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Heat  transfer  in water at supercritical  pressures  has  been  investigated  numerically  using  a  one-
dimensional  modeling  approach.  A  1D  plug  flow  model  has  been  developed  in  order  to  make  fast
predictions  of  the  bulk-fluid  temperature  in a tubular  flow.  The  chosen  geometry  is  a  vertical  tube  with
an inner  diameter  of  10 mm  and  a heated  length  of  4.0  m.

The  simulations  concern  a heated  upward  flow  with  an  imposed  wall temperature  profile.  Viscous
effects,  internal  conduction  and  enthalpy  changes  due  to  a pressure  gradient  have  been  neglected  after
evaluation  of  the  governing  equations  in  dimensionless  form.  The  resulting  set of  equations  is  closed
using  Nusselt  correlations  found  in  literature  and  solved  using  an  explicit  Euler  scheme  to simulate  heat
transfer in a  supercritical  water  flow.

The results  for  three  different  cases  show  that  the  model  is  able  to  accurately  predict  the  bulk  tempera-
ture  based  on  heat  transfer  rates  provided  by a suitable  Nusselt  correlation.  However,  there  is  also  reason
to assume  that  these  correlations  are  very  specific  for the  flow  conditions,  since  boiling  effects  occurring

at certain  conditions  can  highly  influence  the heat  transfer  rate.  As  a  consequence,  the  model  may  be
unable  to  describe  supercritical  heat  transfer  over  a broad  range  of  configurations  when  only  using one
correlation.  The  agreement  of these  results  with  the  two-dimensional  simulations  will  be  investigated
in  a  separate  article.

The  description  of the model  is preceded  by  a mathematical  description  of  supercritical  water  flows
and  by  an  overview  of  the  supercritical  heat  transfer  phenomena  as observed  in  earlier  studies.
. Theory of supercritical water flows

This section is a general description of a water flow at supercrit-
cal conditions. Section 1.1 deals with the equations that describe
he flow field and heat transfer. Next, Section 1.2 elaborates on
he formulation that is used to calculate the relevant thermody-
amic and transport properties of water. Section 1.3 gives a more
ualitative description of the characteristics of the flow on basis of

nformation found in the literature.

.1. Governing equations

The equations that describe the flow follow from the laws of
onservation of mass, momentum, energy and species [1]. Starting
ith mass, the conservation principle is mathematically described

y:
∂�

∂t
+ �∇ · (��u) = 0 (1)
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where � is the mass density and �u = (u, v, w)T the velocity of the
mixture. Conservation of momentum can be stated as the following
vector equation, also referred to as the Navier–Stokes equations:

∂(��u)
∂t

+ �∇ · (��u�u) = − �∇p − �∇ · ��� + ��f (2)

where ��� is the viscous stress tensor and �f is the volumetric force
vector. For a Newtonian fluid like water, the viscous stresses are
described by Newton’s law of viscosity, which reads in general
form:

��� = −�( �∇�u + ( �∇�u)�) +
(

2
3

� − �
)

( �∇ · �u)��ı (3)

where � is the dynamic viscosity, � is the dilatational viscosity and
��ı is the unity tensor.

Conservation of energy, in terms of total energy, is given by:

∂(�E)
∂t

+ �∇ · (�E�u) = �(�f · �u) − �∇ · (p�u) − �∇ · (��� · �u) + Q̇ − �∇ · �q (4)
Here Q̇ is the volumetric heat source term and �q is  the heat flux
vector. The heat flux vector is described by [2]:

�q = −k �∇T (5)
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Dimensionless numbers

Bo buoyancy parameter
Br Brinkman number
Fr Froude number
Gr Grashof number based on temperature
Grq Grashof number based on heat flux
NuFT Nusselt number for forced convection according to

the Dittus–Boelter equation
Nu Nusselt number
PeD Péclet number based on diameter
Pe Péclet number based on length
Pr Prandtl number
Ra Rayleigh number
Re Reynolds number
St Stanton number

Greek symbols
˛ thermal diffusivity [m2 s]

 ̌ volumetric expansion coefficient [1/K]
��ı unity tensor
�  dilatational viscosity [kg/(m s)]
� dynamic viscosity [kg/(m s)]
� kinematic viscosity [m2 s]
� mass density [kg/m3]
��� viscous stress tensor [N/m2]

Geometric definitions
D tube diameter [m]
l length of the heated tube section [m]
z longitudinal coordinate [m]

Roman symbols
Cp isobaric heat capacity [J/(kg K)]
Cp mean isobaric heat capacity [J/(kg K)]
E total energy [J/kg]
e internal energy [J/kg]
�f volumetric force vector [m/s2]
f specific Helmholtz free energy [J/kg]
G mass flux [kg/(m2 s)]
g gravitational acceleration [m/s2]
g specific Gibbs free energy [J/kg]
h enthalpy [J/kg]
h heat transfer coefficient [W/m2 K]
k thermal conductivity [W/m K]
L/D length to diameter ratio
�nw outward-pointing normal unit vector
p pressure [Pa]
Q̇ volumetric heat source [W/m3]
�q wall heat flux vector [W/m2]
qcr critical heat flux [W/m2]
T temperature [K or ◦C]
t time [s]
Tin tube inlet temperature [K or ◦C]
�u velocity vector [m/s]

Subscripts
(. . .)b evaluated at bulk conditions
(. . .)pc evaluated at pseudo-critical conditions
(. . . )w evaluated at wall conditions
Fig. 1. The IAPWS-IF97 regions [5].
Reproduced with permission of Springer

The right-hand side of Eq. (5) represents thermal conduction,
where k is the thermal conductivity of the fluid.

