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We theoretically investigate the macroscopic quantum dynamics of a � junction with a superconductor �S�
and a multiferroic material or a ferromagnetic insulator �FI�. By deriving the effective action from a micro-
scopic Hamiltonian, a �-junction qubit �a S-FI-S superconducting quantum interference device ring� is pro-
posed. In this qubit, a quantum two-level system is spontaneously generated and the effect of the quasiparticle
dissipation is found to be very weak. These features make it possible to realize a quiet qubit with high
coherency. We also investigate macroscopic quantum tunneling �MQT� in current-biased S-FI-S � junctions
and show that the influence of the quasiparticle dissipation on MQT is negligibly small.
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When two superconductors are weakly coupled via a thin
insulating barrier, a direct current can flow even without bias
voltage. The driving force of this supercurrent is the phase
difference in the macroscopic wave function. The supercur-
rent I and the phase difference � across the junction have a
relation I= IC sin � with IC�0 being the critical current. If
the weak link consists of a thin ferromagnetic metal �FM�
layer, the result can be a Josephson junction with a built-in
phase difference of �. Physically this is a consequence of the
phase change of the order parameter induced in the FM by
the proximity effect.1–3 Superconductor �S�-FM-S Josephson
junctions presenting a negative coupling or a negative IC are
usually called � junctions4,5 and such behavior has been re-
ported experimentally.6–10

As proposed by Bulaevskii et al.,2 a superconducting ring
with a � junction �a � superconducting quantum interference
device �SQUID�� exhibits a spontaneous current without an
external magnetic field and the corresponding magnetic flux
is half a flux quantum �0 in the ground state. Therefore it is
expected that a S-FM-S � SQUID system becomes a quiet
qubit that can be efficiently decoupled from the fluctuation of
the external field.11–14 From the viewpoint of quantum dissi-
pation, however, the structure of S-FM-S junctions is inher-
ently identical with S-N-S junctions �where N is a normal
nonmagnetic metal�. Therefore a gapless quasiparticle exci-
tation in the FM layer is inevitable. This feature gives a
strong Ohmic dissipation15,16 and the coherence time of
S-FM-S qubits is bound to be very short. In practice the
current-voltage characteristic of a S-FM-S junction shows
nonhysteretic and overdamped behaviors.8 On the other
hand, as was shown by Tanaka and Kashiwaya,17 a � junc-
tion can also be formed in Josephson junctions with a ferro-
magnetic insulator �FI�. In S-FI-S junctions, the influence of
the quasiparticle excitation in the FI is expected to be very
weak as in the case of S-I-S junctions18 �where I is a non-
magnetic insulator�.

In this paper, we propose a �-junction qubit that consists
of a rf SQUID ring with S-FI-S junctions, and investigate

macroscopic quantum tunneling �MQT� in a single S-FI-S
junction. Unlike previous phenomenological studies for
S-FM-S junction qubits,11–14 we derive the effective action of
S-FI-S junctions from a microscopic Hamiltonian in order to
deal with the quasiparticle dissipation explicitly. By using
the effective action, we show that the quasiparticle dissipa-
tion in this system is considerably weaker than in S-FM-S
junctions. This feature makes it possible to realize highly
coherent quantum logic circuits.

First, we will calculate the effective action for S-FI-S Jo-
sephson junctions by using the functional integral
method.18–20 S-FI-S Josephson junctions consist of two su-
perconductors �L and R� and a thin FI barrier �Fig. 1�a��. The
Hamiltonian of S-FI-S junctions is conveniently given by
H=HL+HR+HT+HQ, where HL�R� is the Hamiltonian de-
scribing the left �right� superconductor electrodes: HL
=���dr �L�

† �r��−�2�2 /2m−	��L��r�− �gL /2����dr �L�
† �r�


�L−�
† �r��L−��r��L��r�, where �� is the electron field opera-

tor for the spin ��=↑ , ↓ �, m is the electron mass, and 	 is the
chemical potential. The coupling between two superconduct-
ors is due to the transfer of electrons through the
FI barrier and due to the Coulomb interaction term
HQ= �QL−QR�2 /8C, where C is the capacitance of the
junction and QL�R�=e���dr �L�R��

† �r��L�R���r� is the
operator for the charge on the superconductor L�R�. The
former is described by the tunneling term HT
=���dr dr��T��r ,r���L�

† �r��R��r��+H.c.�. The FI barrier
can be described by a potential17,21,22 V��r�=��V��x�, where
�↑=1 and �↓=−1 �see Fig. 1�b��. In the high-barrier limit
�Z�mV /�2kF1�, the tunneling matrix element is given by
T��k ,k��= i��kx / �kFZ��ky,ky�

�kz,kz�
, where kF is the Fermi wave

number. The spin dependence of T� is essential for the for-
mation of � coupling.

Examples of FIs include the f-electron systems EuX �X
=O, S, and Se�,23 ferrites,24 rare-earth nitrides �e.g.,
GdN�,25,26 insulating barriers with magnetic impurities27

�e.g., amorphous FeSi alloys�,28 Fe-filled semiconductor car-
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bon nanotubes,29 and single molecular magnets �e.g., Mn12
derivatives�.30 Multiferroic materials,31,32 for instance, the
Jahn-Teller orbital-ordered systems �e.g., Ti oxides33 and Mn
oxides34,35�, and the spinels �e.g., CdCr2S4 �Ref. 36� and
CoCr2O4 �Ref. 37�� can serve as a FI. It has been recently
shown theoretically that a FI can be also induced by doping
in wide-band-gap semiconductors such as ZnO and GaN.38

However, it is still an open question whether any of these
materials posses the spin dependent potential shown in Fig.
1�b�. This problem will be addressed in a future study.

The partition function Z of the junction can be written as
an imaginary time path integral over the complex Grasm-

mann fields,39 Z=�D�̄D� exp�−�0
��d�L��� /��, where �

=1/kBT and the Lagrangian is given by L���
=���dr�̄��r ,�������r ,��+H���. In order to write the parti-
tion function as a functional integral over the macroscopic
variable �the phase difference ��, we apply the Stratonovich-
Hubbard transformation. This introduces a complex order pa-
rameter field ��r ,��. Next the integrals over the Grassmann
fields and �����0 are performed by using the Gaussian
integral and the saddle point approximation, respectively.
Then we obtain the partition function as
Z=�D����exp�−Seff��� /��, where the effective action Seff is
given by

Seff��� = 	
0

��

d�
C

2
� �

2e

�����
��

�2

− EJ cos ���� + S���� ,

�1�

S���� � − �
�
	

0

��

d� d������ − ���ei�������−������/2. �2�

Here the Josephson coupling energy EJ= �� /2e�IC is given in
terms of the anomalous Green’s function in the left �right�
superconductor FL�R��k ,�n�=��0 / ����n�2+�k

2+�0
2� ��k

=�2k2 /2m−	 and ��n= �2n+1�� /� is the fermionic Mat-
subara frequency�:

EJ =
2

�
	

0

��

d��
k,k�

T↓
*�k,k��T↑�k,k��FL�k,��FR�k�,− ��

� −
�0RQ

4�RN
� 0. �3�

In this equation, RQ=h /4e2 is the resistance quantum, and
RN is the normal state resistance of the junction. As expected,
EJ becomes negative. The formation of the � junction can be

attributed to the spin-discriminating scattering processes in
the spin-dependent potential V��r�. Therefore S-FI-S junc-
tions can serve as � junctions similar to S-FM-S junctions.
S� is the dissipation action and describes the tunneling of
quasiparticles which is the origin of the quasiparticle dissi-
pation. In Eq. �2�, the dissipation kernel ����� is given by

