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We analyze the global transport properties of turbulent Taylor-Couette flow in the strongly turbulent

regime for independently rotating outer and inner cylinders, reaching Reynolds numbers of the inner and

outer cylinders of Rei ¼ 2� 106 and Reo ¼ �1:4� 106, respectively. For all Rei, Reo, the dimensionless

torqueG scales as a function of the Taylor number Ta (which is proportional to the square of the difference

between the angular velocities of the inner and outer cylinders) with a universal effective scaling law

G / Ta0:88, corresponding to Nu! / Ta0:38 for the Nusselt number characterizing the angular velocity

transport between the inner and outer cylinders. The exponent 0.38 corresponds to the ultimate regime

scaling for the analogous Rayleigh-Bénard system. The transport is most efficient for the counterrotating

case along the diagonal in phase space with !o � �0:4!i.
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Global transport properties of turbulent flows are of
prime importance for many applications of fluid dynamics,
but also for a fundamental understanding, as they reflect
the interplay between the boundary layer and the bulk. The
two canonical systems used to analyze the transport prop-
erties in closed turbulent systems are Rayleigh-Bénard
(RB) convection and Taylor-Couette (TC) flow, and they
are conceptually closely related [1–3]. In RB flow, heat (in
dimensionless form, the Nusselt number) is transported
from the hot bottom plate to the cold top plate [4,5],
whereas in TC flow angular velocity is transported from
the inner to the outer cylinder (for !i > !o). In analogy to
RB flow, Eckhardt et al. [3] identified, from the underlying
Navier-Stokes equations,

J! ¼ r3ðhur!iA;t � �@rh!iA;tÞ; (1)

as a relevant conserved transport quantity, representing the
flux of angular velocity from the inner to the outer cylinder.
Here urðu�Þ is the radial (azimuthal) velocity, ! ¼ u�=r

the angular velocity, and h. . .iA;t characterizes averaging

over time and an area with constant r from the axis. J!

is made dimensionless with its value J!lam¼2�r2i r
2
oð!i�

!oÞ=ðr2o�r2i Þ for the laminar case, giving a ‘‘Nusselt num-
ber’’ as a dimensionless transport quantity,

Nu ! ¼ J!=J!lam; (2)

where ri;o and !i;o denote the radius and the angular

velocity of the inner and outer cylinders, respectively,
and � is the kinematic viscosity of the fluid. Nu! is closely
connected to the torque � that is necessary to keep the inner
cylinder rotating at a constant angular velocity or, in di-
mensionless form, to

G ¼ �

2�‘�fluid�
2
¼ Nu!

J!lam
�2

¼ Nu!Glam; (3)

where ‘ is the height of the cylinder and �fluid the density
of the fluid. Yet another often used possibility to represent
the data is the friction coefficient cf¼½ð1��Þ2=��G=
Re2i [6].
For RB flow, the scaling properties of the Nusselt number

in the fully turbulent regime (i.e., for very large Rayleigh
numbers, say Ra � 1010) have received tremendous atten-
tion in the last decade and various heat flux measurements
have been performed; again, see the review article [4]. In
contrast, TC flow in the fully turbulent regime has received
much less attention, with the only exception being the Texas
experiment by Swinney, Lathrop, and co-workers [6–9]. In
that experiment a Reynolds number Rei ¼ 106 of the inner
cylinder was reached (with the outer cylinder at rest) and an
effective power law of G / Re�i with � � 1:6–1:86 was
detected [6,7] in the turbulent regime, though the scaling
properties are not particularly good and, strictly speaking,�
depends on Rei; i.e., there is no pure scaling. Indeed, in
Refs. [3,10,11] we have argued that there should be a
smooth transition from � ¼ 3=2 for the small Reynolds
number of a boundary layer dominated flow to � ¼ 2
for the larger Reynolds number of a flow dominated by
the turbulent bulk. Turbulent TC experiments get evenmore
scarce for TC flow with inner and outer cylinders rotating
independently.We are only aware of theWendt experiments
in the 1930s [12], reaching Rei � 105 and Reo � �105

and the recent ones by Ravelet et al. [14], reaching Rei �
5� 104 andReo ¼ �2� 104. The hitherto explored phase
diagram of TC flowwith independently rotating cylinders is
shown in Fig. 1(a). An alternative representation of the
phase diagram is given by Dubrulle et al. [15], who intro-
duce a shear Reynolds number and a rotation number as an
alternative representation of the phase space (see below).
In the phase diagram [Fig. 1(a)] we have also added