1.2. Thermophysical properties of supercritical water

The properties of water at different conditions are obtained
using the Industrial Formulation 1997 [3] adopted by the Inter-
national Association for the Properties of Water and Steam
(IAPWS). The industrial formulation, abbreviated to IAPWS-IF97,
was designed to closely approximate the values from the state of
the art, high accuracy formulation IAPWS-95 [4] over a limited
range of conditions.

In contrast to the single-equation IAPWS-95 standard, the IF97
formulation consists of a set of equations for five different regions
[5] (see Fig. 1). For each region a basic equation was  developed
from which thermophysical properties such as specific volume,
enthalpy and heat capacity can be derived. Regions 1, 2 and 5 are
each covered by a fundamental equation for the specific Gibbs free
energy g(p, T), region 3 by a fundamental equation for the specific
Helmholtz free energy f(�, T). The advantage of using the Gibbs
energy is that this equation has the pressure as an input quan-
tity so that iterations are not necessary for given p, T values (W.
Wagner, personal communication, May  28, 2011). However, this
equation cannot be used for the entire thermodynamic surface
since the pressure is the same at the bubble and dew line for given
temperatures at the phase boundary. Therefore, different equa-
tions are needed for region 1 and 2. The reason why using the
Helmholtz equation for region 3, which also contains the critical
region, is that the Gibbs equation is unsuitable for representing the
large changes in thermodynamic properties in this rather complex
region. A Helmholtz equation is able to represent this region more
accurately and with a shorter expression because the �, T surface
is not as complicated as the p, T surface.

In addition, so-called backward equations were developed to
efficiently calculate the state properties when using other input
variables than needed for the basic equations. High numerical
consistency across the region boundaries is achieved to ensure a
smooth transition between the different sets of equations. Trans-
port properties, in this study the thermal conductivity and viscosity,
are calculated from supplementary equations provided by IAPWS.

The industrial standard offers easier numerical implemen-

tation and higher computational speed compared to the high
accuracy standard, while the differences between the two  formu-
lations are small for most purposes. The estimated uncertainties
in the industrial standard are the result of two contributions:
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Fig. 3. Typical boiling curve, showing qualitatively the dependence of the wall heat
flux,  q, on the wall superheat, �T, defined as the difference between the wall tem-
ig. 2. Percentage uncertainties in specific isobaric heat capacity estimated for
egions 1–3 and 5 [5].

eproduced with permission of Springer.

ncertainties of the IAPWS-95 formulation, which was  used for
eveloping the IAPWS-IF97 basic equations, and deviations of

APWS-IF97 from IAPWS-95. Considering the operating window of
his study (p = 241 bar, 350 < T< 500 ◦C), the combined uncertainty
n specific volume is estimated to be less than 0.3%. Uncertainty per-
entages for the isobaric heat capacity are generally within 0.5%,
ut rise to 3% in the critical region and even more very near to
he critical point (Fig. 2). Uncertainties in thermal conductivity and
iscosity are given in terms of tolerances in tables with a uniform
–T grid. From these datapoints, it appears that k and � are gen-
rally calculated with an accuracy well within 5% [6,7]. However,
his percentage is exceeded in a small region around the criti-
al point (200 < p< 250 bar, 350 < T< 400 ◦C), where the estimated
ncertainty is around 10%.

The accuracy of the IAPWS-IF97 formulation is considered suf-
cient for the simulations to be performed in this study. Detailed

nformation on the mathematical background of the regions shown
n Fig. 1 can be found in Wagner and Kretzschmar [5].

.3. Characteristics of heat transfer to supercritical fluids

Prior to a discussion of the model and its results, it is useful
o investigate the phenomena related to heat transfer to fluids at
upercritical conditions. The main driving force for research activi-
ies in this field has been the development of nuclear power plants
sing SCW as the working fluid in order to improve thermal effi-
iency relative to existing nuclear plant designs [8].  Thanks to the
ork done on heat transfer to supercritical water in flow channels

or new power plant designs, quite some information is available
hich can be built on. An overview of the most important and rel-

vant phenomena, characteristics and expressions for heated fluid
ows at supercritical pressures are given below.

In the literature dealing with heat transfer to tube flows at
upercritical pressures, it is generally agreed that deviations from
normal’ heat transfer are observed [9]. Normal heat transfer
ere refers to single-phase heat transfer at sub-critical pressures
escribed by the well-known Dittus–Boelter correlation [10]:

u = 0.023 Re0.8 Pr0.4 (6)

here Nu, Re and Pr are the Nusselt, Reynolds and Prandtl numbers.
easurements show that deviations from normal heat transfer
articularly occur when the wall temperature is higher than the
seudo-critical temperature, while the bulk temperature is below
he pseudo-critical temperature (Tw > Tpc > Tb). In this situation,
arge thermo-physical property variations in the near-wall region
perature and the saturation temperature of the liquid [13].

Reproduced with permission of Annual Reviews.

can greatly affect heat transfer. Depending on the flow conditions,
the variations in fluid properties can result in enhancement, impair-
ment or deterioration of heat transfer. These observations may  be
explained by considering two boiling phenomena that possibly take
place along the heated surface [11].

1.3.1. Boiling phenomena
One of these two boiling phenomena is pseudo-boiling [12].

Similar to nucleate boiling at subcritical pressures, low-density
bubbles are formed at the hot wall where the fluid locally exceeds
the pseudocritical temperature, while the bulk fluid is below the
pseudocritical temperature. At some point the bubbles break loose
from the heating surface and are carried into the bulk fluid, thereby
transferring heat from the surface to the fluid stream quite effec-
tively. Together with the agitation caused by the rising bubbles, this
phenomenon results in enhancement of the heat transfer rate.

