
∑∑ ∑∑jx jE
j

m

n q
nij

j

m

n q
ij nq n

1 1| |

( ( )) | , , , , ).ψ θ µ σx a b (12)

If we divide both terms of Equation 12 by the sample size at time point q, we obtain
a test based on the difference between the observed average score on item i for time
point q and its posterior expected value computed by the multidimensional GPCM
without the additional parameter. If for item i the difference between the observed and
expected values is large, it can be concluded that the location parameters of item i were
not constant over time, and the additional parameter δiq was necessary to fit the multi-
dimensional GPCM model. The model is identified by setting the shift parameter of
the last time point, δiQ, equal to zero. Therefore, the LM statistic is based on Q – 1
residuals, and is asymptotically χ2 distributed with Q – 1 degrees of freedom.

The test discussed here is a generalization of the test for differential item function-
ing (DIF) by Glas (1998) to longitudinal data. The test is a generalization in the sense
that DIF is a difference in response behavior between groups, while the present test
focuses on differences in response behavior between time points within the same
group. Besides a test for uniform DIF (constancy of bij), Glas also proposed a test for
nonuniform DIF (constancy of ai). Using the approach outlined here, it is also possible
to generalize this test to the present framework. The alternative model then implies
adding a shift parameter to the discrimination parameter, that is, the parameter ai

would be replaced by ai + ξiq, where ξiq is the shift on time point q, for instance with
time point Q as a base line. Because testing for nonuniform DIF is not essentially dif-
ferent from testing for uniform DIF, the test for nonuniform DIF will not be detailed
here further.

Linear Regression and Scatter Plots

The stability of the item parameters over time can also be investigated by compar-
ing the estimates emanating from a unidimensional GPCM for each scale at each time
point. This has the complication that the separate models are identified by setting the
mean of the population distribution equal to zero. So if the population mean actually
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changes over time, the estimates of the difficulty parameters are subject to a linear
transformation. Furthermore, if the variance of the population distribution changes
over time, the estimates of the discrimination parameters would only be identical up to
a multiplicative constant. So even though the population parameters will probably not
be equal over time, a linear relation between the item parameter estimates must be
expected when the model holds. Therefore, a linear regression line between the esti-
mates of the item parameters obtained at pairs of time points will be calculated. In
addition, a 95% confidence interval will be calculated for each parameter at each time
point. For each confidence interval, it is investigated whether it intersects the appropri-
ate regression line. If a confidence interval intersects the regression line, it can be con-
cluded that the deviation of the estimate of the item parameter from the regression line
was due to estimation error. Otherwise, it is evidence for structural change over time.

An Example

The method is illustrated by an example, which comprises a part of a school effec-
tiveness study where systematical differences between pupils of Flemish secondary
schools on achievement and attitudes were evaluated. At the end of the 1st, 2nd, 4th,
and 6th school year, several cognitive and noncognitive variables of 2,207 pupils who
passed all end-of-year examinations were measured (Van Landeghem & Van Damme,
2002). The cognitive variables were the achievement on Dutch language and mathe-
matics. The noncognitive variables were measured by a questionnaire, which con-
tained 104 items. A varimax rotated factor analysis indicated that these variables
comprised eight scales. The scales “Well-Being at School” (4 items), “Academic Self-
Concept” (9 items), and “Attentiveness in the Classroom” (10 items) were used in the
present example. Questions of these scales are, for instance, “If the choice was mine, I
would rather go to another school”; “My classmates are better at learning than me”;
and “In class I am often thinking about things that have nothing to do with the lesson.”
Each item of the three scales had five response categories: strongly agree, agree, neu-
tral, disagree, and strongly disagree. Some items were recoded to give them the proper
orientation. Categories with less than 20 observations were combined with categories
above, except for the highest category, which was combined with the category below.
Because of the limitation of the estimation procedure, only the first three time points
were examined. Thus, Time Point 1 is the 1st school year. Of the total data set, only the
responses of pupils who answered the questionnaire at all three time points were con-
sidered, which resulted in a data set of responses of 1,942 pupils. A number of ques-
tionnaires were filled out incompletely, so item nonresponse occurred.

An overview of some classical test theory indices is given in Table 1. These indices
are based on the responses of the 1,749 complete cases only. The first panel relates to
“Well-Being at School,”, the second to “Academic Self-Concept,” and the third to
“Attentiveness in the Classroom.” For all items, the number of response categories is
given in the column with heading “Cat.” For each item at each time point, the mean
score, the standard deviation, and the item-total correlations are given in the columns
labeled “Mean Score,” “SD,”, and “Rit,” respectively. The item-total correlations indi-
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cate the contribution of the item scores to the reliability of the scale. Note that for most
of the items, the mean score and the item-total correlation show a small increase over
time, and the standard deviation remains almost the same. For each scale at each time
point, the mean of the scale and the standard deviation are given in the rows denoted as
“Mean” and “SD.” For all scales, the means show a small increase over time. To obtain
a measure of reliability of the scale at each time point Cronbach’s alpha was computed.
The results are presented in the row labeled “Alpha.” The lower bound for reliability of a
scale of .80 is reached for the scales “Well-Being at School” and “Attentiveness in the
Classroom” for all time points but not for the scale “Academic Self-Concept.” How-
ever, at all three time points, Cronbach’s alpha was close to .80.