the Rei, Reo numbers that we explored at our newly
constructed Twente turbulent TC facility (T3C), which
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we have described in great detail in Ref. [16]. In short, at
this facility the cylinders are ‘ ¼ 0:97 m high; the inner
cylinder has a radius of ri ¼ 20 cm, the outer cylinder has
a radius of ro ¼ 27:9 cm, and the maximal inner and outer
angular velocities are !i=2� ¼ 20 Hz and !o=2� ¼
�10 Hz, respectively, corresponding to Rei ¼ ri!id=
� ¼ 2� 106 and Reo ¼ ro!od=� ¼ �1:4� 106, with
d ¼ ro � ri. The system is fully temperature controlled
through cooling of the upper and lower plates. The torque
is measured at the middle part of the inner cylinder (similar
to [7]) by load cells imbedded inside the inner cylinder and
not by measuring the torque through the seals. One of the
goals we want to achieve with this new facility is to explore
the (Rei, Reo, � ¼ ri=ro) parameter space, thus entering

terra incognita, and measure the torque [i.e., transport of
the angular velocity (Nu! in dimensionless form) or, again
expressed differently, the overall drag) and the internal
Reynolds number of the flow.
In this Letter we will focus on the required torque for

fully developed turbulent flow (Rei, Reo > 105), where
� ¼ 0:716 with independently rotating inner and outer
cylinders, which hitherto has not been explored. The ex-
amined parameter space in this Letter is shown in the space
of (Rei, Reo) in Fig. 1(b), (Ta, a) in Fig. 1(c), and (Ta, R�)
in Fig. 1(d), to be explained below. We will not address the
question of whether pure scaling laws exist: First, the
explored Reynolds number range is too short to answer
this question, and second, the earlier work [3,6–8,10,11]

FIG. 1 (color online). (a) Explored phase space (Reo, Rei) of TC flow with independently rotating inner and outer cylinders. To the
right of the horizontal axis the cylinders are corotating, to the left of it they are counterrotating, and a log-log representation has been
chosen. Experimental data by Wendt [12] (pluses), Taylor [21] (left triangles), Smith and Townsend [22] (open circles), Andereck et al.
[23] (grey box), Tong et al. [13] (upward triangles), Lathrop et al. [6] (stars), Ravelet et al. [14] (hexagrams), Borrero-Echeverry et al.
[24] (upward solid triangles), and simulations by Pirro and Quadrio [25] (solid squares), Bilson and Bremhorst [26] (downward solid
triangles), and Dong [27,28] (solid circles). The dashed lines are Esser and Grossmann’s [29] estimate for the onset of turbulence with
� ¼ 0:71. The many data points in the small Reynolds number regime of pattern formation and spatial temporal chaos (see e.g.
[23,30,31]) have not been included in this phase diagram. Our data points for this publication are the black diamonds. (b) Our data
points in the phase diagram on a linear scale. (c) Our data points in the phase space (Ta, a); note that Ta also depends on a. (d) Our data
points in the phase space (Ta, R�) [see Eq. (7)].
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gives overwhelming experimental and theoretical evidence
that there are no pure scaling laws, even up to Reynolds
numbers of 106. So all scaling exponents in this Letter have
to be read as effective scaling laws.

Our results for the counterrotating case for the dimen-
sionless torque G as a function of Rei for fixed Reo are
shown in Fig. 2. One immediately sees that counterrotation
enhances the torque (and thus the overall drag), but that for
general Reo � 0 the effective power law G / Re1:76i , that
holds in the case of inner cylinder rotating only, gets lost; in
fact, there is no effective power law at all.

How can we represent the data to better reveal the
transport properties of the system? The analysis of
Eckhardt et al. [3] and the analogy of the TC system to
the RB system suggest to plot Nu! as a function of the
Taylor number

Ta ¼ 1
4�d

2ðri þ roÞ2ð!i �!oÞ2��2; (4)

where � ¼ f½ð1þ �Þ=2�= ffiffiffiffi

�
p g4, i.e., along the diagonals

!o ¼ �a!i (5)

in the parameter space [17], Fig. 1(b). Indeed, Eckhardt
et al. [3] derived, from the underlying Navier-Stokes equa-
tion, the exact relation

	w ¼ 	� 	lam ¼ �3d�4��2TaðNu! � 1Þ (6)

for the excess kinetic energy dissipation rate 	w [i.e., the
total kinetic energy dissipation rate 	 minus the kinetic
energy dissipation rate in the laminar case 	lam ¼
4�r2i r

2
oðri þ roÞ�2d�2ð!i �!oÞ2]. In Eq. (6) � can be

interpreted as a (geometric) Prandtl number, and Ta and
Nu! are the exact TC analogs to the Rayleigh and Nusselt
numbers in RB flow. Along the diagonal, Eq. (5), in pa-
rameter space, one has Ta¼ 1

4�d
2ðriþroÞ2ð1þaÞ2!2

i �
�2,

and the well-studied [4] effective scaling lawNu / Ra~� for
RB flow (with ~� � 0:31 [4,18]) would now correspond to
an effective scaling law Nu! / Ta� for TC flow.