When the temperature is raised further, the heat transfer rate
increases until the heat flux reaches a critical value. At this point, the
rate of vaporization is such that dry patches occur over the heating
surface, causing the rate of heat transfer to drop rapidly. At suffi-
ciently high temperature differences, the entire surface is blanketed
with a gas layer that prevents the liquid water from contacting
the wall. Heat transfer then relies on the mechanism of conduction
through the gaseous water film and radiation. This phenomenon is
called pseudo-film boiling and is considered responsible for dete-
rioration of the heat transfer rate. The effect of pseudo boiling and
pseudo-film boiling on the heat flux is schematically shown in Fig. 3.

1.3.2. Critical heat flux
Studies on the heat flux at which pseudo-film boiling can occur,

called the critical heat flux, has led to several correlations predicting
the onset of heat transfer deterioration [14]. Large deviations are

observed between the different correlations cited by Cheng et al.
[14], but it is well agreed that the critical heat flux depends on the
mass flux. Jackson and Hall [15] have suggested a correlation based
on theoretical analysis of the effect of buoyancy on the shear stress.
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ig. 4. Prediction of the critical heat flux as function of the mass flux using the
orrelations of Yamagata et al. [18] and Mokry et al. [8].

wo other theoretical models have been derived by Ogata and Sato
16] and Petuhkov and Kurganov [17]. These three semi-empirical
orrelations give much higher values for the critical heat flux than
he empirical correlations. Possible reasons for the deviations can
e found in the fact that Jackson and Hall noticed that the validity
f their equation was not properly investigated, and that the other
wo correlations have been derived for fluids other than water.

The most relevant correlations for this study have been pro-
osed by Yamagata et al. [18] and Mokry et al. [8] on basis of
xperimental data from supercritical water in a 10 mm tube. Yam-
gata et al. [18] derived a power law to correlate the critical heat
ux qcr kW/m2 to the mass flux G kg/m2s:

cr = 0.2 · G1.2 (7)

hile Mokry et al. [8] found a linear relation between these param-
ters:

cr = −58.97 + 0.745 · G (8)

The critical heat flux as predicted by Eqs. (7) and (8) are plotted
s a function of the mass flux in Fig. 4.

.3.3. Buoyancy effects
Next to the boiling phenomena described above, literature

oints out that the accelerating low-density layer near the wall has
onsiderable influence on the heat transfer rate as well [19–21].
ue to the buoyancy forces resulting from variations in density,

he heat transfer mechanism can be a combination of forced and
atural convection. In case the fluid is heated with upward flow
r cooled down with downward flow, buoyancy effects aid forced
onvection since velocities due to natural and forced convection
re in the same direction. This situation is called aiding flow, which
hows very different heat transfer behavior from opposing flow,
here the driving forces or natural and forced convection are in

pposite direction.
The contribution of natural convection in relation to forced con-

ective heat transfer depends on many conditions such as flow
elocity, wall temperature and flow direction (aiding vs. oppos-
ng flow). Aicher and Martin [20] proposed the following criterium
o compare the driving forces of the two types of convective heat
ransfer in turbulent flow in case of constant wall temperature:

0.333
Ra

Re0.8Pr0.4
(9)

In this criterium, the Rayleigh number Ra characterizes the
trength of the buoyancy forces. It is defined as the product of the
Fig. 5. Schematic view of the influence of buoyancy forces on heat transfer [20].

Reproduced with permission of Elsevier.

Grashof number, which describes the relationship between buoy-
ancy and viscosity, and the Prandtl number, which is the ratio of
momentum diffusivity to thermal diffusivity:

Ra = Gr · Pr = gˇ(Tw − Tb)D3

�2
· �

˛
= gˇ

�˛
(Tw − Tb)D3 (10)

where g is the gravitational acceleration,  ̌ is the cubic expansion
coefficient, � is the kinematic viscosity and  ̨ is the thermal diffu-
sivity. The Reynolds number Re in Eq. (9) compares the dynamic
pressure to the shear stress acting on the fluid:

Re = �uD

�
(11)

For aiding flow, natural convection is the dominant heat trans-
fer mechanism if the parameter of Aicher and Martin exceeds 0.2.
If less than 0.05, forced convection is dominating. The range in
between indicates the mixed convection regime. The influence of
buoyancy forces on heat transfer is schematically shown in Fig. 5.
Here, the ratio between Nu and NuFT is plotted against the param-
eter of Eq. (9).  NuFT is defined as the Nusselt number for ‘normal’
forced convection and is described by the Dittus–Boelter equation,
Eq. (6).

A similar criterium, defined as the buoyancy parameter Bo, was
more recently presented for constant wall heat flux by Celata et al.
[21], although originally developed by Jackson and Hall [15]:

Bo = 8 × 104 Grq

Re3.425Pr0.8
(12)

In this expression, fluid properties are evaluated at film tem-

perature and the Grashof number, Grq, is based on the wall heat
flux. Comparing Fig. 5 with the graph in Fig. 6, where the buoyancy
parameter Bo is on the horizontal axis, the same behaviour of the
normalized Nusselt number is observed. Celata et al. [21] showed
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Fig. 7. Distributions at various Grashof numbers at a constant Re = 3000. (A)
Gr = 2.1 × 103, turbulent; (B) Gr = 6.1 × 104, turbulent; (C) Gr = 8.8 × 104, laminar; (D)

R

ig. 6. Schematic view of heat transfer for aiding and opposing mixed convection
21].

eproduced with permission of Elsevier.

xperimentally that the mixed convection region corresponds with
alues of Bo between 0.03 and 3.

