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ABSTRACT: The dependence on the temperature of the population of the ith state, Pi, in the
Boltzmann distribution is analyzed by studying its derivative with respect to the temperature, T.
A simple expression is found, involving Pi, the energy of the state, Ei, and the average energy, ⟨E⟩.
This relation is completely general (it has the same form in all the thermodynamic ensembles),
and it has a relevant didactic content, given that it predicts the qualitative variation of Pi with T
even in complex systems. The derivation of this relation, the discussion of its properties, and its
application to simple problems is appropriate for a statistical thermodynamics course in the
chemistry curriculum.
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The Boltzmann distribution plays a central role in
university-level statistical thermodynamics courses. Its

derivation depends on the thermodynamic ensemble consid-
ered and is, in general, attained by maximizing the number of
states of the supersystem (the Ω or W function, see refs 1−3
for an exhaustive definition) following an approach based on
the use of the Lagrange multipliers to take into account the
various constraints (which depend on the specific thermody-
namic ensemble). This approach is described in most textbooks
on this subject (see, for instance, refs 1−4), but alternative
approaches have been reported in this journal.5−14 The reader
is referred to the cited books and articles for more details. Here
it is worth noting that in statistical thermodynamics in the
chemistry curriculum the system under study is usually
assumed to have a set of discrete (possibly infinite in number)
states and the case of a continuum of states is not treated
explicitly. In this paper, we apply the same assumption.
The full derivation of the Boltzmann distribution is not

relevant for this paper, and we limit ourselves to report that, for
the Canonical statistical ensemble, the fractional number of
systems in the ith state, Pi, (also known as population or
probability of occupation of the ith state) with energy Ei is
given by
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The Canonical partition function is then linked to the key
quantities of classical thermodynamics (internal energy, U;
enthalpy, H; Helmholtz free energy, A; Gibbs free energy, G;
entropy S; pressure, p; constant volume heat capacity, CV; etc.),
showing that the knowledge of Q gives access to all of them
(see, for instance, refs 1−3). The same approach can be
followed for the molecular partition function, q, or for the
grand canonical partition function, Ξ.
In such a scheme, the state populations Pi play a central role,

given that they describe the properties and the behavior of a
system in a simple pictorial way. Consider, for instance, the
logical sequence of arguments: if kBT is much smaller than the
energy separation between the first and second states of a
system then the Pi are not affected by a small change in T, and
then also the average energy ⟨E⟩ = ∑jPjEj remains unchanged,
and the constant volume heat capacity, CV, is zero (this scheme
can be used to explain why CV = 0 for T = 0 in the Einstein
model of a solid). Another example of the use of the Pi is given
by the interpretation of the entropy of a system using the
equation

∑= −S k P Plog
j

j jB
(4)

Despite the importance of the state populations Pi, their
dependence on T is normally discussed only for the simple two-
state model, whereas a simple scheme is missing for more
complex systems. In this paper, we address this aspect from a
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general point-of-view and show that the dependence of Pi on T
can be described in simple terms.

■ MATHEMATICAL DERIVATION
Starting from eq 1, the derivative of Pi with respect to T at
constant volume is
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Equation 5 can be further simplified by remembering that the
average energy, ⟨E⟩, is related to Q by
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Using this expression, eq 5 becomes
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If the derivation is performed for the population of a
molecular state (for which we use the same symbol, Pi, used for
the populations of the macrostates of the canonical ensemble)
with energy εi, one obtains formally the same equation
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where ⟨ε⟩ is the average molecular energy
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and q is the molecular partition function. In the following, eq 7
is analyzed, but the same considerations hold also for eq 8.
Equation 7 is a useful relation. Indeed, it identifies three

different situations:

• Ei > ⟨E⟩: (∂Pi/∂T)V is positive, and therefore Pi increases
with T.

• Ei = ⟨E⟩: (∂Pi/∂T)V = 0, so Pi is stationary with respect to
T and has its maximum value.

• Ei < ⟨E⟩: the derivative (∂Pi/∂T)V is negative, and
therefore Pi decreases if T increases.

It is worth noting that ⟨E⟩ is a growing function of T. Indeed,
the derivative of ⟨E⟩ with respect to T at constant volume is the
constant volume heat capacity, CV, which can be shown to be
always positive with simple thermodynamic arguments. In
statistical thermodynamics, one can show that
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where use has been made of eq 7 for (∂Pj/∂β)V and ΔE2 = ⟨E2⟩
− ⟨E⟩2 is the variance of the energy, a measure of the dispersion
of the energy around its average value.