Nu! vs Ta is shown in Fig. 3(a) for various a, i.e., along
various straight lines through the origin of the parameter
space, Fig. 1(b). A universal, i.e. a-independent, effective
scaling Nu! / Ta� with � � 0:38 is clearly revealed. This
corresponds to a scaling of G / Re1:76i for the dimension-
less torque along the straight lines, Eq. (5), in the para-
meter space, Fig. 1, to cf / Re�0:24

i for the drag coefficient,

and to G / Ta0:88. The compensated plots Nu!=Ta
0:38 in

Fig. 3(b) demonstrate the quality of the effective scaling
and, in addition, show the a dependence of the prefactor of
the scaling law.
The a dependence of the prefactor Nu!=Ta

0:38 is plotted
in Fig. 4. It shows a pronounced maximum around a ¼ 0:4,
i.e., for the moderately counterrotating case, signaling the
most efficient angular velocity transport from the inner to
the outer cylinder at that value. We mention that it is
obvious that this curve has a maximum, as in both limiting
cases a ! �1 (rotating of the outer cylinder only) the
flow is laminar and Nu! ¼ 1, but it is interesting to note
that the maximum does not occur for the most pronounced
counterrotating case !o ¼ �!i (or a ¼ 1). Compared to
the case of pure inner cylinder rotation (a ¼ 0), at a ¼ 0:4
the angular velocity transport from the inner to the outer
cylinder is enhanced by more than 20%.
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FIG. 2 (color online). The dimensionless torque GðReiÞ for
counterrotating TC flow for four different fixed values of Reo ¼
�1:4� 106, �0:8� 106,�0:4� 106, and 0 (top to bottom data
sets); see inset for the probed area of the parameter space.
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FIG. 3 (color online). (a) Nu! vs Ta for various a; see Fig. 1(b)
for the location of the data in parameter space. A universal
effective scaling Nu! / Ta0:38 is revealed. The compensated
plots Nu!=Ta

0:38 in (b) show the quality of the effective scaling
and the a-dependent prefactor of the scaling law.
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The parameter a ¼ �!o=!i is connected to the so-
called rotation number

R� ¼ ð1� �ÞðRei þ ReoÞ=ð�Reo � ReiÞ (7)

introduced by Dubrulle et al. [15] and used by Ravelet
et al. [14], namely, R� ¼ ð1� �Þ��1ða� �Þðaþ 1Þ�1.
We also plot our data points in the phase space of (Ta, R�),
as shown in Fig. 1(d). The optimal value a � 0:4we found
for the transport properties of the system corresponds to
R� � �0:09. In this Letter we prefer a as compared to R�,
as the sign of a immediately signals whether the system is
corotating or counterrotating.

In conclusion, we have explored the terra incognita
of fully developed turbulent TC flow with independently
rotating inner and outer cylinders, beyond Reynolds
numbers of 106, finding a universal effective scaling law
G / Ta0:88, corresponding to Nu! / Ta0:38, for all (fixed)
a ¼ �!o=!i, with optimal transport quantities at a � 0:4.
It is remarkable that the effective scaling exponent 0.38
exactly resembles the analogous effective scaling exponent
in Nu / Ra0:38 in RB convection in the ultimate regime of
thermal convection [19,20], reflecting the analogy between
TC and RB flow also in the strongly turbulent regime.

The next steps will be to further extend the parameter
space, Fig. 1, towards further radius ratios � to see whether
the observed universality carries on towards an even larger
parameter range, and to also measure the Taylor-Reynolds
number and the wind Reynolds numbers of the internal
flow, which are closely connected to Nu! and for which
theoretical predictions exist [3]. With such measurements
and characterizations of the flow structures, we will also be
able to check whether these are reflected in the overall
transport properties.
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stimulating discussions about TC flow over the years,
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Note added in proof.—After submission of our Letter,

Dan Lathrop made us aware of the parallel work [32],
independently confirming the peak in the dimensionless
torque as a function of a.
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FIG. 4 (color online). Prefactor of the effective scaling law
Nu! / Ta0:38 (shown in Fig. 3) as a function of a ¼ �!o=!i.
The inset shows the effective exponents � which results from an
individual fit of the scaling law Nu! / Ta�.
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