����� = −
2

�
�
k,k�

�T��k,k���2GL�k,��GR�k�,− �� , �4�

where GL�R��k ,�n�=−��i��n+�k� / ����n�2+�k
2+�0

2� is the di-
agonal component of the Nambu Green’s function. In the
high-barrier limit �Z1�, we obtain

����� =
�2

4�2e2RN
K1�����

�
�2

, �5�

where K1 is the modified Bessel function. For ���� /�0 the
dissipation kernel decays exponentially as a function of the
imaginary time �, i.e., ������exp�−2�0��� /��. If the phase
varies only slowly with the time scale given by � /�0, we can
expand ����−����� in Eq. �2� about �=��. This gives
S�������C /2��0

��d���� /2e������ /���2. Hence the dissipa-
tion action S� acts as a kinetic term so that the effect of the
quasiparticles results in an increase of the capacitance, C
→C+�C. This indicates that the quasiparticle dissipation in
S-FI-S junctions is qualitatively weaker than that in S-FM-S
junctions in which the strong Ohmic dissipation appears.15,16

At zero temperature, the capacitance increment �C can be
easily calculated using Eq. �5� and we can obtain

�C =
3

32�

e2RQ

�0RN
. �6�

As will be shown in later, �C /C�1. Therefore the effect of
the quasiparticle dissipation on the quantum dynamics of
S-FI-S junctions is very small.

By using the above result, we propose a diffrent type of
flux qubit.40 In Fig. 2�a�, we show the schematic of the �
SQUID qubit. In this proposal, the qubit consists of the su-
perconducting rf SQUID loop �the inductance Lloop� with one
S-FI-S junction. The effective Hamiltonian which describes
this qubit is given by

Heff =
Cren

2
� �

2e

��

�t
�2

+ U��� . �7�

Here Cren�C+�C and U��� is the potential energy:

FIG. 1. �Color online� �a� Schematic view of
the superconductor–ferromagnetic insulator–
superconductor �S-FI-S� Josephson junction and
�b� the spin-dependent barrier potential for the FI
layer.
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U��� = − EJ cos � +
1

2Lloop
��0

2�
�2�� − 2�

�ex

�0
�2

, �8�

where �ex is the external magnetic flux. U��� exhibits two
minima at �= ±� /2 without a external magnetic flux �ex
�see Fig. 2�b�� and has two identical wells with equal energy
levels when tunneling between the wells is neglected. These
levels correspond to clockwise and counterclockwise persis-
tent currents circulating in the loop �the half flux states�. Let
us consider the lowest �doubly degenerate� energy levels ��↑ �
and �↓ ��. When the tunneling between two wells is switched
on, the levels split, and a two-level system ��0�= ��↑ �
+ �↓ �� /�2 and �1�= ��↑ �− �↓ �� /�2� is formed with the level
spacing �. These states are used as a computational basis for
the qubit.41 In order to prevent thermalization of the quantum
state composed from the two low-lying energy levels ��0�
and �1��, we require kBT��.

As in the case of the qubit using the S-I-S flux qubit,40 the
one-qubit operation �the Rabi oscillation� can be realized by
irradiating the qubit with microwaves of frequency ��=�.
Moreover, a two-qubit gate �e.g., the controlled-NOT gate�
can be performed by using the inducting coupling between
two adjacent qubits.

Next, we will develop a theory of MQT in single S-FI-S
junctions �Fig. 1�a��. MQT is an important first step toward
the experimental realization of Josephson junction qubits and
is used in a final measurement process for a phase-type
qubit.42–44 In order to observe MQT, an external bias current
Iext which is close to IC is applied to the junction. This leads
to an additional term −�� /2e��0

