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Abstract: Constrained cognitive abilities cause imperfections in drivers’ choice behaviour and appear largely systematic and
predictable. This study introduces the concept of ‘effective control space’ to build upon this knowledge as an opportunity to
increase the effectiveness of Dynamic Traffic Management (DTM). Within the control space boundaries it is assumed that
drivers do not act upon the effects of DTM measures, they behave as being indifferent to them. This study debates that:
(i) drivers’ ability to detect changes in attributes of their trip or the performance of a traffic system is limited, (ii) drivers
make mistakes in estimating the value of such changes and (iii) drivers apply a great diversity of choice patterns but do not
necessary adapt their choice. Hence, for some DTM measures to be effective effects should not exceed the control space
boundaries, whereas other DTM measures need to give drivers an incentive that exceeds these boundaries. Knowledge on the
effective control space may support road authorities to operationalise their measures most effectively. With the theories of
indifference bands and decision-making as starting point a theoretical and conceptual framework are provided, supported by a
numerical example to demonstrate how application can steer a system towards its optimal state.
1 Introduction

The effectiveness of Intelligent Transportation Systems and
Dynamic Traffic Management (DTM) in particular is
largely dependent on drivers’ response to the effects of
them [1]. Much research has been devoted to choice
modelling, driver compliance and the influence of
information, for reviews see [2–6]. In this paper, we take a
fundamentally different approach. We aim to structure
behavioural factors relevant for drivers’ response in a
general framework and converge to a new control variable
for DTM. Although it appears that most research focussed
on intrinsic choice behaviour (i.e. elementary route choice
based on the characteristics of multiple choice alternatives),
we examine drivers’ response when the characteristics of
the choice alternatives (slightly) change because of DTM.
Moreover, we assume that drivers do not receive any
information, therefore act on their senses and own
experiences alone. Besides, as it seems that the final station
of the majority of research is some form of modelling, we
choose a more practice-oriented perspective and study the
implications of drivers’ response for the design of DTM.
Whenever we refer to DTM we refer to systems that
influence the network performance in terms of travel times,
delay times, traffic density, average speed etc. such as route
guidance and traffic lights. With driver response we mean
second order effects that result in changes in route choice
(e.g. rat run), departure time, mode choice, driving
behaviour (e.g. red light violation) etc. Note that first order
changes are the intrinsic responses that cause the effect on
the network in reaction to the measure itself.
One important topic in traffic modelling is the

predictability of choice behaviour and behavioural response.
Traffic models combine demand (i.e. drivers’ trips and
travel choice behaviour) and supply (i.e. infrastructure and
DTM) and determine the performance of the transportation
system by means of traffic assignment [7]. It seems that
often these models assume a fixed supply and an elastic
demand which anticipates to changes in the system
performance. However, to include driver response the
question is how demand alters when DTM change supply?
Many assumptions in conventional traffic modelling have
been derived from standard economics, for example that
drivers are rational decision makers and above all perfectly
informed about the available choice alternatives [8, 9].
Moreover, that they can calculate the value of the different
options available, that they are able to derive the optimal
choice, and that they are cognitively unhindered in
weighting the implications of each potential choice. In other
words, people presumably make logical and sensible
decisions and quickly adopt their choice to changing
conditions.
These are debatable assumptions. In reality, people have

limited knowledge and constrained cognitive abilities
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leading to prejudiced reasoning and certain randomness in
behaviour and choice outcomes [8, 10]. It is not just the
behaviour (i.e. choice outcome) that is of interest, but also
the decision-making process behind such behaviour.
Behavioural economics draw on the aspects of both
(cognitive) psychology and economics, and studies the
motives and behaviours that explain deviations from
rational behaviour [11, 12]. This perspective of individual
decision-making is known as bounded rationality or
satisfying behaviour [13, 14], and also found its way into
transportation research (e.g. [15–17]). Another recently
adopted theory derived from behavioural economics and
relevant in the context of this paper is prospect theory. It is
based on the principle that decisions are context-dependent
and alternatives are framed in terms of gains and losses
relative to some common reference point, while losses
weigh much more than gains of equivalent size [18–20].
Although in some cases, like random utility theory
modelling, a random variable or error term is considered to
somehow weaken the assumptions of perfect rationality,
many models fall short in explicitly considering the
predictable imperfections in drivers’ choice behaviour. The
development of better descriptive models of choice
behaviour and empirical validation of theories derived from
behavioural economics is on-going [10, 12, 21]. The aim of
this paper is to structure already available evidence and
make inferences of possible application for DTM. Several
of the aforementioned references provide examples of
models incorporating boundedly rational behaviour.
The next section introduces the general framework,

