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We present a computer simulation model of polymer melts representing each chain as one single
particle. Besides the position coordinate of each particle, we introduce a parameter nij for each pair
of particles i and j within a specified distance from each other. These numbers, called entanglement
numbers, describe the deviation of the system of ignored coordinates from its equilibrium state for
the given configuration of the centers of mass of the polymers. The deviations of the entanglement
numbers from their equilibrium values give rise to transient forces, which, together with the
conservative forces derived from the potential of mean force, govern the displacements of the
particles. We have applied our model to a melt of C800H1602 chains at 450 K and have found good
agreement with experiments and more detailed simulations. Properties addressed in this paper are
radial distribution functions, dynamic structure factors, and linear as well as nonlinear rheological
properties. © 2007 American Institute of Physics. �DOI: 10.1063/1.2780151�

I. INTRODUCTION

Experimentalists as well as theoreticians put great effort
in predicting the dynamical properties of polymeric materials
if only because flow behavior of polymer melts is of great
importance in industrial applications. Rheological experi-
ments reveal complicated molecular weight dependencies of
viscosities and diffusion coefficients. Polymers combine a
large zero shear viscosity with strong shear thinning at high
shear rates. Neutron-spin-echo spectroscopy measurements
indicate that several relaxation mechanisms govern the decay
of stresses over a broad time window, associated with many
different length scales.1–3 The two best known theories de-
scribing polymer melt dynamics are the Rouse model for
short chains4 and the reptation model for entangled chains.5,6

The latter describes equilibrium and low shear rate properties
of highly entangled melts very well, but misses important
relaxation mechanisms to correctly describe moderately en-
tangled melts and nonlinear rheological properties. Several
successful extensions have been made to the original repta-
tion model in order to incorporate mechanisms like �convec-
tive� constraint release �CCR/CR� and tube length
fluctuations.7–11

Several types of computer simulations may be discerned
in this field. First, there are simulations based on the atom-
istic structure of the chains, either by running atomistic mo-
lecular dynamics simulations directly12,13 or by performing
some kind of bottom-up coarse graining like in the Twen-
tanglement model.14 At present, these methods are incapable
of simulating well entangled melts long enough to faithfully
sample all characteristic relaxations, including the slowest
ones. A second class of models includes the bond fluctuation
model15 and the Kremer-Grest model.16 In both cases the

polymers are represented by fully flexible chains of hard seg-
ments connected in such a way that bond crossings are pre-
vented by repulsive forces between the segments. It has
turned out to be difficult with these models to find unique
sets of model parameters capable of describing a broad spec-
trum of properties of one and the same polymer melt. Their
great merit, however, has been to provide a wealth of infor-
mation about the scaling laws that govern the dynamics and
rheology of polymer melts. A third class of models is the
class of slip-link models based on a direct implementation of
reptation concepts. In the model of Marrucci entanglements
between chains are created and annihilated in the neighbor-
hoods of chain ends in a three dimensional simulation, while
in Likhtman’s model only one chain is modeled in a fluctu-
ating background represented by anchored springs with rings
at their ends. Particularly, the last model is very attractive
because of its simplicity and cheapness in terms of CPU
consumption. Both models, however, will meet great diffi-
culties in case they are to be extended to describe the rheol-
ogy of block copolymers or colloid polymer mixtures, or, for
example, viscoelastic phase separation kinetics.

In this work we aim for a polymer model, which is
simple enough to allow for fast simulations and at the same
time is versatile enough to be applicable in situations men-
tioned in the last sentence of the previous paragraph. An
obvious candidate seems to be a model in which each poly-
mer is represented by just one particle. The first to introduce
a model like this were Murat et al.,17 but they restricted
themselves to describing the static properties of the melt,
ignoring its entanglement driven dynamics. To cover en-
tanglement effects, we introduce a time dependent pairwise
“order parameter,” which governs the friction felt by each
chain and results in restoring elastic forces. We have tested
the model for a polyethylene �PE� melt of C800H1602, both in
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equilibrium and in shear flow and have found good agree-
ment in both cases with available experimental data.

This paper is structured as follows: Section II describes
the construction of the model. Section III contains the static
and dynamic equilibrium results of the new model. In Sec.
IV transient and steady state shear flows are studied, fol-
lowed by a discussion in Sec. V.

II. MODEL

A. Coarse graining

Coarse graining of polymers amounts to collecting a
number of segments into a single particle. Depending on the
degree of coarse graining, the particles exhibit much less
structure than what occurs on the atomistic scale. For very
high levels of coarse graining, the radial distribution function
g�r� approaches 1 for all values of r, indicating that there is
no particle ordering on the coarse length scales. The correct
g�r� in these cases can only be achieved by the use of soft
potentials, while harder potentials such as Dissipative Par-
ticle Dynamics �DPD� potentials or truncated Lennard-Jones
potentials will fail.

Coarse graining polymer chains into single particles ul-
timately results in an effort to simulate a polymer melt as an
ideal gas. Even the introduction of a large background fric-
tion in a Brownian dynamics simulation will fail for the fol-
lowing reason. Polymer melts have very large viscosities,
��L3, with L as the length of the chain, while at the same
time the diffusion coefficient D is also relatively large. As a
result, �D�L.6 Independent of the details of the potential, a
Brownian dynamics simulation will yield �D�L0. Either �
or D will be too low, as will be shown in Sec. III. The origin
of the atypical behavior of the polymer melts, of course, is to
be found in the entanglements or topological constraints, giv-
ing rise to tubes within which the polymers reptate. Any
single particle model successfully describing melt rheology
must somehow incorporate the effects of entanglements.