��d� Iext���� in the effective
action �1�.18 The resultant action

Seff��� = 	
0

��

d�
Cren

2
� �

2e

�����
��

�2

− U��� �9�

describes the quantum dynamics of a fictive particle �the
macroscopic phase difference �� with mass M =Cren�� /2e�2

moving in the tilted washboard potential U���=
−EJ�cos ����−������, where �� Iext / �IC�. The MQT escape
rate from this metastable potential at zero temperature is
given by �=lim�→��2/��Im lnZ.45 By using the semiclassi-
cal �instanton� method,46 the MQT rate is approximated as

���� =
�p���

2�
�120�B���e−B���, �10�

where �p���=��IC /2eM�1−�2�1/4 is the Josephson plasma
frequency and B���=Seff��B� /� is the bounce exponent, that

is, the value of the action Seff evaluated along the bounce
trajectory �B���. The analytic expression for the exponent B
is given by

B��� =
12

5e
� �

2e
ICCren�1 − �2�5/4. �11�

In MQT experiments, the switching current distribution
P��� is measured. P��� is related to the MQT rate ���� as

P��� =
1

v
����exp�−

1

v
	

0

�

�����d��� , �12�

where v��d� /dt� is the sweep rate of the external bias cur-
rent. The average value of the switching current is expressed
by �����0

1d��P������. At high temperature regime, the
thermally activated decay dominates the escape process.
Then the escape rate is given by the Kramers formula45 �
= ��p /2��exp�−U0 /kBT�, where U0 is the barrier height. Be-
low the crossover temperature T*, the escape process is
dominated by MQT and the escape rate is given by Eq. �10�.
The crossover temperature T* is defined by47

T* =
5��p�� = ����

36kB
. �13�

As was shown by Caldeira and Leggett, in the presence of a
dissipation, T* is suppressed.46

In order to see explicitly the effect of the quasiparticle
dissipation on MQT, we numerically estimate T*. Currently
no experimental data are available for S-FI-S junctions.
Therefore we estimate T* by using the parameters for a high-
quality Nb/Al2O3/Nb junction48 ��0=1.30 meV, C
=1.61 pF, �IC�=320 	A, RN=�0 /4e�IC�, v�IC�=0.245 A/s�.
By substituting these data into Eq. �6� we obtain �C /C
=0.0145�1. Then from Eq. �13� we get the crossover tem-
perature T*=245 mK for the dissipationless case �Cren=C�
and T*=244 mK for the dissipation case �Cren=C+�C�. We
find that, due to the existence of the quasiparticle dissipation,
T* is reduced, but this reduction is negligibly small. This
strongly indicates the high potentiality for the S-FI-S junc-
tions as a phase-type qubit.42–44

To summarize, we have theoretically proposed a
�-junction quiet qubit which consists of a superconducting
ring with the FI �the S-FI-S � SQUID qubit�. Moreover, we
have investigated the effect of the quasiparticle dissipation
on the quantum dynamics and MQT using the parameter set
for a high-quality Nb junction with Al2O3 barrier, and
showed that this effect is considerably smaller compared

FIG. 2. �Color online� �a� Schematics of the �
SQUID flux qubit with a single S-FI-S junction.
�b� The potential energy U��� vs the phase dif-
ference � without the external magnetic flux �ex.
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with S-FM-S junction cases. This feature and the quietness
of this system make it possible to realize a quiet qubit with
long coherence time.

Finally we would like to comment on the possibility of a
quiet qubit using a S-I-FM-S junction.4 Recently Weides et
al.49–51 and Born et al.52 have fabricated high-quality S-I-
FM-S junctions, i.e., Nb/Al2O3/Ni0.6Cu0.4/Nb and
Nb/Al/Al2O3/Ni3Al/Nb, respectively. They have clearly
observed the 0-� transitions by changing the thickness of the
FM layer. In these systems, the quasiparticle tunneling is
inhibited due to the existence of the insulating barrier I
�Al2O3�. Therefore, as in the case of S-FI-S junctions, low
quasiparticle dissipation and quietness are also expected in

S-I-FM-S junctions. The theory of the qubit and MQT in
such systems will be the subject of future studies.
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