The effect of buoyancy forces on the rate of heat transfer may
e explained by considering the turbulence production between
he viscous layer and the bulk flow [21,19].  In aiding flow, the fluid
ayer adjacent to the heated wall is subject to a buoyancy force

hich acts in the same flow direction. Therefore, buoyancy forces
end to reduce the shear stress in the layer, reducing turbulent dif-
usion of heat and thus causing deteriorated heat transfer. As the
emperature of the fluid in the near-wall region increases further,
ensity differences cause the low-density fluid to outrun the bulk
ow. This restores the turbulence production and hence heat trans-

er, as is seen in Figs. 5 and 6. Typical examples of velocity profiles
nd shear stress distributions are shown in Fig. 7 [22]. With increas-
ng buoyancy effects from profile A to profile F, shear stress is first

ecreased, but eventually reintroduced in opposite direction when
he velocity of the low-density fluid is higher than the bulk velocity.

The different heat transfer regimes that can be discerned due to
he phenomena discussed above have been illustrated by Licht et al.

Fig. 8. Illustration of the different
eproduced with permission of Elsevier.
Gr  = 2.7 × 105, laminar; (E) Gr = 3.3 × 105, turbulent; (F) Gr = 9.2 × 106, turbulent [22].

Reproduced with permission of Elsevier.

[19]. A schematic visualization of each regime and the effect on the
heat transfer compared to normal heat transfer (with no property
variations) is given in Fig. 8.

On basis of the information given in this section, the cases
that have been considered in this study can be properly classi-
fied. By using terminology, expressions and criteria in agreement
with existing literature on this topic, interpretation of the simula-
tion results and comparisons with earlier work is facilitated. Three
heated upflow cases are chosen for analysis, which only differ in
mass flux. The first can be representative for industrial cooling pur-

poses, the third case more likely describes a flow reactor which
should provide enough residence time for the reacting species. The
specifications of the three cases are listed in Table 1.

 heat transfer regimes [19].
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Table 1
Specification of the cases that are considered in this study.

Parameters Symbol Unit Case 1 Case 2 Case 3

Inlet mass flux G kg/m2s 1000 500 200
Pressure p bar  241 241 241
Inner diameter D mm 10 10 10
Length to diameter ratio L/D – 400 400 400
Inlet  temperature Tin

◦C 350 350 350

Fig. 9. Physical domain for the 1D model.
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Fig. 10. Computational domain for the 1D model.

. 1D heat transfer model of a flow reactor with
upercritical water

The governing equations described in Section 1.3 can be sim-
lified by using a 1D modeling approach in order to develop a
ast simulation tool with reasonable accuracy. With this aim in

ind, the tube is described using a plug flow reactor model [23].
y disregarding all variations in radial direction, the dimensions of
omputational domain are reduced to only one coordinate. More-
ver, all terms having no major contribution to the solution are
eglected, which results in a set of equations that can be solved
fficiently.

This section contains a detailed description of the simplification
rocedure. In addition, three Nusselt correlations are selected from

iterature to close the set of simplified equations. The accuracy of
he new model is assessed in Section 3 by comparing the calculation
esults to experimental data found in Mokry et al. [8].

.1. Physical and computational domain

Due to the plug flow assumption only variations in axial direc-
ion are considered, so that the radial coordinate is of no importance
n the calculations. However, there still needs to be a tempera-
ure difference across the radius in order to describe heat transfer
hrough the tube wall. Since it is impossible to physically describe
he heated tube flow using only one spatial dimension, a distinction
s made between the physical and computational domain to give

ore insight into the modeling approach. The physical domain is
epresented by a 2D fluid domain that is bounded by an infinitely
hin tube wall as shown in Fig. 9.

The schematic temperature and velocity profiles T′(r, z) and u′(r,
) shown in the figure become averaged quantities T(z) and u(z)
n the computational domain. Since the model equations will be
ndependent of the radial coordinate, the physical domain can be
educed to a line in the computational domain (Fig. 10).

On basis of a mesh convergence analysis using the bulk temper-
ture as the indicative variable, the domain has been divided into
50 elements for the simulations. The results of the convergence
nalysis using the conditions of Cases 1 and 2, defined in Table 1,
re plotted in Fig. 11,  showing an estimated accuracy of within 1 K
or this mesh. The chosen mesh size leads to CPU-times of a couple

f seconds on a single-core laptop for a tube length of 4.0 m.

In the one-dimensional computational domain, the heat source
erm Q̇ in Eq. 13 can be used to account for the heat that is
ransferred from the tube wall to the fluid by convection [24]. The
Fig. 11. Mesh convergence analysis for the 1D model using the Nusselt correlation
of  Mokry et al. [8].

heat addition per unit time in an infinitesimal control volume dV
is:

Q̇dV = −(�q · �nw)dSw (13)

where �nw is the outward-pointing normal unit vector on the wall of
the fluid domain and dSw the surface area of the outer tube wall sur-
rounding the control volume. The convective heat flux is modeled
by Newton’s law of cooling:

−�q · �nw ≡ qw = h(Tw − T) (14)

where the heat transfer coefficient h follows from a Nusselt cor-
relation found in the literature. A discussion of available Nusselt
correlations for supercritical water flows is found in Section 2.3.
Combining Eqs. (13) and (14) gives:

Q̇ = 4
D

h(Tw − T) (15)

2.2. 1D model equations

This section describes the steps taken to derive the 1D model
equations from the governing equations given in Section 1.1.  The
simplification starts by writing the equations in one-dimensional
form and by assuming a system operating in steady state. The mass
conservation equation, Eq. (1),  then becomes:

d

dz
(�u) = 0 (16)

Eq. (16) shows that the mass flux �u is constant. Although this
quantity is exactly equal to G, defined in Section 1.3,  the mass flux
will be written as (�u)0 in the conservation equations for clarity.