followed by an overview of the theoretical background
based on literature review. Next, a numerical example is
presented to illustrate the principle of effective control
space and its benefits. The last section of this paper
concludes and presents planned future research.

2 Theoretical framework

A used and validated bounded rationality mechanism is the
notion of indifference bands. That is, drivers will only alter
their choice when a change in the transportation system
or their trip, for example the travel time, is larger than
some individual-situation-specific threshold [9, 10, 22–24].
To speak in earlier terms: demand is inelastic to
supply-changes up to a certain threshold. There are many
factors associated with bounded rationality which explain
why a change in network performance not necessarily leads
to a behavioural response. For example: because of the
formation of habits a driver is not alert to changes, a driver
may be unaware of a change if the change is small or not
within the driver’s periphery, drivers may be disinterested
in a change if they regard it insignificant, or there is simply
a lack of (knowledge of) alternatives.

Example (used figures are imaginary): at a controlled
intersection, increases in waiting time up to 5 s may
largely go unnoticed and hardly invoke response.
Presumably, this is because drivers are unable to notice
the change. Increases between 5 and 10 s are more
likely to be detected by drivers, but still may invoke
little response. Presumably, this is because the change
is not important enough relative drivers’ reference
point and alternatives. However, when increases in
waiting time are higher than 10 s (exceeds the
indifference band threshold), they may increasingly
invoke substantial response. Presumably, this is
266
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because drivers do detect such changes and find them
disturbing enough to favour alternatives. The same
example can be applied to cases of travel time, arrival
time, level of service etc.

From this simple example it becomes immediately clear that
basic knowledge is needed of many factors to determine the
indifference band for a specific situation. Such as, how
drivers cognitively and affectively experience (waiting/
travel) time, how accurately drivers are able to estimate
time intervals, drivers ability to detect changes and value
them correctly, the existence of alternatives and drivers’
awareness of these alternatives.
We believe that the indifference band is a great opportunity

for DTM as it provides road operators with certain freedom to
move the performance of their network towards a state that
minimises the total travel time in the network. In particular
as multiple studies provide evidence that these boundedly
rational behaviours are neither random nor senseless; they
are systematic, consistent, repetitive and therefore
predictable [8, 11, 25]. Although network-favoured
measures not necessarily improve the situation of all
drivers, undesirable and disproportionate behavioural
response of drivers whose situation declines is limited or
even absent, as long as the indifference band is respected.
Hence the feasible region of DTM expands compared to the
case of perfect rationality; DTM becomes more effective
and the network performance benefits. In addition, the
indifference band also indicates the minimum required
effect of DTM to ensure driver response and likewise
increase the effectiveness of the measure.
In the remainder of this paper we will refer to this region

that provides extra opportunity to DTM as ‘effective control
space’. In the example given earlier, the indifference band
was 10 s, whereas several of the aforementioned studies
suggested indifference bands for the travel time of a route
in the order of 5–10 min. However, it is easy to recognise
that such figures strongly depend on the context. To our
best knowledge no research has been done that
systematically describes the relations and weights of the
factors underlying and cumulatively contributing to the
indifference band phenomenon.
A summary and visualisation of the general framework of

the effective control space philosophy is shown in Fig. 1. It
is important to distinguish that this figure is descriptive and
not conclusively scaled based on quantitative data. Besides,
the figure is not restricted to one specific context and DTM
measure. On the horizontal axis is the time-effect of a
DTM, such as a change in waiting time or travel time
expressed in gains or losses. The vertical axis represents the
value judgement of drivers ranging from positive to
negative. The value function is taken from prospect theory
[18]. In the context of difference bands this function
describes the two-sided driver response probability subject
to the time-effect, reference point and asymmetry of gains
against losses. The reference point is marked by the dot in
the centre of the figure. Evidence from time psychology
research [26] adds to this framework that time feels as
moving faster with gains and positive value judgments, and
slower with losses and negative value judgments.
Similar to prospect theory we assume that drivers are more