B. Entanglements

During simulations of polymer melts using one of the
multiparticle representations obeying the uncrossability con-
straint on the polymer chains, entanglements between chains
appear and disappear continuously. Their effect on the dy-
namics of the polymers pervades through all time and length
scales. In particular, their presence makes the dynamics of
the internal degrees of freedom of the polymers almost
equally slow as the movements of the centers of mass of the
polymers. This lack of separation of time scales makes any
attempt to simulate the movements of the centers of mass by
means of a standard Brownian dynamics propagator, ignor-
ing all internal degrees of freedom, a lost case. Instead, we
propose to use a method introduced recently by van den
Noort et al.,18 in which the state of affairs of the ignored
degrees of freedom is described by a small number of pa-
rameters.

When two unentangled polymers are fixed at a distance
r, they will interpenetrate and relax to some equilibrium state
depending on the distance. The overlap of polymers i and j
will be described by a single parameter nij that may be con-

sidered to represent the number of “entanglements” between
both polymers. On the Brownian time scale, the state of the
system is then fully determined by N vectors ri and
1/2N�N−1� entanglement numbers nij. The equilibrium
probability density � reads

��r3N,n1/2N�N−1��

� exp�−
1

kBT�Ac�r3N� + �
�i,j	

1

2
��nij − n0�rij��2
� , �1�

where kB is Boltzmann’s constant and T the temperature. Ac

is the free energy of the ignored coordinates at the given
configuration R3N of the centers of mass of the polymers and
��i,j	 is used as a notation for a sum over all interacting
particle pairs. The constant � determines the strength of the
fluctuations in the number of entanglements around n0. nij

can take any value, both positive and negative, so that after
integration over nij the coordinates are distributed according
to the usual Boltzmann distribution. In other words, the static
properties of the system are not altered by the introduction of
the entanglements. The equilibrium number of entangle-
ments n0�rij� will be chosen, different from that in Ref. 18,
where n0�r��1/r was used. In contrast to the resin particles
studied in Ref. 18, polymers can fully overlap. In order to
prevent entanglement numbers from being infinite in this
case, we have chosen n0�rij� as

n0�rij� = �c�rij − rc�2: rij � rc

0: rij � rc,
�

�2�

c =
15

2�rc
5 ,

where rc is a cutoff radius, which should be several times the
radius of gyration RG. It is chosen to be 2.5 times RG of the
polymer. c can be chosen arbitrarily because �c2 is the only
relevant parameter. Here, c is used to normalize n0.

The resulting displacement dr per time step dt may be
derived19 using the standard procedure for obtaining the
Smoluchowski equation and reads

dri = 	�2kBTdt/
i + �i kBT


i
�dt +

1


i
�− �iAc�r3N�

− �
j�i

��n0�rij� − nij�
dno

drij

rij

rij
��dt . �3�

The stochastic displacements, represented by the first term in
the right hand side, are related by the fluctuation-dissipation
theorem to the friction 
i discussed below; 	 is a random
number with unit variance and zero mean. Equation �3� dif-
fers in two aspects from ordinary Brownian Dynamics �BD�.

�1� The last term in Eq. �3� is an elastic term that drives the
two particles to the distance that suits the current num-
ber of entanglements. It resembles the forces that en-
tanglements create against deformation of the chain.
This means that two approaching particles will repel
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each other on average, whereas two separating particles
will be pulled toward each other. �Note that dn0 /drij is
always negative.�

�2� The friction 
i differs from a constant background fric-
tion. Here, it depends on nij according to


i = 
e�
j�i

nijn0�rij� , �4�

with 
e as the friction per entanglement. The resistance
against movement depends on the number of entangle-
ments the chain has with its surrounding fellow chains.

Analogously to Eq. �3�, the accompanying change in the
number of entanglements on this Brownian time scale is

dnij = 	��2kBTdt/
� +
�


�
�n0�rij� − nij�dt . �5�


� /� can be viewed as the characteristic time it takes a pair
of particles to relax to their equilibrium state. For polymers
the longest relaxation time is the reptation time �d, so that
Eq.�5� can be expressed as follows:

dnij = 	��2kBTdt/��d +
1

�
�n0�rij� − nij�dt , �6�

with ���d.

C. Compressibility

We have implemented the above equations of motion
using soft Gaussian potentials, which were extrapolated from
the work of Padding and Briels,14

Ac�r3N� = �
i,j

cG exp − rij
2 /b0

2, �7�

with the potential strength cG decreasing and the Gaussian
width b0 increasing with the level of coarse graining. The
results in equilibrium were promising, but the model failed
under shear. In equilibrium there is no driving force for the
particles to form clusters and the thermal fluctuations are
capable of creating the appropriate mass distribution. In
shear flow, however, the soft pairwise potential allows the
particles to group together and thus to minimize the en-
tanglement stresses. At the origin of this problem is the fact
that the coarse system with soft pair potentials does not have
the right compressibility �T.