Model Fit Within Time Points

First, MML estimates were computed for the three scales and all time points sepa-
rately and LM tests for the response functions of the items were computed. The results
are presented in Tables 2, 3, and 4 for the scales “Well-Being at School,” “Academic
Self-Concept,”, and “Attentiveness in the Classroom,” respectively.

Consider first the scale “Well-Being at School,” which consisted of four items hav-
ing five answer categories each. The LM statistics are based on a partitioning of the
sample of students in three subgroups based on the students’partial sum scores r n

i( )( )x .
The cutoff scores were chosen in such a way that the numbers of students in the sub-
groups were approximately equal.

In Table 2, it can be seen that 9 of the 12 LM tests were significant at a 5% signifi-
cance level. The observed and expected average item scores in the subgroups are
shown under the headings “Obs” and “Exp,” respectively. Note that the observed aver-
age scores increased with the score level of the subgroup. An indication of the serious-
ness of the model violation can be obtained by computing the absolute difference
between the observed and expected average scores in the subgroups. It can be seen in
the column labeled “Abs Dif” that these differences were quite small: The largest
absolute difference was .09 and the mean absolute difference was approximately .03.
Therefore, it could be concluded that the observed average item scores fit the model
quite well.

For the scale “Academic Self-Concept,” 11 out of 27 LM tests were significant at
the 5% level. The sample of students was divided in four subgroups of approximately
the same size. Note that here also the average observed scores in the groups increased
with the score level of the groups as predicted by the average expected values. The
mean absolute difference between the observed and expected values equaled .02, with
a maximum absolute difference of .09.

For the third scale, “Attentiveness in the Classroom,” 9 out of 20 LM tests were sig-
nificant at the 5% level. Again, the sample of students was divided in four subgroups
of approximately the same size. The largest absolute difference is .11 and the mean
average absolute difference is .02. The conclusion was that in spite of the large number
of significant LM tests the model is acceptable because the differences in the observed
and expected item mean score were small.

16 Educational and Psychological Measurement

(text continued on p. 22 )
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Model Fit Over Time Points

Next, MML estimates were computed with the responses of all time points jointly
for the three scales separately. The LM test was computed for the GPCM with the
multivariate normal distribution. To investigate the effect of modeling the depend-
ency, the LM test was also computed for the estimates of the GPCM with a standard
normal distribution. The results of these LM tests are presented in Tables 5, 6, and 7 for
the scales “Well-Being at School,” “Academic Self-Concept,” and “Attentiveness in
the Classroom,” respectively.

First, consider the results of the scale “Well-Being at School” in Table 5. The
degrees of freedom for the LM test is the number of answer categories minus one,
which equals four for all items of the scale “Well-Being at School.” For the
unidimensional model, all LM tests were highly significant.

For the multidimensional model, only one LM test was not significant at a 5% sig-
nificance level. However, taking the dependency of the responses into account did
result in expected item mean scores that were much closer to the observed item mean
scores; the mean absolute difference decreased from .25 for the unidimensional model
to .02 for the multidimensional model, which is quite small.

The results for the scale “Academic Self-Concept” are shown in Table 6. The
degrees of freedom of each LM test are presented in the column labeled “df.” Note that
for the unidimensional model, 1 out of 27 LM tests was not significant at the 5% level,
which was also the case for the multidimensional model. However, the mean absolute
difference decreased from .09 (unidimensional) to .05 (multidimensional). Again, the
latter difference is quite small.

For the scale “Attentiveness in the Classroom” (Table 7), the number of nonsig-
nificant LM tests at the 5% level increased from one to four while the dependency was
taken into account. However, a lot of LM tests remained significant. On the other hand,
the mean absolute difference decreased as well from .18 to .04. So also here the multi-
dimensional model produced quite acceptable results.

To visualize the analyses using linear regression, Figure 1 shows for the scale
“Attentiveness in the Classroom” the scatter plots with linear regression line for the
discrimination (first panel) and location parameters (second panel) of Time Points 1
and 2 with their confidence intervals. These plots show that most of the confidence
intervals did include the regression line. Table 8 shows the results of all combinations
for all scales. The columns labeled “Obs” give the number of observed intervals, and
the columns labeled “Incl” give the number of intervals that included the regression
line. Mostly, half of the intervals did include the regression line. For Time Points 1 and
3, the minimum number of intervals that include the regression line was found. This
might be a consequence of the large time difference.