likely to notice and respond to changes involving losses than
changes involving gains, while the effect of additional gains
or losses decreases. For example, waits at traffic lights
which increase by 10 s have a higher impact than waits
which decrease by 10 s. In addition, the marginal impact of
IET Intell. Transp. Syst., 2013, Vol. 7, Iss. 3, pp. 265–274
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Fig. 1 Theoretical framework of effective control space
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the 10th second is larger than the marginal impact of the 11th
second. Hence, the effective control space is asymmetrical too
as indicated by the vertical dashed lines. Control space
indicates an area where we expect the road user or a
situation to be controllable. As it appears that DTM does
not affect, or only marginally affects behaviour in the
control space, the system performance might increase. An
example to illustrate this will be provided later. Effective
control space typically applies to day-to-day scenarios as it
is strongly related to between-day decision making.
Generally the experiences of the previous day and the
current day are known to be dominant determinants for
decision making of the next day [27]. Moreover, when a
driver notices a time-effect of DTM larger than the effective
control space, then it is assumed likely that the next day
this driver responds in one way or another. Although, this is
only relevant if the driver regards the change a loss. Where
gains are concerned it only makes sense for a driver to
adapt its behaviour if because of that gain an alternative
has become more attractive. How drivers can become aware
of improvements of non-chosen alternatives is another topic
Fig. 2 Conceptual framework for effective control space
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[10] and outside the scope of this paper. Finally, because
of the stochastic variability of the traffic system a driver
may not notice a change instantly, but requires several
days to do so. If the network topology allows, only in
rare cases drivers will be able to adjust their behaviour, for
example their route, within a day. Empirical evidence is
needed for validation and quantification of this framework,
which is briefly discussed in the final section of this paper.
3 Theoretical background

Choice behaviour of drivers is very similar to consumer
decision making. Buying a product involves five
consecutive stages: (i) need or problem recognition, (ii)
information search, (iii) evaluation of alternatives, (iv)
selection or decision and (v) post decision behaviour [28,
29]. By combining 1 and 2 to ‘awareness’ and 4 and 5
to ‘decision’, a simplified three-stage sequence is the basis
of the conceptual framework in Fig. 2. For reasons of
comprehensivenss and readability, notable factors like
267
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attitude, learning, perception, expectation, motivation,
information and personality have been left out. Their
influence is briefly discussed in the following subsections
and in more detail in literature in relation to conceptual
frameworks on specific themes (e.g. [27, 30–32]).
In each of three decision making stages different

psychological factors are at play which together accumulate
to the indifference band discussion in the previous sections.
An indicative example of this philosophy is shown in
Fig. 3. It is important to note that these factors are situation
specific and therefore may vary from case to case. As such,
any indifference band can be composed out of a different
combination and weighing of factors. It is not the aim of
this paper to identify all possible scenarios, but to provide a
general framework that systematically captures factors and
to enable practisioners to derive commonalities from
scenarios that are relevant to them. It are these
commonalities, that is, constant contributors to the
indifference band, that define effective control space. The
following three sections give an overview of factors related
to awareness, evaluation and decision. Section 4 presents a
numerical example to illustrate the implications that
effective control space poses towards DTM and what
opportunities this may offer.