Introducing the correct compressibility to compensate
for the missing constraint of a constant local monomer den-
sity is not straightforward in mesoscopic simulations. The
most widely used mesoscopic force fields, such as DPD or
truncated Lennard-Jones potentials, can only achieve the cor-
rect compressibility at the expense of introducing unphysi-
cal, long ranged order. Furthermore, the large forces result-
ing from these potentials incorrectly influence the dynamics
of the particles and lower the possible time step. The cause
of all these problems must be the fact that the free energy
Ac�r3N� in Eq. �3� cannot be well represented by a sum of
pair contributions and that many-body terms must be in-
cluded. An elegant way of doing this has been devised by
Pagonabarraga and Frenkel20,21 in the framework of DPD,

and was called Multiparticle Dissipative Particle Dynamics
�MDPD� by Trofimov et al.22 Inspired by this work, we de-
rive in the Appendix the conservative force field used in this
paper by Taylor expanding the free energy of the eliminated
coordinates in small deviations of the density field around
the homogeneous state. Our result for the conservative force
Fci is

Fci = − �iAc�� = −
1

3�T
�
j=1

N

�� j + �i��i��rij� . �8�

Here,  is the macroscopic number density of chains and �i

is the excess local density around i, calculated by summing
over the neighboring particles j with normalized weight
functions ��rij� �Eq. �A3�� �T is the isothermal compressibil-
ity.

For convenience, the range of the weight function is cho-
sen equal to that of n0, i.e., 2.5 times the radius of gyration
RG of the polymer. This is somewhat on the small side since
part of the monomer-monomer interactions will take place at
larger distances. The limiting factor here is the number of
particles within the cutoff volume, which should not grow
too large in view of the CPU and random access memory
consumptions. Let L be the number of segments in a chain;
then, the number of particles Nj that interact with i scales as

�Nj	 =
4

3
�rc

3 � L3/2L−1 = L1/2, �9�

where we have made use of random walk statistics for the
scaling of the size of the polymer. For a relatively short PE
chain �11 kg/mol� and rc=2.5RG, this already reaches values
of the order of 102, where, e.g., the DPD value is about 101.
Another restriction on the weight function is that it has to be
monotonously decreasing, with a nonzero derivative at the
origin. Without this restriction, the very small repulsive
forces at short distances do not prevent the formation of lat-
tice structures with several particles per site at high
pressures22 or in shear. A Gaussian weight function, best de-
scribing the density distribution of a polymer, can thus not be
used. In order to give weight to as many particles as possible
within a given cutoff and to have a nonzero derivative at the
origin, a linear function is used,

��rij� = � 3

�rc
4 �rc − rij�: rij � rc

0: rij � rc.
� �10�

This way of implementing the conservative force minimizes
the local structure and still allows two particles to fully over-
lap without a large penalty in the free energy.

III. EQUILIBRIUM RESULTS

A. Simulation setup

Polyethylene is chosen as our test system since it has
been studied experimentally23 and by simulations24–26 at the
same temperature �450 K� and for chain lengths that are
within the reach of the proposed one-particle model. The
entanglement mass of PE is about 1.7 kg/mol found both in
simulations26 and in neutron-spin-echo experiments.27 In or-
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der to be in the entangled regime and also close to the ex-
perimental chain lengths of Wischnewski et al. �12 kg/mol�,
we study C800H1602=11.2 kg/mol, corresponding to the B40

system of Padding and Briels.24

The input parameters of our system are listed in Table I.
The mass density, radius of gyration, disentanglement time,
and compressibility �T are taken from experiments and pre-
vious simulations. Only �, the entanglement interaction
strength, and 
e, the friction per entanglement have been
used as fitting parameters to realize the experimental diffu-
sion coefficient and zero shear viscosity.

Due to the large number of pair interactions for each
particle, about 250, we cannot restrict ourselves to systems
as small as the 80 chain system of Ref. 24. In order to have
box sizes larger than 2rc, we use boxes containing 800 par-
ticles. The time step is limited by the value of � /
e and is
3�10−5�d=0.5 ns.

To get a feeling for the gain of computational speed
provided by coarse graining, we have listed the values of
Nf /dt for various simulation methods in Table II, which is a
rough measure for the CPU consumption. The costs of all
methods scale linearly with the number of particles and evi-
dently inversely with the time step. f is a factor expressing
the CPU time needed per particle per time step relative to
that in a usual molecular dynamics �MD� simulation. For the
Twentanglement method, f has been estimated by comparing
runs with and without using the uncrossability constraint; for
our new method, f =20 because the number of particles
within rc is about 20 times larger than in a normal MD simu-
lation. From Table II it is clear that the profit with respect to
all listed methods is huge �103–107�.

All simulations discussed below started with a random
configuration and a Boltzmann distribution for the entangle-
ment numbers nij. Measurements started after equilibration

periods of at least �d. A typical CPU consumption of a pro-
duction run is 24 h on a single Pentium 4 processor.

B. Structure

In order to test whether the thermodynamic equilibrium
state is correctly reproduced by our model, several quantities
were measured. The results for the system with entanglement
interactions are presented in this and the next subsection. A
comparison of the dynamical observables with those of an
unentangled system is discussed in Sec. III D.

To investigate the distribution of the particles, the radial
distribution function g�r� and the structure factor S�k�,

S�k� =
1

N��
i

N

�
j

N

exp�ik · �ri − r j��� , �11�

were measured. Density fluctuations on infinitely large
length scales are related to the compressibility �T by

S�k = 0� = kBT�T. �12�

This provides a means to test the proposed implementation
of the compressibility by means of the potential in Eq. �8�. In
Fig. 1 g�r� and S�k� are plotted both for a system with and
without entaglements. Both plots reveal no noticeable effect
of the entanglements on the distribution of the particles. The
radial distribution function exhibits a small correlation hole
and virtually no local structure. Mavrantzas et al. have mea-
sured the g�r� of C200 and C400 PE chains in atomistic Monte
Carlo simulations and found the same correlation hole,28

which shows that they almost have no excluded volume ef-
fect on the interchain level.

