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On Bias in Linear Observed-Score Equating

CommentariesCommentaries Wim J. van der Linden
CTB/McGraw-Hill

The traditional way of equating the scores on a new test form X to those on an old form Y is
equipercentile equating for a population of examinees. Because the population is likely to change
between the two administrations, a popular approach is to equate for a synthetic population.
The authors of the articles in this issue of the journal try to avoid the arbitrariness in the defini-
tion of a synthetic population by equating X to Y for the population G1 that takes the new form.
Let FX(x) be the distribution function of the scores on X for this population of examinees and
FY(y), the corresponding function of the scores on Y. Ignoring possible irregularities in the dis-
tributions, the equipercentile transformation can be written as

Linear equating is an approximation to this transformation based on the first two moments of
the two observed-score distributions. One reason for its popularity is that the restriction to these
moments reduces the need for large samples and, thus, avoids the typical issues of instability
and choice of smoothing method involved in the use of (1). Continuing the authors’ notation, let
μ(X) and μ(Y) be the population means for the two forms and s(X) and s(Y) the two standard
deviations. The version of (1) that follows from the restriction is

I have been happy to notice the authors’ attention to the topic of bias in linear equating. The
equating literature has been dominated by an interest in the standard error of equating, but bias is
the primary criterion for evaluating the success of an equating. After all, equating is an attempt
to remove the bias in the score on the new test form as an estimate of the score on the old form
due to scale differences between them. A focus only on the standard error of equating prevents
one from noticing any remaining bias in the equated scores, or even possible new bias added to
them in the equating process. The purpose of this commentary is to discuss a little further the
issue of bias in linear equating.

Two other equating issues for which the authors justly ask attention in the discussion sections
of their articles are the necessity to specify a synthetic population and the negligence of the
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impact of measurement error on the traditional regression assumptions in linear equating. The
discussion of these issues is postponed until the end of this commentary, but I already notice that
both are directly related to the presence of bias in observed-score equating.

THE AUTHORS’ DEFINITION OF EQUATING BIAS

The authors’ definition of equating bias is motivated by the database used in their empirical
study. Forms X and Y as well as the examinees in the study were sampled from an initial pool of
test items and examinees from the Multistate Bar Examination. In the reference condition, the
two groups of examinees for the two forms were randomly sampled for equivalence. As the
actually observed scores of the two groups on both test forms were available, the means and
standard deviations in the linear transformation in (2) for this condition were known. The
authors used this transformation as their baseline in evaluating the equating results for all the
NEAT designs in their study.

More specifically, let xi be the score on form X and f (xi) its observed frequency in the equating
study for the group that took X (the authors’ choice of synthetic population). In addition, let 
be the transformation for an equating with a NEAT design that is to be evaluated. Bias was
defined as the average difference between  and the criterion IY (x). In formula

(Suh, Mroch, Kane, & Ripkey, 2009, p. 155, Eq. 2)

A FEW TECHNICAL COMMENTS

Generally, bias in equating should be conceived of as a difference between two functions: the
function of x that is actually used to perform the equating and the one that should have been used.
So, bias itself is also a function of x. The averaging over the score distribution on X in (3) may
obscure the nature of this bias function in two different ways: First, the weighing confounds the
size of the bias with the numbers of students incurring it. Second, because bias can be positive
(equated scores too high) or negative (equated scores too low), the authors’ definition of bias
allows the two types to compensate. In principle, the expression in (3) can be close to zero, whereas
the underlying bias function may display bias at nearly every score along the range of scores on X.

Secondly, as already indicated, linear equating derives its popularity from the statistical
stability of the equating that is obtained by its restriction to the first two moments of the distribu-
tions on X and Y. However, the ignoring of the higher-order moments of the distributions comes
generally at a price in the form of bias. In fact, the price is not different from that paid for the
stability of an equating that results from the usual presmoothing of the two distributions or
postsmoothing of the equating transformation. All are examples of the well-known bias-accuracy
trade-off that can be met throughout statistics. The expression in (3) misses this source of bias.
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A measure that would have captured the source is the difference between the actual equating
function  and the equipercentile function in (1), that is,

The authors used linear correlation between the scores on X and Y to check the assumption of
distributions of X and Y differing only in location and scale and found correlations between .77
and .79 across all conditions in their study (Suh, Mroch, Kane, & Ripkey, 2009, p. 155). For per-
fectly reliable scores, the correlation needs to be equal to 1.0 to satisfy the assumption. My guess
is that after correction for attenuation their correlations would still suggest imperfect linearity.
The larger the deviation from perfection, the larger the bias in the equated scores due to the
assumed linear shape of the equating function.

The next comment is on the use of an equating function for a randomly equivalent group as a
criterion for evaluating equating in a NEAT design. Unlike randomly equivalent–group designs,
NEAT designs, not only have different items in the two test forms, but the two groups that take
them also differ in their ability distributions. Hence, equating transformations for this type of
design should adjust both for the differences between the items and the abilities. It is difficult to
see why such transformations should be evaluated against one that adjusts only for the differ-
ences between the items. In fact, the better a NEAT transformation adjusts for the differences
between the abilities, the worse its evaluation against the transformation for a randomly equiva-
lent–group design. It does not seem right to penalize an equating transformation for a job it is
supposed to do.

The question remains, what other criterion could the authors have used to evaluate bias in
test-score equating.

A MORE FUNDAMENTAL COMMENT

A suggestion that immediately comes to mind is to use the actual observed score on the old test
form, yi, as a criterion, that is,  for each examinee. After all, the authors had these
scores in their database.