3.1 Awareness

Research on the impact of learning shows that the awareness
among drivers of changes in the transport system is limited
and it grows over time as a result of direct experience and
indirect learning [10]. A change could involve an
improvement or degradation in the current route or an
existing alternative, or the introduction of a new alternative.
It concerns, for example the waiting time at traffic lights,
the average speed or the travel time. In general, the larger,
the more expectable the more important and the more
negative a change, the sooner a driver is expected to notice
the change [10, 33].
Several surveys showed that drivers’ estimates of waiting

times at traffic lights, on average, are fairly accurate, but
widely variable, as are their perceptions [34, 35]. When a
change is within the natural variation of a traffic situation
with respect to an average, it seems unlikely that drivers are
Fig. 3 Illustration of separate factors accumulating of indifference tow
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capable of detecting the change at all. For example, the
waiting time at a traffic light with average 30 s and
variation 15 s, means that measures shifting the average
within the range of 15–45 s are hardly distinguishable from
the natural variation. Similar findings were found in studies
on user perceived level of services at signalised
intersections and motorways. These studies showed that
drivers are unable to perceive fine differences and only
distinguish two or three levels of service rather than the six
provided by the Highway Capacity Manual [36, 37].
Interestingly, this suggests that drivers’ quality perception is
nearly binary with only the level ‘good’ and ‘not good’.
Derived from cognitive sciences, change blindness is the

inability to detect and report changes to objects from one
instant to the next that are obvious once pointed out [38].
Experiments have shown that participants are surprisingly
bad at detecting even large changes, sometimes leading to
change blindness in 88.5% of all cases. Change blindness
increases when the changed item is not relevant for the
task, when the magnitude of the change decreases, and
when the change is further outside the visual periphery [38].

3.2 Evaluation

When drivers have been able to detect a change, the central
question in the evaluation state is whether they value it
properly or not? In a rational way, people have little feeling
of how much things are worth. They focus on the relative
advantage of one thing over another rather than the absolute
difference, compare them locally to the available
alternative, and estimate value accordingly [11].
Different studies confirm that the decisions and actions of

drivers do not always correspond with their (perceived)
observations. In one study only 12% of the drivers were
able to correctly perceive their experienced travel times, and
reversely, 12% perceived the opposite of their experience
[33]. Similar and even larger figures were found with
varying traffic volume and timing of traffic lights [21]. This
led to three types of behaviour: (i) logical behaviour that
reflects drivers choosing better perceived routes (perceive
route A better and choose route A), (ii) cognitive behaviour
reflecting drivers choosing a route in spite of not perceiving
a difference between both routes; to reduce mental working
ards effective control space
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load (perceive no different, choose any route) and (iii)
irrational behaviour that reflects drivers choosing worse
perceived routes (perceive route A better and choose route
B). For the last type, cognitive scientists use the term
‘choice blindness’ to explain such failures to detect
mismatches between intention and outcome of a simple task
[39]. Most surprisingly, in a choice blindness paradigm,
participants are still able to offer arguments why their
choice was the most logical. An interesting insight on this
aspect is that drivers are better in perceiving travel speeds
than travel times; perceived travel speeds seem to influence
choice outcomes more than perceived travel time [33].
Previous experiences are known to serve as an anchor in

the memory of drivers and strongly affect choice behaviour,
in particular when bad experiences are involved [11, 20].
Loss aversion refers to the fact that people treat gains and
losses differently as they tend to be more sensitive to
decreases in wealth than increases, whereas people become
less sensitive for every marginal gain or loss [18, 25]. In
general, bad experiences involving loss, weigh two times a
similar size good experience involving a gain [12].
Figuratively, good experiences create a certain
‘acceptability-buffer’, which may be emptied again by far
less bad experiences (e.g. unacceptable DTM measures). In
the mind of the driver the reference point determines to a
large extent how things are valued. Earlier research
concluded that the perception of the reference point in the
mind of the driver is vague and fuzzy rather than crisp;
they may not necessarily consider their actual experience to
be the reference point [20].
To value a choice option or a change in any of its attributes,

the option and/or its attributes need to be within the area of
interest of an individual. As a result of driver’s bounded
rationality there are multiple factors which narrow this area
of interest and make drivers appear indifferent concerning
the evaluation of alternatives. For example habitual
behaviour, which evolves in trips that are often repeated
and causes cognitive processes to reach automaticity and
eventually result in making choices in a more or less
mindless fashion [10, 40]. Besides, drivers tend to be
near-sighted which means that experiences of the previous
day as well as short-term gains dominate choice processes
[27]. Satisfying behaviour, stating that people are happy
with a good solution instead of finding the best solution, is
regarded as another major cause for drivers’ indifference
[10, 27]. It means that humans tend to minimise their
cognitive efforts, and follow simple heuristics to reach
decisions which are both satisfactory and sufficient,
especially under uncertainty and time constraints [9, 33].
Empirical research on the indifference band showed that
drivers may be uninterested in other choice options until
their current situation worsens by 22% (e.g. extra travel
time), or a choice alternative improves by 22% [9].