The compressibility of both systems, i.e., the one with
and the one without entanglements, is equal to the input
value in Eq. �8�, showing that Eq. �8� provides a correct way
to implement compressibility into coarse grained simulation
methods. The quality of g�r� lends credibility to the func-
tional form and, in particular, the range of the weight func-
tion ��r�. Taking a broader range for ��r� would have re-
sulted in less structure, whereas a smaller range would have
led to stronger excluded volume effects.

The distribution of the number of entanglements per pair
of interacting particles is Gaussian, as follows directly from
the Boltzmann distribution of Eq. �1�. Equipartition can thus
be used to measure the temperature of the system from the
second moment.18

TABLE I. The input parameters of the model for C800H1602 PE at 450 K. �T

is taken from Ref. 46 as an average value of hydrocarbons at 450 K, RG and
�d from Ref. 24, and the mass density M from Pearson et al. �Ref. 23�. �
and 
e are fitted to obtain the correct diffusion and viscosity.

Parameter Value Unit

M 761 kg/m3

�T 1.5�10−9 Pa−1

RG 4.64 nm
�d 1687 ns
dt 0.05 ns
� 6.21 aJ

e /kBT 3.2�10−15 m s

TABLE II. CPU consumption, N /dt, of different simulation methods of a melt of C800H1602 chains. Typical
values for the time step and number of particles are given for atomistic MD, united atom MD, the Twentangle-
ment model, and the new model in order to show the gain of coarse graining.

Method Nchains N dt �s� f Nf /dt �s−1� Acceleration

MD 80 192 160 0.5�10−15 1 3.8�1020 1�

UA MD 80 64 000 2.0�10−15 1 3.2�1019 101�

Twentanglement 80 3200 0.1�10−12 10 3.2�1017 103�

New model 800 800 5.0�10−11 20 3.2�1014 106�
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1
2���nij − n0�rij��2	 = 1

2kBT . �13�

In normal BD simulations the temperature can only be mea-
sured by calculating the configurational temperature,29 which
is usually very noisy. Monitoring the entanglement tempera-
ture during equilibration and production runs provides a
means to check that the time step is not chosen too large.

C. Dynamics

An important challenge in the field of polymer simula-
tions is to simultaneously describe the dynamics and statics
correctly. In the previous subsection we have shown that our
model properly describes the structural properties of a PE
melt. In this subsection we study its dynamic properties.

One of the more interesting and difficult to describe dy-
namic observables is the zero shear relaxation modulus,

G�t� =
V

kBT
�����t�����0�	, � � � , �14�

with V as the volume of the simulation box and ��� the ��
component of the stress tensor,

��� =
1

V
�
i,j

�ri,� − rj,��Fij,�, �15�

where ri,� is the � component of the position vector of par-
ticle i and Fij,� is the � component of the force exerted by
particle j on particle i. The zero shear viscosity � can be
calculated using the Green-Kubo integral,

� = �
0

�

dtG�t� . �16�

Where other particle based simulations fail to reach the long-
est relaxation time for the present system, the new model
easily allows for correlation times of a few �d and thus to
perform the full integration of G�t�. With the chosen set of
parameters, we find � to be 1.5 Pa s, where Pearson et al.
measured �=2.09 Pa s.

The shear relaxation modulus G�t� describes the relax-
ation of stresses after a small step strain. It is plotted in Fig.
2 together with the simulation results of Padding and
Briels.24 Only the integral of this function has been fixed by
adjusting the model parameters � and 
e. It is therefore in-
teresting that the characteristics of G�t� are very similar with
both models. After an initial fast decay G�t� reaches a plateau
at �e=5�10−9 s in both cases. In the Twentanglement model
the plateau results from long lived entanglements between
different chains, while in the present one-particle model the
slowly decaying transient entanglement forces are respon-
sible. At times beyond 5�10−7 s, G�t� decays exponentially
with a characteristic time �d=0.8�10−6 s, which is only
one-half the characteristic time occurring in Eq. �6�. We
leave the precise relation between � and �d for future inves-
tigations.

The dashed line in Fig. 2 represents the results of a best
fit of G�t� with two exponentially decaying contributions.
The largest characteristic time of the two was not involved in
the fitting procedure, but fixed at the value of =0.8�10−6 s

FIG. 1. In �a� the structure factor is plotted, both for a system with �circles�
and a system without �full line� entanglements. In the limit of k→0 the
structure factor must be s�k ,0�=kBT�T=3.8�10−4, represented by the dot-
ted line. Measuring low k values in simulations is limited by the box size,
but for both systems the compressibility seems to be consistent with the
input value. In �b� the radial distribution function g�r� is plotted for both
systems. The overlap between the centers of mass of the polymers is large as
in a real melt. Both plots show that within a statistical error the structure is
not changed by the introduction of entanglements.

FIG. 2. The stress autocorrelation G�t� of the entangled system �full line�
compared with the results of the B40 system of the Twentanglement model of
Padding and Briels �Ref. 24� �dots�. The arrow indicates �e that they esti-
mated for this system. Two relaxation times are visible in both the entangled
system and the Twentanglement model in contrast to the unentangled sys-
tem. The broken line represents a fit consisting of two exponents.
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found above. It is interesting to note that at intermediate
times G�t� deviates substantially from the two exponent rep-
resentation. The reason for this is obviously the fact that the
motion of the centers of mass of the polymers and the relax-
ation of the entanglement forces are strongly coupled to each
other. In order to investigate this point further, we have plot-
ted in Fig. 3 the storage and loss modulus,

G���� = ��
0

�

sin��t�G�t�dt ,

�17�

G���� = ��
0

�

cos��t�G�t�dt .