Such dependence of ⟨E⟩ on T, together with the assumption
that the energy of the lowest state is taken as 0 (as often done
to simplify the equations; see, for instance, ref 2), describes in
simple terms the behavior of a system with a set of discrete
states upon heating, starting from T = 0 (for which P0 = 1 and
Pi = 0 ∀i ≠ 0):

• For T very close to zero (kBT≪ [E1−E0]), the only state
with energy lower than ⟨E⟩ is the lowest state and,
therefore, the population of this state decreases as T
increases, whereas the populations of all other states
increase. In kinetic language, we can say that the increase
of T promotes a fraction of the systems from the lowest
state to the other states.

• Increasing T up to a certain value, one possibly has E1 =
⟨E⟩: at this temperature P1 reaches a maximum.

• For the values of T for which E1 < ⟨E⟩ < E2, the
populations of states 0 and 1 decrease with T, whereas
the populations of the other states increase.

• A similar behavior is shown also for other states:
increasing T, the population increases, it possibly reaches
a maximum, and then it decreases.

It is worth noting that for systems with a finite number of
states, ⟨E⟩ reaches a limiting value for T → ∞. (All states have
the same population, and the average energy is the arithmetic
mean of the energies of the states.) Therefore, for all states
higher in energy than this limiting value, Pi is an increasing
function of T (the maximum is approached only at the limit T
→ ∞).
The dependence of Pi on T is often presented for the two-

state model, for which the two populations show a monotonic
behavior (decreasing for the lowest state and increasing for the
highest one, see Figure 1), as can be expected from eq 7 and

from the considerations reported in the previous paragraph.
(Note that the average energy is always lower than half the
energy separation between the two states.) It is worth noting
that for a system with three equally spaced states, the Pi are also
monotonic functions of T (decreasing for the lowest state and
increasing for the other two states), given that ⟨E⟩ is always
lower than the energy of the second and third states for any
finite temperature. From these examples, the students can
extend such results to more complex systems, thus supposing
that the population of the lowest state is a decreasing function

Figure 1. Populations, P0 and P1, for the two-state model.
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of T, whereas for the other states it is an increasing function of
T. In light of the discussion above, this interpretation is not
correct and the populations of some states can exhibit a more
complex behavior.
Another consideration concerns the derivative of Pi with

respect to T for T = 0, which is equal to zero for all states.
Indeed, note that for T → 0, β2 goes to ∞ as T−2, whereas the
term Pi[Ei − ⟨E⟩] goes to 0 with an exponential decreasing (for
the lowest state due to the E0 − ⟨E⟩ term, for the other states
due to the Pi term). This has consequences on the classical
thermodynamic properties, such as the internal energy, which
has a vanishing derivative with respect to T at T = 0.
Equation 7 provides the students with a simple interpretative

model that can be used to guess the variation of the populations
Pi with respect to T, even in complex systems. It expresses a
general relation that can be obtained also in the grand canonical
ensemble or for the molecular partition function (see eq 8).
The meaning of the average energy as well as the “state” energy
is obviously dependent on the specific theoretical frame, but
expressions 7 and 8 remain valid.
In the next section, the ideas here developed are applied to a

few didactically relevant cases.

■ EXAMPLES OF THE DIDACTIC USE OF EQS 7 AND
8 AND OF THEIR APPLICATION TO MODEL
SYSTEMS

Relations shown in eqs 7 and 8 are, in our opinion, interesting
from the didactic point of view, given that they link the
variation of Pi (with respect to T) with the difference between
the energy of the ith state and an “intuitive” quantity, the
average energy ⟨E⟩, which also has a direct connection with a
classical thermodynamics property, the internal energy, U.

Verification that the Constant Volume Heat Capacity is
Always Positive

The derivation reported in the previous section concerning the
dependence of ⟨E⟩ on T (see eq 10) gives us the opportunity to
highlight the didactic usefulness of eq 7 with a first example.
Indeed, the fact that CV is always positive, that is, that ⟨E⟩ is an
increasing function of T, can be presented as a trivial
consequence of eq 7, given that under a small variation of T,
the populations of all states with energies lower than ⟨E⟩
decrease while the populations of all states with energies higher
than ⟨E⟩ increase, leading to an increase of ⟨E⟩. This
consideration can provide a simple pictorial representation of
the origin of the variation of ⟨E⟩ with T.

Harmonic Oscillator

This system is used as a model in the presentation of different
topics of statistical thermodynamics (such as, for instance, the
Einstein model of a solid and the vibration in molecules), and
for this reason, it is relevant to discuss how the populations of
the states change with the temperature. This aspect has been
ignored in general in the standard didactic program, in our
opinion, because a simple approach was missing. This system is
in general studied using the molecular partition function, q,
which is defined using the energy of a single system (indicated
with the symbol εi) instead of the energies of a collection of N
systems (indicated with Ei) as done in the canonical ensemble.
This approach is used also in the following. The use of eq 8
allows a simple discussion of the modification of the
populations with T, as shown hereafter.