In spite of the large number of significant LM tests and the large number of confi-
dence intervals that did not include that the regression line, we still conclude that the
multidimensional model is acceptable. In case of the LM tests, the differences
between the observed and expected item means were quite small when the multidi-
mensional GPCM was used to estimate the expected item means. The large number of

22 Educational and Psychological Measurement

(text continued on p. 30 )
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28 Educational and Psychological Measurement

Figure 1
Parameter Estimates at Different Time Points

Note: For the scale “Attentiveness in the Classroom,’ Panel (a) gives a scatter plot of the discrimination
parameters of Time Points 1 and 2 with the estimated regression line. The horizontal and vertical lines repre-
sent the corresponding confidence intervals. Panel (b) shows a scatter plot of the location parameters of Time
Points 1 and 2.
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result of the large sample size (N ~ 1,942). As a consequence of a large sample size, the
standard errors of the item parameters were small, which resulted in small confidence
intervals.

Evaluation of Trends

In the previous section, analyses were presented that support the validity of the con-
structs “Well-Being at School,” “Academic Self-Concept,” and “Attentiveness in the
Classroom.” In this section, the trends over time will be investigated. Table 9 shows for
each scale the mean on each time point and the covariance matrix over time points.
The left panels give the MML estimates per scale. The means and covariance matrix
were estimated concurrently with the item parameters. The right panels pertain to a
concurrent MML estimate of all item parameters, the means of all scales at all time
points and the complete covariance matrix. The three covariance matrices displayed
are only a part of the complete covariance matrix, because the latter matrix also con-
tains the covariances between the scales at the different time points.

The standard errors of the estimates are given within parentheses. The values
marked by a superscripted a are the correlations between the latent dimensions. For all
scales, the mean increased over time. Note that to identify the multidimensional
GPCM, the means of the latent abilities at the last time point were set equal to zero.
From comparing the estimated means with their standard errors, it can be concluded
that the means at the different time points differed significantly. Therefore, the null
hypothesis of no trend was rejected. Examining the correlation of the latent variables
over time for each scale, it can be seen that the correlation structures showed the same
pattern. The highest correlation was between the latent variables of Time Points 1 and
2. As expected, because of the largest time difference the lowest correlation was
between the latent variables of Time Points 1 and 3. Finally, it can be seen that the con-
current estimates and estimates obtained for separately for all three scales are very
close.

Conclusion and Discussion

The present article shows the application of multidimensional IRT models for ana-
lyzing repeated measures. IRT models provide direct estimates of the relations
between the latent variable on several time points and draw on the (often strong) rela-
tionship between the latent variables to produce more accurate parameter estimates.
Furthermore, incomplete designs and missing responses are no longer obstacles, and
all the available information is used to estimate more accurate item and population
parameters.

The between-item multidimensional GPCM was proposed to model repeated mea-
sures. However, the approach is not limited to the GPCM, and many other unidimen-
sional IRT models can be generalized to between-item multidimensional IRT models.
The item and population parameters were estimated with an adapted MML estimation
procedure, imposing linear restrictions on the item parameters to obtain constant item

30 Educational and Psychological Measurement
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parameters for the scales over time, and assuming a Q-variate normal density to model
the dependency over time. An advantage of MML is that the parameters of the GPCM
and the covariance matrix can be estimated simultaneously. A disadvantage of the
MML procedure is the limited number of time points or the limited number of latent
variables that can be analyzed. Above, it was mentioned that the maximum number of
factors is 10 with adaptive quadrature, 5 with nonadaptive quadrature, and 15 with
Monte Carlo integration. There are two alternatives that do not have these limitations.
The first is a Bayesian procedure using a Markov Chain Monte Carlo algorithm (see,
for instance, Gelman, Carlin, Stern, & Rubin, 1995), which was suggested by Béguin
and Glas (2001). In this procedure, apart from the identification restrictions, the struc-
ture of the matrix factor loadings aiq is entirely free. The second approach specifically
applies to a simple structure as was used above, where unidimensional subscales load
on specific unidimensional latent variables. For that case, Rubin and Thomas (2001)
discussed a two-stage procedure where the first stage consists of calibrating the
unidimensional subscales using a unidimensional IRT model such as the GPCM and
the second stage consists of estimating the covariance-matrix between the latent
variables using a combination of parameter expansion and the EM algorithm.

To investigate the validity of the results, model fit within and between time points
was examined using an LM test to evaluate the fit of the item response functions. The
LM statistics were significant in more than half of the cases. The explanation is that the
power of the tests increases dramatically with the number of observations. Therefore,
with large sample sizes, the sizes of the residuals are much more informative because
they give an indication of the seriousness of the model violation. In the present exam-
ple, the model violations were judged as acceptable. The reason for implying the LM
statistics at all is that they give a motivation for considering specific residuals such as
Equations 11 and 12, because the alternative hypotheses on which the tests are based
indicate which model violations are exactly targeted. Further, the LM statistics contain
a proper estimate of the covariance matrix with which the residuals should be
weighted (see Glas & Suarez-Falcon, 2003).
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