These have been obtained by a direct Fourier transform on
the measured G�t�, where a exponential fit is used for the tail
of G�t� to lower the noise. Roughly speaking, G���� may
well be represented by the sum of two Maxwell peaks. At
intermediate values of �, however, i.e., in the valley between
the two maxima, G���� behaves rather differently from this
representation. On the basis of the dashed line in Fig. 3, we
argue that within statistical errors G���� is roughly propor-
tional to �−0.25. A link to contour length fluctuations and
constraint release �see Likhtman and McLeish30� is tempting.
Actually, although the number of particles within the range
of entanglement forces felt by a particular particle is large,
fluctuations of this number are still substantial, resulting in a
relaxation mechanism with some resemblance to contour
length fluctuations and constraint release. Obviously, here,
we just point at a striking resemblance in the data and do not
provide a compelling argument. For the latter additional
simulations with longer chains are needed.

Besides the shear relaxation modulus, a much studied
dynamic property of a polymer melt is the single chain dy-
namic structure factor,

S�k,t� =
1

NL
��

i

NL

�
j

NL

exp�ik · �ri�t� − r j�0���� , �18�

where NL is the number of scattering centers constituting the
chain and k is the scattering vector. It provides information
about the time evolution of the distribution of scattering cen-
ters. Roughly speaking, at small values of k= �k� only the
movements of the chains as a whole are measured. With
larger values of k, initially, the dynamics of the scattering
distribution inside the chain is measured, while at later times
also in this case mainly the diffusion of the chain as a whole
is measured. An example of a single chain dynamic scatter-
ing function, measured27 by means of a neutron-spin-echo
experiment, is shown in Fig. 4. At all but the very low k
values, S�k , t� quickly decays at early times and then settles
at a �very slowly decaying� plateau. At times beyond �e,
S�k , t� may be described by an expression first described by
DeGennes5 on the basis of the tube model, which in the
notation of Wischnewski et al. reads

S�k,t�
S�k,0�

= �1 − exp�− �kd/6�2��Sloc�k,t�

+ exp�− �kd/6�2�Sesc�k,t� . �19�

The functions Soc�k , t� and Sesc�k , t� may be found in Ref. 27.
The model parameter d is the so-called tube diameter. It is
obtained from experimental data by adjusting its value until
the difference between the theoretical and experimental data
is minimal.

Obviously, from our single particle model we cannot ob-
tain data related to the dynamics of the scattering distribution
inside the chain, i.e., inside the particle. This is clear from a
comparison of the experimental scattering functions and the
ones obtained from our simulations for the largest k value in
Fig. 4. �Note that the experimental system was slightly larger
and at a slightly higher temperature than the simulated sys-
tem. These two differences will have opposite effects on the
comparison of experiment and simulation, which will there-

FIG. 3. The storage and loss moduli, G���� �full line� and G���� �broken
line�. The two maxima in G� at �=106 and �=109 correspond to the en-
tanglement contribution �1/�d� and the faster decaying compressibility
contribution.

FIG. 4. The dynamic structure factor of the one-particle model, C800H1602 at
450 K �full lines� compared to the 12k system ��C850H1702� of Wischnewski
et al. �Ref. 27� at 509 K �circles�. The k values are from top to bottom: 0.3,
0.5, 0.77, and 1.15 nm−1. Their combined Rouse-reptation fit is also shown
�dotted lines�.
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fore partially cancel.� It is surprising, however, how similar
the experimental and simulation curves are and how well
they agree at the lower k values. It should be stressed, how-
ever, that the differences between the two at early times are
substantial. The dotted line in Fig. 4 represents the fit on the
experimental data by Wischnewski et al. using Eq. �19� with
d=5.3 nm. The qualitative agreement between the experi-
mental data and the fit is much better than the agreement
with our simulation results.

From the above discussion we infer that the early time
diffusion of our particles is probably unrealistically fast. To
investigate this point in more detail, we have plotted in Fig.
5 the mean square displacements of our particles,

g�t� = ��ri�t� − ri�0��2	 . �20�

It is evident from the comparison with the data of Padding
and Briels �the symbols� and their long time extrapolation
�the broken lines� that at the very early times our particles
move too fast and consequently slow down too fast. This is
inherent in the use of a Brownian propagator with relatively
small frictions. Only at times beyond 10−7 s, the mean square
displacements of the centers of mass of the polymers are
represented reasonably well by our model. Note that the error
made at earlier times in absolute value is very small and
therefore hardly noticeable in the plot of the S�q , t�.

D. Unentangled dynamics

To understand the importance of the entanglement forces
we investigate the same system as above, but now without

entanglements. Besides removing the entanglement contribu-
tions from the forces, we must also redefine the frictions,


i = 
0. �21�

This constant background friction is tuned to obtain the cor-
rect diffusion. Taking 
0=13 aJ/ns results in the mean square
displacements represented in Fig. 5 by the dashed line. As a
result of the simplicity of the model, this is a straight line at
all times, with a corresponding diffusion coefficient D=1.5
�10−12 m2/s. Since the friction in this case is adjusted to the
long time dynamics, the mean square displacements at early
times are much smaller than those of the entangled model,
having an average friction �
i	�3–5 aJ/ns.

Since the only free parameter in the present model, i.e.,
the simple Brownian dynamics model without entangle-
ments, has been adjusted to obtained the desired diffusion
coefficient, the viscosity cannot be set a priori and will be a
prediction of the model. Calculating the viscosity, we found
�=0.09 Pa s i.e., two orders of magnitude smaller than the
experimental value, which was well reproduced with the en-
tangled model. A closer look at the shear relaxation modulus
G�t� revealed that it decays according to a single exponent,
in marked contrast to the decay of G�t� in the entangled
model. Similarly, the unentangled S�k , t� differs qualitatively
and quantitatively from that in the entangled system.