In the momentum equation, Eq. (2), the z-component of the
volumetric force vector is equal to the gravitational acceleration:

fz = −g (17)

The dilatational viscosity � in Eq. (3) is usually neglected for
practical purposes because the availability of these data is very lim-
ited. It is besides important only when considering effects where
fluid compressibility is essential, such as shock waves and sound
propagation, and can therefore be omitted in this study as well. The
divergence of the viscous stress tensor for a one-dimensional plug

flow then reduces to:

�∇ · ��� = −4
3

�
d2u

dz2
(18)
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Table 2
System range for several quantities.

Parameter Symbol Unit Minimum Maximum

Longitudinal coordinate z m 0 4.0
Temperature T ◦C 350 500
Density �  kg/m3 85 620
Isobaric heat capacity Cp kJ/kg K 3 103
J.L.H.P. Sallevelt et al. / J. of

here � is the dynamic viscosity of the fluid. After substitution
f Eqs. (17) and (18) and subtraction of Eq. (16), the equation for
omentum conservation given by Eq. (2) becomes:

u
du

dz
= −dp

dz
+ 4

3
�

d2u

dz2
− �g (19)

When the kinetic energy in the fluid is assumed to be negligible
n comparison with the internal energy, a simplified form of the
nergy equation can be used in which the temperature appears [1].
his equation can be derived from the total energy equation by
ssuming that the mechanical energy is negligible. The procedure
tarts by writing the energy equation in terms of internal energy.
he internal energy is by definition related to the total energy by:

 ≡ e + 1
2

|�u|2 (20)

Substitution of Eq. (20) into Eq. 4 results in:

∂(�e + (1/2)�|�u|2)
∂t

= − �∇ ·
((

1
2

�|�u|2 + �e
)

�u
)

+ �(�f · �u)

− �∇ · (p�u) − �∇ · (��� · �u) + Q̇ − �∇ · �q (21)

An expression for the mechanical energy is obtained by taking
he dot product of �u with the momentum equation. Multiplication
f Eq. 2 by �u  yields:

∂
∂t

(
1
2

�|�u|2
)

= − �∇ ·
(

1
2

�|�u|2 �u
)

+ �(�f · �u) − �∇ · (p�u)

− p(− �∇ · �u) − �∇ · (��� · �u) − (−��� : �∇�u) (22)

Subtracting Eq. (22) from Eq. (21) yields the equation of change
or internal energy:

∂
∂t

(�e) = − �∇ · (�e�u) − p( �∇ · �u) − (��� : �∇�u) + Q̇ − �∇ · �q (23)

Eq. (23) can be written somewhat more compactly by using the
aterial derivative and the definition of enthalpy h ≡ e + (p/�):

Dh

Dt
= Dp

Dt
−

(
��� : �∇�u

)
+ Q̇ − �∇ · �q (24)

The term on the left-hand side is evaluated in order to obtain an
quation in terms of temperature:

Dh

Dt
= �

(
∂h

∂T

)
p

DT

Dt
+

(
∂h

∂p

)
T

Dp

Dt

= �Cp
DT

Dt
+ �

[
1
�

− T

(
∂(1/�)

∂T

)
p

]
Dp

Dt

= �Cp
DT

Dt
+

[
1 + T

�

(
∂�

∂T

)
p

]
Dp

Dt
(25)

Substitution into Eq. (24) gives the equation of change for tem-
erature:

Cp
DT

Dt
= − T

�

(
∂�

∂T

)
Dp

Dt
− (��� : �∇�u) + Q̇ − �∇ · �q (26)
p

The local heat flux �q is  described by Fourier’s law of heat con-
uction (Eq. (5)). The second term on the right-hand side of Eq.
26) describes viscous dissipation heating. This quantity is always
Thermal conductivity k W/m  K 0.1 0.4
Dynamic viscosity � kg/m s 3 × 10−5 8 × 10−5

positive and, for Newtonian fluids, can be written in the form of a
viscous dissipation function 	v:

−(��� : �∇�u) = �	v (27)

Substitution of Eqs. (5) and (27) into Eq. (26) and replacing the
heat source term by Eq. (15) yields:

�Cp
DT

Dt
= − T

�

(
∂�

∂T

)
p

Dp

Dt
+ �	v + 4

D
h(Tw − T) + �∇ · (k �∇T) (28)

For one-dimensional flow in steady state this becomes:

�Cpu
dT

dz
= − T

�

(
∂�

∂T

)
p

u
dp

dz
+ 4

3
�
(

du

dz

)2

+ 4
D

h(Tw − T)

+ d

dz

(
k

dT

dz

)
(29)

The momentum and energy Eqs. (19) and (29) can be simplified
further by neglecting all terms that have a negligible influence on
the exact solution. These terms may  be identified if the equations
are rewritten in dimensionless form [1]. Evaluation of the result-
ing dimensionless groups and comparing their order of magnitude
provides information on the relative importance of the different
terms.

In the following procedure, fluid properties are assumed con-
stant. Density, conductivity and viscosity are taken as the linear
average of the minimum and maximum values that are to be
expected in the system, which are listed in Table 2.