3.3 Decision

Changes in traffic conditions may be observed and correctly
valued or not, but do they provide sufficient motive to affect
the decision outcome? Generally, studies on decision
behaviour focus on decision outcomes, apart from few
exceptions which shifted interest to the analysis of
underlying cognitive mechanisms. Such studies, for example
showed that drivers think much more strategically than
usually presumed [41, 42]. Based on the analysis of verbal
reports, at least four decision strategies can be considered:
the comparison strategy, the exploitation strategy, the
IET Intell. Transp. Syst., 2013, Vol. 7, Iss. 3, pp. 265–274
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exploration strategy and the anticipation strategy [41]. The
great diversity in applied strategies proves that a certain
level of awareness and acceptance of changes affect choice
decisions. Another study showed that route switching occurs
more frequently when the traffic conditions fluctuate
randomly than when they are stable [9]. This type of
behaviour is largely influenced by risk attitude (i.e. risk
aversion and risk seeking), which determines the amount of
risk somebody is willing to take. Many factors such as
travel purpose, length of the trip and preferred arrival time
have a big impact on a driver’s risk attitude and choice
outcomes (e.g. [27]). In terms of choice outcomes, roughly
four route choice patterns can be distinguished: fixed choice,
single trial, preferred switching and random switching [40].

4 Numerical example

This section illustrates by means of a numerical example the
principles of effective control space and its implications for
DTM and the resulting system performance. The objective
of applying the effective control space framework is to
move away from user equilibrium (UE) state and thereby
improve system performance. Through identification of
indifference bands the resulting effective control space will
be determined. It is important to note that the purpose of
the examples is illustrative and therefore simplified. They
are based on the assumption that the indifference bands are
constant and known, while the decision of a driver against a
change is taken as a one-off process. Follow-up research
should bring finer details to further improve the framework
suggestions are given in Section 4.
Consider a network as shown in Fig. 4. There are two

origin-destination (OD) pairs: A–B and C–D, with fixed
demands of 2000 and 1000 vehicles per hour, respectively.
Two routes exist from A to B: a north route (R1) and a
south route (R2). From C to D there is only one route (R3).
R1 and R3 intersect at a signalised intersection. The traffic
signal has a cycle length of C, with an effective green time
of g for R1 and an effective green time C–g of for R3 (thus
assuming no lost time because of all-red time). Route travel
times consist of link travel times and intersection delays.
Bureau of Public Roads (BPR) function is adopted for link
travel times, with the form

tt = 1+ a
f

F

( )b
[ ]

T (1)

where tt is the actual link travel time, f is the actual link flow,
F is the link capacity, T is the free flow travel time and α and β
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are the coefficients. Delays at the intersection are assumed to
follow the function (note here that this delay function follows
the Webster formula; the formula may not apply in practice
when the saturation level is high)

delay = 1− l( )2
2(1− r)

C (2)

where the average delay for a movement, delay, is dependent
on its effective green ratio λ and the flow saturation rate ρ. As
a result, the route travel times are given as

t1 = 1+ a
f1
F1

( )b
[ ]

T1 +
1− g/C
( )2
2 1− f1/F1

( )C (3)

t2 = 1+ a
2000− f1

F2

( )b
[ ]

T2 (4)

t3 = 1+ a
1000

F3

( )b
[ ]

T3 +
g/C
( )2

2 (1− 1000)/F3

( )C (5)

Consider the case where α = 0.15, β = 4, T1 = 5 min, T2 =
6 min, T3 = 5 min, C = 60 s and F1 = F2 = F3 = 1800. The
traffic system then has two degrees of freedom:

† g (seconds): determined by the traffic network manager;
† f1: determined by the behaviour of the drivers.

The state of the traffic system can then be represented by
these two variables, (g, f1).