The results in this section show that the introduction of
entanglements in a single particle description of a polymer
chain is necessary to qualitatively and quantitatively describe
the dynamics of a polymer melt. Since the presence of en-
tanglements does not influence the static properties of the
system, the latter may be reproduced by using the correct
potential of mean force. Here, we show that a very simple
version of MDPD is sufficiently accurate.

IV. TRANSIENT AND STEADY STATE SHEAR

A. Setup

An important feature of polymer melts is their strong
shear thinning behavior. From an industrial point of view, the
relevance of understanding shear thinning is enormous if
only because in molding processes the melt is subjected to
high shear rates. Substantial efforts have been made to de-
scribe and understand the underlying physical
elements.6,8,9,31 Since the tube theory of Doi and Edwards
overpredicts shear thinning, several additional relaxation
mechanisms, for example, CR and CCR �Ref. 7� have been
proposed. Similar relaxation mechanisms to these are opera-
tional in our very coarse model. While entanglement forces,
just like the tube, tend to conserve existing structures, fluc-
tuations of the environment and flow gradients give rise to
constraint release. To investigate these points a bit further we
now study transient and steady state effects after startup of
shear flow.

In order to simulate shear flow, a term,

u�ri�dt = ry,i�̇êx, �22�

must be added on the right hand side of Eq. �3�. Here, ry,i is
the y coordinate of ri and �̇ is the imposed shear rate. Ap-
propriate boundary conditions are the standard Lees-

FIG. 5. The mean square displacement g�t� of the system with �full line�
entanglements. The two dotted lines represent t1/2 and t1. The latter is ex-
actly equal to the results of the nonentangled system. Padding and Briels
estimated that at �d the diffusion would reach RG and become linear from
there on in time. Their Twentanglement results of both the C20 blobs and
their centers of mass are represented by the symbols and their long time
extrapolation by the broken line. The diffusion coefficient of the entangled
system, 1.5�10−12 m2/s, is close to the experimental value of Pearson,
1.6�10−12 �Ref. 23�.
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Edwards boundary conditions.32 We have tested the assump-
tion, inherent in the use of Eq. �22�, that the linear flow field
is the most stable flow field by performing a series of dupli-
cate runs with variable flow fields. In these runs u�ri�dt was
taken to be the average displacement of particles in a slab
with the y coordinate equal to ry,i. In all these tests, over a
wide range of values of �̇, the resulting flow field was linear.

B. Transient shear flow

To study the transient response of our model we inves-
tigated the time evolution of the viscosity ��t� and the first
normal stress difference �1�t� after the onset of shear flow in
a well equilibrated system at t=0,

��t� =
�xy�t�

�̇
, �23�

�1�t� =
�xx�t� − �yy�t�

�̇2 . �24�

Figure 6 shows the normalized transient viscosity ��t� /� for
six different values of �̇, both below and above �̇d

−1. For shear
rates below �d

−1 the stresses grow monotonously to their final
values. At higher shear rates overshoots appear, i.e., stresses
reach a maximum at some value of strain before dropping to
their final value. The overshoot and the strain at which this
occurs increase with increasing �̇, which is in agreement
with theories including CR/CCR and with
experiments.11,33,34 The maximum overshoots occur at strains
between 1.1 and 1.3, as can be seen in Fig. 7. These values
are somewhat smaller than the corresponding experimental
values, which are near strains equal to about 2. In Fig. 8 it is
shown that it is mainly the entanglement forces which are
responsible for the overshoots and that the contributions of
the compressibility forces to the stress are negligible.

In Fig. 9 we present the first normal stress difference
�1�t� for four values of �̇. Again, overshoots appear, but this

time somewhat weaker than those in the transient viscosity.
The relative overshoot for the largest �̇ studied is 2.5,
whereas the corresponding overshoot for ��t� was larger than
3. The strain at which �1�t� reaches its maximum is about
twice as large as the strain where ��t� reaches its maximum.
Finally, we notice that the shear rate needed to develop over-
shoots is somewhat larger in the case of first normal stress
differences than in the case of shear viscosities, as may be
inferred from comparing the cases with �̇=3�d

−1 in Figs. 6
and 9. All these findings are qualitatively in agreement with
those of previous simulations25 and with experiments and
theory.11,34

In the extended tube model, the existing tubes and chains
at time zero are stretched after the shearing motion has been
imposed. This leads to a substantial increase of stresses in
the system. At the same time stretched chains start to retract
in their deformed tubes, thereby lowering the stresses. In
case the characteristic time for retraction is small compared

FIG. 6. The transient viscosity for different shear rates as a function of time.
From top to bottom �̇ is 0.1�d

−1, 0.3�d
−1, 1�d

−1, 3�d
−1, 10�d

−1, 30�d
−1, and 100�d

−1.
The lower shear rates grow slowly to the final viscosity, while all shear rates
above �d

−1 show an overshoot that increases with increasing �̇. The strain at
which the overshoot takes place increases as well, in agreement with the
extended tube theories.

FIG. 7. The strain dependent overshoot in the transient viscosity for shear
rates above �d

−1. �̇=10�d
−1 is represented by the full line, 30 by the dotted

line, and 100 by the broken line. The increase in the strain at which the
maximum occurs is qualitatively in agreement with experiments and theory
�Ref. 34� but differs in value by a factor of 2. On this scale the increase in
the relative overshoot is also clearly visible.