The extrema shown are derived from the properties of water
in the range between the inlet temperature and wall temperature.
The mean velocity can be derived from Eq. (16) using the mean den-
sity. A representative mean value for the heat capacity at isobaric
conditions is given by:

Cp = 1
Tw − Tin

∫ Tw

Tin

CpdT = hw − hin

Tw − Tin
(30)

where hw and hin are the specific enthalpy of the fluid at wall and
inlet temperature. The dimensionless variables used for the scaling
procedure are:

z̆ = z

l
ŭ = u

u
T̆ = T − Tin

Tw − Tin
�̆ = p  − p0

�gl
(31)

where l is the length of the heated section of the tube and a bar
denotes a system-averaged quantity. Estimations for the contribu-
tion of gravity, flow velocity or viscosity on the relative pressure in
the system clearly point out that the hydrostatic pressure will be
dominant. For this reason, the hydrostatic pressure has been chosen
for scaling the relative pressure.

Substitution of the dimensionless variables defined by Eqs. (31)

into (19) and (29) gives:

ŭ
dŭ

dz̆
= − gl

u2

dp̆

dz̆
+ �

�ul

4
3

d2ŭ

dz̆2
− gl

u2
(32)
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Table 3
Estimations of the dimensionless groups based on mean parameter values.

Group Case 1 Case 2 Case 3

1
Fr 5 × 100 2 × 101 1 × 102

1
Re 1 × 10−8 3 × 10−8 7 × 10−8

Br
FrPr 3 × 10−5 3 × 10−5 3 × 10−5

Br
Pe 7 × 10−14 4 × 10−14 1 × 10−14

Nu −1 −1 −1

u

w
d

u

u

b
c
i
a

a
3
t
o
c
c
i
r

(

w
k

S

s

A

w
m

PeD
6 × 10 5 × 10 6 × 10

1
Pe 6 × 10−9 1 × 10−8 3 × 10−8

˘
dT̆

dz̆
= − gl

Cp�T

T

�

(
∂�

∂T

)
p

ŭ
dp̆

dz̆
+ �u

�Cp�Tl

4
3

(
dŭ

dz̆

)2

+ hl

�CpuD
4(1 − T̆) + k

�Cpul

d2T̆

dz̆2
(33)

here �T  ≡ Tw − Tin. Using a more compact notation for the
imensionless groups:

˘
dŭ

dz̆
= − 1

Fr

dp̆

dz̆
+ 1

Re

4
3

d2ŭ

dz̆2
− 1

Fr
(34)

˘
dT̆

dz̆
= − Br

FrPr

T

�

(
∂�

∂T

)
p

ŭ
dp̆

dz̆
+ Br

Pe

4
3

(
dŭ

dz̆

)2

+ Nu

PeD
4(1 − T̆)

+ 1
Pe

d2T̆

dz̆2
(35)

Since the dimensionless quantities are now scaled to values
etween 0 and O(10), the values of the dimensionless groups indi-
ate which terms are negligible. For the three cases considered
n this study, the following values have been calculated using the
verage of the parameter values listed in Table 2.

Here the heat transfer coefficient in the Nusselt number is
ssumed to be 15,000 W/m2 K in case 1, 6000 W/m2 K in case 2 and
000 W/m2 K in case 3. These values are representative according
o measurement data found in Mokry et al. [8] for a tube diameter
f 10 mm.  Based on the estimations presented in Table 3, it can be
oncluded that viscous effects, internal conduction and enthalpy
hanges due to a pressure gradient may  be neglected without los-
ng much accuracy compared to the full 1D model equations. This
esults in:

d

dz
(�u) = 0 (36)

�u)0
du

dz
+ dp

dz
= −�g (37)

dT

dz
= 4

D

h

(�u)0Cp
(Tw − T) (38)

here the second fraction on the right-hand side of Eq. (38) is also
nown as the Stanton number:

t = h

�uCp
(39)

For numerical implementation, it is convenient to write this
ystem of equations into the form:

�

(�y, z)

dy

dz
= �F(�y, z) (40)

here �y is the vector of flow variables, A(�y, z) is a characteristic
atrix and F(�y, z) is a vector of source terms. When p, u and T are
critical Fluids 68 (2012) 1– 12

chosen as the flow variables, the model equations are represented
by:

⎡
⎣ 0

1
u

0

1  (�u)0 0
0 0 1

⎤
⎦ d

dz

{
p
u
T

}
=

⎧⎪⎪⎨
⎪⎪⎩

− 1
�

d�

dz
−�g

4
D

St(Tw − T)

⎫⎪⎪⎬
⎪⎪⎭ (41)

Dividing by matrix A yields:

d

dz

{
p
u
T

}
=

[ −u(�u)0 1 0
u 0 0
0 0 1

]⎧⎪⎪⎨
⎪⎪⎩

− 1
�

d�

dz
−�g

4
D

St(Tw − T)

⎫⎪⎪⎬
⎪⎪⎭ (42)

This system of equations has been solved explicitly for the pres-
sure, axial velocity and temperature using an Euler scheme.

2.3. Nusselt correlations

Quite a number of Nusselt correlations have been developed
for supercritical heat transfer in tube flows. Most of these empiri-
cal correlations have the general form of a modified Dittus–Boelter
equation [25]:

Nux = C · Ren
x · Prm

x · Fc (43)

where x is an indicator for the temperature which is used to calcu-
late the fluid properties, C is a constant and Fc is a correction factor
that accounts for property variations or entrance effects. A selec-
tion of Nusselt correlations found in literature that may  be suitable
for predicting the heat transfer coefficient in this study is given in
Table 4. A mathematical description of the correlations in the form
of Eq. (43) is found in Table 5.