4.1 System optimal (SO) and UE

Different settings of (g, f1) result in different system
performances. On the one hand, DTM aims to reduce the
system travel time, T, as much as possible, by changing the
signal setting g. On the other hand, the drivers want to
Table 1 Scenarios of system variables and performance measureme

Scenarios

SO
UE under SO design (g = 35 s)
scenario 1A: if we increase g by a few seconds without
drivers reacting to the change, the system is better off

scenario 1B: if we increase g by a few seconds and drivers react
by switching route (to UE condition), the system is worse off

scenario 2A: if we decrease g by a few seconds without drivers
reacting to the change, the system is worse off

scenario 2B: if we decrease g by a few seconds and drivers react
by switching route (to UE condition), the system is better off
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reduce their own travel time, by switching route and thus
changing f1, through which process |t1− t2| will become as
small as possible.
The system travel time is computed as

T g, f1
( ) = f1t1 + 2000− f1

( )
t2 + 1000t3 (6)

The SO is achieved when the system travel time is minimised,
through changing the signal setting and the route choice. This
is given by the following programme

min
f1,g

T (7)

s.t.
0 ≤ f1 ≤ 1800
0 ≤ g ≤ 1

{

The solution of SO lies at (g, f1) = (34.556, 1133) (Table 1).
Other combinations of (g, f1) will have higher system travel
times. This is illustrated by the contour chart in Fig. 5. Note
here that in reality the SO scenario is unlikely to occur,
because drivers’ actual route choices are not based on the
SO principles.
UE occurs when t1 = t2, that is, the travel times on R1 and

R2 are equal. The gap function, defined as

H g, f1
( ) = t1 − t2

∣∣ ∣∣ (8)

describes how far away a system state is from the equilibrium
condition. It is easy to see that H(g, f1) = 0 if and only if (g, f1)
is a UE state. The SO solution (g, f1) = (34.556, 1133) is not
UE because it has a |t1− t2| of 41 s (Table 1). Given the signal
design of g = 35 s, the UE condition is achieved at (g, f1) =
(35, 1540) (Table 1). Under other signal designs, the UE
solution will change accordingly. The contour chart in
Fig. 6 illustrates the location of different combinations of
(g, f1) that fulfil the UE condition; they are located within
the thin stripe that characterises the curve H(g, f1)≤ 2 s,
which is surrounded by two other stripes characterising 2≤
H(g, f1)≤ 4.
nts

System variables System performance

g, s f1 T, min │t1–t2│, s

34.556 1133 16762 41
35 1540 17460 0

36 ( + 1) 1540 17410 ( − 50) 2.9
37 ( + 2) 1540 17363 ( − 97) 5.6
38 ( + 3) 1540 17320 ( − 140) 8.2
39 ( + 4) 1540 17280 ( − 180) 10.7
40 ( + 5) 1540 17244 ( − 216) 13.0
36 ( + 1) 1554 ( + 14) 17481 ( + 21) 0
37 ( + 2) 1568 ( + 28) 17503 ( + 43) 0
38 ( + 3) 1582 ( + 42) 17528 ( + 68) 0
39 ( + 4) 1596 ( + 56) 17554 ( + 94) 0
40 ( + 5) 1609 ( + 69) 17576 ( + 116) 0
34 (− 1) 1540 17514 ( + 54) 2.9
33 (− 2) 1540 17572 ( + 112) 5.9
32 (− 3) 1540 17633 ( + 173) 9.1
31 (− 4) 1540 17698 ( + 238) 12.4
30 (− 5) 1540 17766 ( + 306) 15.8
34 (− 1) 1526 ( − 14) 17441 ( − 19) 0
33 (− 2) 1512 ( − 28) 17424 ( − 36) 0
32 (− 3) 1497 ( − 43) 17403 ( − 57) 0
31 (− 4) 1482 ( − 58) 17384 ( − 76) 0
30 (− 5) 1467 ( − 73) 17366 ( − 94) 0
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Fig. 5 Contour plot of T–T(SO) (min), that is, the system travel time T minus the system travel time at SO, T(SO)

The log-scale of base 2 is chosen for better visual presentation of the wide range of T–T(SO)

Fig. 6 Contour plot of travel time differences between R1 and R2, |t1 – t2| (seconds)
The log-scale of base 2 is chosen here for a better visual presentation
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Table 2 Scenarios of management measures/changes and
their outcome

Scenarios Change Driver
response

System
travel time

UE
condition?