The reason why this suggestion has not been followed is obvious. Figure 1 shows the distri-
bution of the actual observed scores on an old test form Y given an observed score X = 10, 20,
30, and 40 on the new form. (The forms in this figure are not those used by the authors but are
from another large-scale testing program, with the test length randomly reduced to the same
length of 50 items.) Notice that although in each histogram the scores are for examinees with the
same score on X, their scores on Y differ widely. This type of figure is seldom displayed in the
equating literature because it reveals an embarrassing fact: The goal of observed-score equating
is to make the scores of examinees on a new test form indistinguishable from the scores on an
old form. But how could the goal ever be realized when examinees with the same score on the
new form differ as widely in their actual scores on the old form as they do in Figure 1?

The reason for these wide ranges of actual scores is, of course, measurement error. In spite of
its frequent references to test-score reliability (the authors have several sections in their articles
where reliability is one of the key concepts), the linear equating literature typically ignores the
simple fact that the observed scores of individual examinees have an error component. Instead,
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these scores are pooled into a population distribution for each of the two groups in the equating
study, whereupon the two distributions are redefined as distributions for a synthetic population,
from which a single equating transformation for all examinees is derived. This pooling and
synthesizing of observed scores for individual examinees, along with the derivation of a single
transformation, may be the most serious source of bias in traditional score equating.

The problem has been analyzed extensively by this commentator, for instance, in van der
Linden (2000, 2006). A more recent review of the problem from the perspective of the chapter
on equating in Lord’s (1980) well-known monograph is given in van der Linden (2010).

One way of formulating the problem is to note that traditional equating does not treat the
observed scores of an individual examinee as a realization of a random variable—a basic
assumption that underlies any model in test theory. Likewise, all of test theory assumes that
the distribution of this variable depends on the ability of the examinee that is tested (as well as
the properties of the test items). If traditional observed-score equating had been developed
from these two fundamental assumptions, it would have treated score equating as the problem
of finding the transformation that makes the random observed score of an examinee at a given
ability level on the new test form indistinguishable from the random score on the old form.

FIGURE 1 Conditional distributions of the observed scores on old form
Y given the scores on new form X = 10, 20, 30, and 40.
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This is precisely what Lord (1980, chap. 13) asked for when he introduced the criterion of
equity of equating.

A moment’s reflection shows that the goal could be realized if we knew the distributions of
the observed scores on the two forms at the examinees’ ability levels and applied the transformation
in (1) at the level of each examinee: Let θ denote the ability of a given examinee. The unknown
distributions of the observed scores on the two test forms by the examinee are the distributions
of X and Y given θ. The two distributions are made indistinguishable by the transformation

The fact that this is “equipercentile equating at the level of the score distributions given q”
should not come as a surprise. What is known as the equipercentile transformation in traditional
equating is just an instance of the Q-Q transformation used in statistics used as a general tool to
equate any two distributions (e.g., Wilk & Gnanadesikan, 1968).

The analysis reveals an inherent source of bias in any traditional form of observed-score
equating: Instead of using a different appropriate transformation for each ability level, tradi-
tional equating uses a common transformation derived from some synthetic population. This
common transformation necessarily compromises between the different transformations
required for each ability level and, in doing so, biases each equated score. The commentator’s
proposal of local equating as an alternative to traditional equating (e.g., van der Linden 2010)
minimizes the bias by approximating (5) as closely as possible for each individual examinee
given all information available in the equating study. If the two forms fit a response model, an
excellent approximation is to substitute a statistical estimate of θ into (5) for each examinee. The
result is a third type of IRT observed-score equating, which is much less biased than the two
earlier types suggested in Lord (1980, chap. 13). In two recent studies of local equating for the
NEAT design, we explored the use of the anchor score as a proxy for the unknown ability (van
der Linden & Wiberg, 2010; Wiberg & van der Linden, submitted). These studies show consid-
erable bias for the traditional equating methods for this type of design but generally less bias for
local equating, especially with increasing length of the anchor test. A more general review of the
first attempts at local equating is given in van der Linden (2010).

FINAL COMMENTS

It is clear that the authors are unhappy with the need to specify weights for a synthetic population in
the linear equating methods for which they reserve the collective name of parameter substitution
methods (e.g., Kane, Mroch, Suh, & Ripkey, 2009, p. 129; Mroch, Suh, Kane, & Ripkey, 2009, pp.
174–178). Without much motivation, their choice is full weight for the population that takes the new
form and no weight for the old population. However, the above analysis shows that the heavy reli-
ance on population distributions in traditional equating, not only entails the need of such arbitrary
choices, but is at the very heart of a serious bias problem. Because its equating transformations are
derived for a population, the equated score of each individual examinee is compromised by those of
all other examinees in the assumed population. Bias due to this compromise is much more embar-
rassing than the arbitrary choice of weights for old and new populations. But it may be reduced con-
siderably by equating as closely as possible at the level of the individual abilities of the examinees.

j q q q( ; ) ( )).|x F F xY X= −
|
1 (5)



26 COMMENTARIES

The authors are entirely correct in their reference to the literature on errors in regression
variables as relevant to the improvement of the current methods of observed-score equating.
Basically, this literature shows that ignoring measurement error in the variables on which we
regress leads to bias in the estimated regression function.

The authors use the literature to motivate their choice between equating methods based on the
regression of X on the anchor score V and the other way around (Mroch, Suh, Kane, & Ripkey,
2009, Appendix A). Their goal seems to get a regression equation as close as possible to the
true-score relationship between these two scores. However, the goal of observed-score equating
is not to equate true scores. The attempt should be, therefore, not to get rid of measurement
error, but, just as in this error-in-variable literature, to acknowledge its existence and account for
it when equating observed scores.
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