The correlation of Swenson et al. [26] has been derived from
experimental data of upward supercritical water flows. It evalu-
ates the majority of fluid properties at wall temperature. Yamagata
et al. [18] conducted experiments on horizontal and vertical super-
critical water flows. The most extensive data were obtained for
the vertically upward flow in a 10 mm tube. After excluding the
measurements obtained in the region of deteriorated heat transfer,
mainly these data were used to derive the proposed correlation.
The correlation includes a correction factor depending on the Eckert
number E, which is defined as:

E = Tpc − Tb

Tw − Tb
(44)

Mokry et al. [8] derived a correlation on basis of measurements
conducted at the supercritical test facility of the Institute for Physics
and Power Engineering in Obninsk, Russia. The experimental data
were collected from supercritical water flows in 10 mm pipes.

2.4. Boundary conditions

The 1D heat transfer model requires inlet conditions to calculate
further towards the end of the tube. In addition, the wall temper-
ature is needed as a boundary condition. The inlet and boundary
conditions are set as listed in Table 1. These conditions are in agree-
ment with the conditions that were selected for measurements in
supercritical water found in Mokry et al. [8],  which enables val-
idation of the simulation results. The experimental data includes
measurements of the inner wall temperature for a heated upflow
of water using uniform wall heat flux. The inner wall temperature

data has been adopted as the wall condition for the simulations.

On basis of the validity ranges shown in Table 4, the Nusselt cor-
relations of Swenson et al., Yamagata et al. and Mokry et al. have
been selected to prescribe the local heat transfer from the wall
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Table  4
A  selection of Nusselt correlations for heated, aiding tube flow at supercritical pressures and their parameter ranges.

Correlation p [MPa] G [kg/m2 s] Q [kW/m2] D [mm] Tb [◦C]

Swenson et al. [26] 23–41 542–2150 200–2000 9.4 75–576
Yamagata et al. [18] 23–29 310–1830 120–930 7.5, 10 230–540
Mokry et al. [8] 24 200–1500 ≤ 1250 10 320–406

Table 5
Description of the selected Nusselt correlations according to Eq. (43).

Correlation x C n m Fc

Swenson et al. [26] w 0.00459 0.923 0.613

(
Cp

Cp,w

)0.613(
�w
�b

)0.231

Yamagata et al. [18] b 0.0135 0.85 0.8 F =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1.0 for E > 1

0.67 · Pr−0.05
pc

(
Cp

Cp,b

)n1

for 0 ≤ E ≤ 1(
Cp

Cp,b

)n2

for E < 0

Mokry  et al. [8] b 0.0061 0.904 

F
e

t
p

c
b

3

u
T
s
t
t
t
u
D

1
d

ig. 12. Temperature as function of the tube height for G = 1000 kg/m2 s using differ-
nt  Nusselt correlations. Experimental data reproduced with permission of Elsevier.

o the fluid. These three correlations result in three temperature
rofiles for each of the considered mass fluxes.

Since the density gradient in the elements, d�/dz in Eq. (42), is
alculated using backward differences, this gradient is assumed to
e zero for the first element to avoid numerical errors.

. Results and validation

The 1D heat transfer model presented in this article has been
sed to predict the bulk-fluid temperature for the cases shown in
able 1. Temperature predictions using the correlations of Swen-
on et al., Yamagata et al. and Mokry et al. have been compared
o experimental data found in Mokry et al. [8].  The experimental
emperature profiles were constructed by measuring the bulk-fluid
emperature at the inlet and outlet and then calculating the profiles
sing a simple heat balance (I.L. Pioro, personal communication,

ecember 14, 2011).

The calculated fluid temperature profiles for a mass flux of
000 kg/m2 s are shown in Fig. 12 together with the experimental
ata. This case fits well within the ranges of validity listed in Table 4.
0.684

(
Cp

Cp,b

)0.684(
�w
�b

)0.564

The slope of the temperature profile decreases while approaching
the pseudo-critical point at 381 ◦C. The phase change requires a
lot of energy due to the high heat capacity in the vicinity of this
point, causing the temperature increase to slow down. Once the
fluid temperature has passed the pseudo-critical point, the slope of
the lines tends to restore. When the bulk temperature is raised fur-
ther, the rate of heat transfer is expected to decline since the driving
force will decrease. The decrease is not visible in the results, how-
ever, which indicates that the heat transfer may  still be governed
by other effects like for example boiling effects.

The best match with the measurements is obtained when using
the correlation of Mokry et al. or Swenson et al. The excellent agree-
ment in temperature profiles demonstrates that, in case a suitable
Nusselt correlation is available, the model is capable of accurately
calculating the fluid temperature from wall temperature data at
supercritical conditions. The correlation of Yamagata results in a
good match up to the region where the fluid reaches pseudocriti-
cal conditions. From this point, the rate of heat transfer and hence
temperature is overpredicted. Apparently, the large hump in the
heat flux around the the pseudocritical point seen in Fig. 13 is not
realistic for this case.

The graphs illustrate that not all correlations give similar results,
despite of the fact that they should all be applicable for this case.
Therefore, selecting the right correlation solely based on the param-
eters considered in Table 4 may  not be adequate. In order to study
the sensitivity of the selected Nusselt correlations to the mass flux,
a second and third case have been simulated using a mass flux of
500 and 200 kg/m2 s, respectively. The results are shown in Fig. 14
and 15,  together with the experimental data for this particular mass
flux.