1A increase g no
reaction

decrease no longer
UE

1B increase g route
switching

increase new UE

2A decrease g no
reaction

increase no longer
UE

2B decrease g route
switching

decrease new UE

www.ietdl.org
4.2 Scenarios of network changes and behavioural
responses

Consider the current scenario of the traffic network at (g, f1) =
(35, 1540) (a UE state). This situation is not optimal for the
system. From a DTMs point of view, the signal setting may
be changed to improve the system performance. There are
two ways: either to increase g (Scenario 1), or to decrease g
(Scenario 2). Drivers’ response to this change falls into two
categories: either they do not react to the change and keep
with their original route choice (Scenario A), or they react
by switching route and therefore settle down with the new
UE solution (Scenario B). Four combinations of these
scenarios, as well as their potential outcome on the system
performances are shown in Table 1, with a schematic
summary in Table 2.

4.3 Indifference to changes in network

In Scenarios 1A and 2A, drivers do not perceive the changes
and stay on their current routes. The route flows remain the
same before and after the changes. It implies that the
Fig. 7 Schematic plot of system state and indifference bands: indifferen
time inequality (±32 s)

The current system state is located at g = 35 s, f1 = 1540 veh/h, which is a UE situ
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system state will move along the straight line of current
flow in Fig. 7. The system travel time, plotted in contours
in Fig. 7, is apparently varying along this line: going up
(Scenario 1A) reduces system travel time; going down
(Scenario 2A) increases system travel time. Therefore, from
the traffic manager’s point of view, the green time should
be increased.
In Scenarios 1B and 2B, drivers always notice and act on

the changes and switch routes in search for a new UE. This
implies that the system state will move along the UE curve
in Fig. 7. The system travel time is again varying along this
curve: going up (Scenario 1B) increases system travel time;
going down (Scenario 2B) reduces system travel time.
Therefore, from the traffic manager’s point of view, the
green time should be reduced.
Compare Scenarios A and B, whether drivers will notice

the change or not leads to contrary conclusions. Effective
control space comes into play in determining whether a
change will be noticed or not: any changes within the
indifference band are ignored; only changes exceeding the
indifference band are recognised.
Consider the special case where the indifference band is

±1.5 s. The system travel time is reduced when g is either
increased by 1 s (scenario 1A) or decreased by 2–5 s
(Scenario 2B). Decreasing g by 5 s brings a larger
reduction than increasing g by 1 s. Therefore the traffic
manager should decrease g by 5 s.
Consider another special case where the indifference band

is ±2.5 s. The system travel time is reduced when g is either
increased by 1–2 s (Scenario 1A) or decreased by 3–5 s
(Scenario 2B). Increasing g by 2 s is the most effective and
should be preferred by the traffic manager.
These two cases illustrate the pivotal role of the

indifference band in determining the system outcome of a
network change. They also support the idea of
effective control space as discussed earlier: unnoticeable
ce band of green time change (±5 s) and indifference band of travel

ation
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changes can be introduced which do not affect driver
behaviour but may improve system performance; if
behavioural response is needed for improving the system
performance, then the introduced changes have to be
noticeable.
4.4 Indifference to travel time inequality

The above discussion for Scenario B assumes that, once
drivers notice the change, they have perfect information on
the network situation and will strive for the new UE
condition. This is often not the case. The indifference band
in travel time inequality suggests that drivers are willing to
accept, or simply not perceive, a non-UE situation if the
difference in travel time between the alternative routes is
within a threshold. The case of an indifference band equal
32 s is illustrated in Fig. 7: any system situation within this
band is accepted by the drivers, in the same way that UE is
accepted. For the given green time of g = 35 s, this implies
that an acceptable system state can be any point that is on
the straight line of g = 35 s and between the two curves
representing indifference to inequality. The system travel
time is apparently varying along this line segment. A
natural question to ask is then how can the traffic manager
‘move’ the system state towards the left-hand side (lower
f1), which has lower system travel time.
When this indifference band in travel time inequality is

combined with the indifference band of limited change
awareness, an area of effective control space is formed
(the shaded area in Fig. 7). Given the current system state
of (g, f1) = (35, 1540), drivers are indifferent to any other
(non-UE) system states within this area. The size of this
area depends on the bandwidths of the two types of
indifference: the wider the indifference bands are, the more
effective control space the traffic manager has.
5 Conclusion and future research