FIG. 8. The contribution of the entanglements �full line� and of the com-
pressibility �broken line� to the total stress during the startup of shear as a
function of the applied strain. The shear rate is 102�d

−1.
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to 1 / �̇, deformation will gradually grow until the deforma-
tion rate and the rate of retraction are balanced. At this time
stresses have reached their maximum and final value. In the
opposite case the deformation of the chains and the develop-
ment of stresses will reach a maximum before chain retrac-
tion becomes effective and lowers the stress until the defor-
mation and retraction rate are balanced again and the stress
reaches its final value.

In our model of spherical particles the tube concept has
no meaning. Similar to the tube, however, our entanglement
forces tend to resist deformation of the current configuration.
After onset of shearing flow, therefore, the contribution of
the entanglement forces to the stress increases quickly. At the
same time the relaxation of the entanglement numbers to-
ward their equilibrium values tries to lower the stress. In case
the characteristic time � of this process is much smaller than
1/ �̇, the number of entanglements and corresponding stress
gradually grow until they reach their final values. In case � is
larger than 1/ �̇ the entanglement contribution to the stress
quickly grows until the flow has completely destroyed the
original configuration. After this time each particle must de-
velop entanglements with its new environment. The average
number of entanglements then depends on the relative values
of the characteristic time � and the time 1/ �̇ given to each
particle to develop entanglements. The corresponding aver-
age stress may well be smaller than the stress generated by
the equilibrium distribution of entanglement numbers in a
highly deformed structure. This then leads to a lowering of
the stress after a strain of about 1 has been reached, as found
in Figs. 6–9.

C. Steady state shear flow

In Fig. 10 we have plotted viscosities against shear rate.
Circles refer to simulations with an imposed background
flow as in Eq. �22�. Squares are obtained with a propagator in
which Eq. �22� has been replaced by the average displace-

ment �dri	 of all particles in the slab to which particle i
belongs. In the latter case, the flow has the freedom to shear
band. Within statistical errors, however, both methods give
the same results, indicating that no tendency for banding
exists. We have checked the latter by inspection of the flow
fields.

In the limit of small shear rates the viscosity approaches
1.5 Pa s, equal to the result obtained from the equilibrium
simulation discussed in the previous section. Beyond shear
rates of about 1 /� the system starts to shear thin, as might
also have been inferred from the stationary values of the
viscosities shown in Fig. 6. Shear thinning is as strong as
���̇−1. The reason for this behavior is not difficult to under-
stand. At low shear rates entanglement forces and potential
forces increase linearly with imposed deformation rates,
leading to shear rate independent viscosities. For shear rates
larger than about 1 /�, particles hardly have time to develop
entanglements with their neighbors before the flow has ad-
vected them to new environments. As a result, the contribu-
tion of entanglement forces to the stress becomes constant,
i.e., independent of shear rate. Since the entanglement forces
constitute the dominant contribution to the stress, the latter
becomes independent of �̇ as well and the viscosity becomes
proportional to �̇−1. Only after the contributions of the po-
tential forces to the stress have grown enough to outweigh
the contributions of the entanglement forces will the stress
start to increase again and the viscosity becomes constant.

In the literature, slopes of ln � vs ln �̇ in the shear thin-
ning regime have been reported in the range of −1 to
−0.5.35–43 Recent work of Vega et al.41 has shown that high
molecular weight monodisperse polyethylene melts shear
thin as ���̇−1. It seems reasonable to conclude that this
holds true for all monodisperse melts of very long chains.
Recent work of Teixeira et al. shows the slope of −1 in
heavily entangled DNA solutions as well.43 Polydispersity
and strong dilution of chains might lead to less pronounced
shear thinning curves, possibly due to the introduction of
new relaxation mechanisms or to unnoticed shear

FIG. 9. The strain dependent overshoot in the transient first normal stress
difference �1 for shear rates above �d

−1. �̇=3�d
−1 is represented by the gray

line, 10 by the full line, 30 by the dotted line, and 100 by the broken line.
The data for �̇=3�d

−1 are running averages to reduce the noise and increase
the readability of the graph. The overshoot starts at higher shear rates and is
located at roughly twice the strain of the maxima in the overshoots in the
viscosity �Fig. 7�.

FIG. 10. The flow curve, � vs �̇. The solid line is extracted from the
equilibrium simulation via the Cox-Merz rule �Eq. �25��; the circles �linear
background� and the squares �variable flow field� are measured in shear with
Eq. �23�.
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banding.44,45 Melts of shorter chains also have less pro-
nounced shear thinning probably because the relaxation
spectrum is not yet dominated by very long times. In our
model the spectrum of relaxations is more or less bimodal,
with the relaxation caused by potential forces at short times
and those caused by entanglement forces at long times. Al-
though being applied here to relative short chains, our results
therefore resemble those of long chains more than those of
short chains.

Figure 10 contains one more piece of information, which
we have not yet discussed. The drawn line in this figure has
been obtained by applying the Cox-Merz rule to the linear
data of the previous section. To be concrete, the drawn line
represents ��*��̇�� with

�*��� = �
0

�

exp�− i�t�G�t�dt . �25�

Just like with experimental polymer melts, it is seen that with
our model the Cox-Merz rule holds true very well.

Finally, in Fig. 11, we have plotted radial distribution
functions for various sheared systems. It is seen that with
increasing shear rate, the correlation hole near r=0 becomes
more and more pronounced. The origin of this behavior is to
be found in the entanglement forces. For shear rates larger
than 1/�, a pair of particles hardly develop entanglements
before the flow has separated them again. This leads to
strong repulsive forces pushing the particles to larger dis-
tances along the gradient direction.