Figs. 14 and 15 show that the correlations of Mokry et al. and
Swenson et al. give accurate predictions of the bulk temperature
for these mass fluxes as well. The results based on the correlation
of Yamagata et al. are however worse compared to the results in
Fig. 12.

Fig. 16 points out that the heat flux for G = 200 kg/m2 s is again
overpredicted in a broad range around the pseudocritical temper-
ature. The heat flux graphs for G = 500 kg/m2 s are similar, but have

been omitted here to save space. Clearly, the correlation of Yama-
gata et al. is outperformed by the correlation of Swenson et al., even
though the validity range of the latter does not include these low
mass fluxes.
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Fig. 13. Wall heat flux as function of the tube height (a) and bulk temperature (b) for G = 1000 kg/m2 s using different Nusselt correlations.

Fig. 14. Temperature as function of the tube height for G = 500 kg/m2 s using differ-
ent  Nusselt correlations. Experimental data reproduced with permission of Elsevier.

Fig. 15. Temperature as function of the tube height for G = 200 kg/m2 s using differ-
ent Nusselt correlations. Experimental data reproduced with permission of Elsevier.

Fig. 16. Wall heat flux as function of the tube height (a) and bulk temperature (b) for G = 200 kg/m2 s using different Nusselt correlations.
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. Discussion

The large deviation between results based on the correlation of
amagata et al. and results based on the other two correlations may
e explained by considering boiling effects. According to the theory
f heat transfer at supercritical pressures (Section 1), pseudo-film
oiling can highly influence heat transfer at supercritical pressures
epending on the flow conditions. A combination of several param-
ters including tube diameter, pressure, mass flux and heat flux
etermines which heat transfer regimes will occur inside the tube
i.e. normal, improved or deteriorated heat transfer).

For the cases considered in this study, the heat flux seems to
xceed or approach the critical value indicated by Fig. 4. Therefore,
t can be expected that peaks in the heat flux around the pseudo-
ritical point are lower, flattened or do not occur at all. In contrast to
he other two correlations considered in this study, the correlation
f Yamagata et al. was derived from experimental data from which
easurements obtained in the region of deteriorated heat trans-

er were excluded [18]. This is a possible reason why the heat flux
redicted by Yamagata et al. is incorrect for the cases considered in
his article. In cases where deterioration of heat transfer does not
ccur, the correlation might show better accuracy.

The influence of buoyancy forces can be estimated by calculat-
ng the criterion of Aicher and Martin (Eq. (9)). In Case 3, the value
f this criterion mainly varies between 0.05 and 0.2 over the first
alf of the tube. According to Fig. 5, the flow in this region should
ence be classified as aided mixed convective flow, for which the
usselt number is significantly lower compared to pure forced con-
ection. Here, both buoyancy forces and pseudo-film boiling could
ave been responsible for the low heat transfer rates. However,
eat transfer rates in Case 1 are also much lower than predicted by
he Dittus–Boelter equation, whereas this case should be classified
s (nearly) pure forced convection over the entire tube length. With
alues lower than 0.08 for the criterion, buoyancy forces are proba-
ly not the cause for the low heat transfer rates in this case. In Case
, only a small region of mixed convective flow is observed near the

nlet, which cannot explain the decreased heat transfer rate over a
arge part of the tube.

Assuming that boiling effects are the main reason for the large
ifferences between the predictions observed in Section 3, it is

mportant to know on beforehand if the critical heat flux will be
xceeded when selecting a Nusselt correlation for the 1D model. An
stimation for the critical heat flux can be made using the criteria
roposed by Yamagata et al., Eq. (7),  or by Mokry et al., Eq. (8).  How-
ver, it should be noted that there is still no unique definition for
he onset of heat transfer deterioration, because this phenomenon
ehaves rather smoothly [9].

The sensitivity of the results for other parameters than mass
ux has not been studied by the authors. In order to study the

nfluence of boiling effects for this tube geometry in more detail, a
wo-dimensional model has been developed and will be presented
n a next article.

. Conclusions

Based on a literature study, it can be concluded that the prop-
rty variations of water in the vicinity the (pseudo)critical point
ignificantly influence the heat transfer. Depending on the flow
onditions, the variations in fluid properties can result in heat trans-
er enhancement or deterioration. In literature, these effects have

een related to boiling phenomena and to acceleration of the fluid
ue to buoyancy forces. Acceleration of the fluid near the boundary

ayer is assumed to influence the turbulent diffusivity in the region
here turbulence plays an important role in the heat transfer.

[
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In this work, heat transfer to supercritical water has been mod-
eled in a one-dimensional domain by using a plug flow approach.
Viscous effects, internal conduction and enthalpy changes due to a
pressure gradient have been neglected after evaluation of the gov-
erning equations in dimensionless form. Nusselt correlations are
required for predicting the heat transfer coefficient in order to close
the set of equations.

The results of the simulations for three different cases show that
the model is able to accurately predict the bulk temperature based
on heat transfer rates provided by a suitable Nusselt correlation.
However, the results also give reason to assume that the correla-
tions are very specific for the flow conditions of the experiments
from which the Nusselt correlations were derived. Different cor-
relations that are all valid for the selected operating conditions do
not necessarily give the same result.

The large deviation between the predictive capability of the cor-
relations suggest that it is important to consider boiling effects
that occur when a critical heat flux is reached. Although the agree-
ment with a 2D simulation is yet to be investigated in a subsequent
article, it can be said that the accuracy of the correlation for the
simulated case will be crucial for the quality of the 1D model.
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