Intuitively it is not right to assume that drivers respond to
all changes in the characteristics of their choice alternatives
caused by DTM which make their current choice
suboptimal. Notions of bounded rationality and
indifference bands acknowledged that, stating that factors
like limited awareness, misperception and disinterest make
that drivers only alter their choice if a change exceeds a
certain threshold. In parallel road operators’ interest in
finding synergies between human factors and DTM
recently started increasing [43]. The main purpose of this
paper is to introduce a new dimension in the design of
DTM strategies that may serve as a tool for road
authorities. Taking indifference bands as a starting point,
this paper introduced and demonstrated the concept of
‘effective control space’ which aims to increase the
effectiveness of DTM. By means of a simple numerical
example the implications of effective control space for
DTM and the system state were explained. The green split
of traffic lights was used as control mechanism and
showed that application of effective control space can
successfully steer the system towards its optimal state. We
believe that the introduced framework is general and can
also be applied to other DTM measures like dynamic
speed limits, ramp metering installations, route guidance,
road pricing etc. In all cases, effective control space helps
to understand the feasible region of a measure (i.e. with
IET Intell. Transp. Syst., 2013, Vol. 7, Iss. 3, pp. 265–274
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minimal driver response), as well as a measure’s minimum
required effect to ensure response.
It is important that these mechanisms become part of

traffic models to realistically capture choice behaviour in
dynamic situations. However, it requires more empirical
research to fully understand and quantify the underlying
phenomena. To the best knowledge of the authors there is
yet no related work that structures factors related to the
philosophy of effective control space and shows practical
application as done in this paper. To further improve the
presented framework there are several avenues for future
research worth mentioning. First of all, rather than a
one-off process, the process of repeated decisions including
learning and adjustment should be considered to more
realistically capture day-to-day dynamics. Secondly and
following the previous point, it is relevant to examine the
implications of asymmetry in decision making and related
irreversibility of network state. Thirdly, in a dynamic
context the use of a probabilistic indifference band seems
more opportune than a deterministic one. It mainly requires
empirical research to determine such a distribution, which
may also contribute to the improvement of for example
random utility models and the definition of the random
component in particular. Finally and as also pointed out by
the referees, it is not always evident which strategy based
on the effective control space yields the best outcome,
especially not in a dynamic day-to-day context. Moreover,
there might be important implications for solution
uniqueness that need to be explored. Therefore a control
strategy based on the proposed framework might be set up
with the help of some optimisation approach, such as
dynamic programming.
Future empirical research will involve a driving simulator

experiment and a field study. The field study aims to
investigate in a natural setting drivers’ estimation of time
and how accurately they are able to guess time intervals.
Literature review showed that for such analysis field studies
yield the most valid data as subjects are in their natural
environment with same perceptions, behaviour and
awareness as they normally have [44]. In the selected
approach, subjects will be randomly selected and
interviewed at the nearest down-stream intersection or
parking area of the studied intersection or series of
intersections. They will be asked about their waiting time
experience and challenged to value this single experience in
comparison to what they regard as average (their
expectation). Objective data such as the actual waiting time
will be collected for every individual user to allow study of
the correlation between actual measurements and user
perception. In addition, a driving simulator experiment will
be set up for two reasons. First of all to evaluate if the
findings from the field study can be reproduced in different
conditions and collect more detailed evidence in order to
formulate a general theory. Secondly to determine effective
control space quantitatively and indicate the moment when
drivers adapt their behaviour as the result of changing
conditions. Together, the field study and driving simulator
study gain a quantitative understanding of drivers’ ability to
detect changes and value them correctly as well as their
response to these changes.
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