V. CONCLUSIONS AND DISCUSSION

Given the complexity of continuous descriptions of
polymer melts in flow in complex geometries, using realistic
rheological constitutive equations, we have thought it worth-
while to derive a particle based coarse grain model of poly-
mer melts in which each polymer chain is represented as just
one particle. With this model, we have been able to qualita-
tively, and to a large extent quantitatively, reproduce the
static as well as the dynamic properties of a typical polymer
melt.

Coarse graining static and thermodynamic properties of
polymer melts, and soft matter in general, invariably leads to
soft interactions governed by soft potentials of mean force.
Every dynamic model based on such a potential and ignoring
memory effects is deemed to produce large viscosities com-
bined with small diffusion coefficients or small viscosities
with large diffusion coefficients. It will be impossible with
such a model to reproduce large viscosities combined with
large diffusion coefficients, which is typical for polymer
melts. Here, we have chosen to refrain from using hard po-
tentials, derived from a realistic representation of the free
energy, and to incorporate memory into the model by intro-
ducing a restricted set of parameters describing the deviation
from the equilibrium of the ignored coordinates. The dynam-
ics of these new parameters have been devised such that they
do not influence the static or thermodynamic properties of
the system as a whole. The new degrees of freedom that we
have introduced are the numbers of entanglements nij for
each pair of chains i and j. The fluctuations of these numbers
around their equilibrium values give rise to additional elastic
forces, which are responsible for most of the rheological
properties of our model.

We have applied our model to a polyethylene melt of
C800H1602 molecules. Our findings may be summarized as
follows.

• It is possible to have an almost ideal gaslike structure
for the centers of mass of the polymers, and still repro-
duce the right compressibility.

• It is possible to tune the two parameters in our model
such as to reproduce large viscosities combined with
large diffusion coefficients.

• The single particle dynamic scattering function S�q , t�
may be reproduced qualitatively and, to some extent,
quantitatively as well.

• The shear relaxation modulus G�t� may be reproduced
qualitatively and, to a good extent, quantitatively as
well; the corresponding G���� and G���� show several
features which are characteristic of polymer melts and
which are usually explained in terms of tube concepts;
additional simulations with much longer chains are
needed before any claims can be laid with respect to the
interpretation of the details of these functions.

• Startup effects after the onset of shear flow are in good
agreement with experiments.

• Flow curves with strong shear thinning are reproduced;
no tendency to shear banding is observed.

Of course, it is not be expected that a model as coarse as
the one presented in this paper can quantitatively reproduce
all features of a polymer melt. It is pleasing, however, that
our model so far never failed to be in qualitative agreement
with experiments. We think that it is possible to increase
quantitative agreement a bit by decorating the model with
additional features. For example, by introducing the possibil-
ity for the molecules to deform under entanglement forces, it

FIG. 11. The g�r� as a function of �̇. Expressed in �d
−1, the shear rates are

10−2 �full line�, 10−1 �circles�, 100 �squares�, 101 �diamonds�, and 102

�triangles�.
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should be easy to make overshoots after the onset of shear
occur at a strain of about 2 instead of 1, as with the present
model.

This model can play an important role in particle based
simulations that require viscoelastic properties of a system.
In simulations of viscoelastic phase separation the model
might be used to study effects such as phase inversion. In the
field of colloid simulations the large time step is very wel-
come. Colloids dissolved in a viscoelastic medium cannot be
simulated with traditional particle based simulation methods
due to the large separation of time and length scales of the
colloids compared to atoms or chain segments. The high
level of coarse graining of the proposed model overcomes
these problems while conserving the most important melt
properties. We will use this model in future work to investi-
gate diblock copolymers in shear flow.
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APPENDIX A: DERIVATION OF THE
INCOMPRESSIBILITY FORCE

To derive a conservative force that incorporates the cor-
rect compressibility, we take the free energy Ac to be a sum
of the free energy per particle a, each being a function of a
local density i,

Ac�� = �
i=1

N

ac�i� = �
i=1

N

ac� + �i�

= �
i=1

N

ac�� + �
i=1

N

ac����i +
1

2�
i=1

N

ac����i
2

+ ¯ , �A1�

where �i is the local deviation from the global density 
=N /V and primes denote derivatives with respect to . From
thermodynamics we have

ac��� =
P

2

�A2�

ac��� =
1

3 1

�T
− 2P� ,

where P is the pressure and �T the isothermal compressibil-
ity. The local density around each particle is defined as a sum
of normalized weight functions ��rij� of the neighboring par-
ticles j,

i = �
j

��rij� ,

�A3�
�i = �

j

��rij� −  .

The resulting force on particle i can now be expressed in
terms of the positions of the surrounding particles,

Fi = − �iAc�� = −
P

2�i�
j=1

N

�
k=1

N

��rjk�

− �
j=1

N
1

3 1

�T
− 2P�� j�i�

k=1

N

��rjk�

= −
2P

2 �
j=1

N

�i��rij� −
1

3 1

�T
− 2P�

��
j=1

N

� j�i��rij�

−
1

3 1

�T
− 2P��

j=1

N

�i�i��rij�

=
2P

3 �
j=1

N

�� j + �i − ��i��rij�

−
1

3�T
�
j=1

N

�� j + �i��i��rij� . �A4�

Although the force is derived from a multibody ap-
proach, the outcome is a pairwise force, which is a pleasant
side effect to reduce simulation time. The first term in the
last line of Eq. �A4� is negligible compared to the second
since 2P �105 Pa� is orders of magnitude smaller than �T

−1

�109 Pa�. Thus, we implemented

Fi = −
1

3�T
�
j=1

N

�� j + �i��i��rij� = − �i� 1

23�T
�

j

� j
2
 .
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