For this system (an infinite number of equally spaced states
with εj+1 − εj = ε), the molecular partition function, q, and the
average energy, ⟨ε⟩, are

=
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where it has been assumed that the first state has an energy
equal to zero so that εI = iε (where i = 0, 1, 2, ...). In this case,
⟨ε⟩ → ∞ if T → ∞. Therefore, from eq 8 one can say that all
the states of the systems (except the lowest one) have Pi = 0 for
T = 0, and then Pi increases, reaches a maximum, and then goes
to zero (for T → ∞ one has Pi → 0 for all states). The lowest
state always has an energy lower than ⟨ε⟩ (apart from when T =
0, where the two quantities are equal), so its population
continuously decreases from 1 for T = 0 to 0 for T → ∞.
For the other states, Pi reaches a maximum when εi = ⟨ε⟩,

that is
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After a few algebraic steps, one eventually obtains that the
temperature Ti*, for which Pi is maximum, is
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A pictorial representation of the dependence of Pi on T for
the first four states of the harmonic oscillator is shown in Figure
2 (left scale), together with the dependence of ⟨ε⟩ on T (right

Figure 2. Populations of the first four states (red lines, left scale) and
reduced average energy (⟨ε⟩/ε, blue line, right scale) of the harmonic
oscillator as a function of the reduced temperature T/θ. Vertical black
lines are at T/θ = 1.4427, 2.4663, and 3.4761 (the values for which one
of the Pi is maximum, see eq 14). The horizontal black lines are at ⟨ε⟩/
ε = 1, 2, and 3.
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scale). In this figure, use has been made of the reduced
temperature (T is expressed in units of θ = ε/kB, and the
energies are expressed in units of ε). To facilitate the reading of
this graphical representation, three horizontal lines (corre-
sponding to ⟨ε⟩/ε = 1, 2, and 3) and three vertical lines
{corresponding to T/θ = [log(2)]−1, [log(3/2)]−1, and [log(4/
3)]−1} have been added. Although the population of the first
state is always decreasing, the other three states present a
maximum for the values of T/θ for which the average energy is
equal to the energy of the state.

System of n + 1 Equally Spaced States

The model of a finite set of equally spaced states is perhaps less
central in the course of statistical thermodynamics than the
harmonic oscillator, nevertheless, it is used, for example, to
discuss the coupling of a magnetic moment due to a spin
(nuclear or electronic) with a magnetic field.
Here, we consider a model system with a finite number, n +

1, of equally spaced states (ε is the energy difference between
two successive states). The energies of the states are εj = iε, for
0 ≤ i ≤ n.
In this system, the molecular partition function is
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and the average energy can be written in the form
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where ⟨εharm⟩ is the average energy of the harmonic oscillator
(defined in eq 12). From eq 17 one gets the following limits:

• limT→∞ q = n + 1;
• limn→∞ ⟨ε⟩ = ⟨εharm⟩ (for any finite value of T, Pn goes

exponentially to zero when n goes to infinity);
• limT→∞ ⟨ε⟩ = [(nε)/2]

In this case, one cannot obtain the analytic expression for the
temperatures at which the Pi are maximized, but these values
can be computed numerically. We have considered, for
instance, the cases of 5 and 10 equally spaced levels. The
dependence of the populations of the first four states and of
⟨ε⟩/ε on T/θ is displayed in Figures 3 and 4. In Table 1, we
report the values of T/θ for which Pi is maximum and the
corresponding value of Pi (T*/θ and P*, respectively) for the
two cases n + 1 = 5 and n + 1 = 10, as well as for the harmonic
oscillator for the sake of comparison. The dependence on T of
the state populations is clearly different from that observed for
the harmonic oscillator. These differences can easily be
understood using eq 8. Indeed, from Figures 2, 3, and 4, one
clearly notes that the increase of average energy with T is less
pronounced in the cases of a finite number of states than for the
harmonic oscillator. For this reason, the values of T for which
⟨ε⟩ is equal to εi are higher for a finite number of states than for
the harmonic oscillator. This displacement is more and more
pronounced as n decreases. Moreover, with a finite number of
states, the average energy tends to a limiting value when T →
∞: in the present case limT→∞ ⟨ε⟩/ε = 2.0 and 4.5 for n + 1 = 5
and 10, respectively. For this reason, Pi has a maximum for only
one state for the system with n + 1 = 5 and for four states for
the system with n + 1 = 10.

Maxwell−Boltzmann Distribution of Speed

Let us consider the Maxwell−Boltzmann distribution of speed,
v,
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This equation is usually commented upon by using a pictorial
representation in which f(v) is shown as a function of v at
various temperatures, highlighting that the curves have a
maximum for v = (2/βm)1/2. By increasing T, the maximum
appears therefore at higher values of v: it is lower and the curve
is broader. From the comparison of the curves at two different
temperatures, T1 and T2, one notes that for some speeds, f(v) is

Figure 3. Populations of the first four states (red lines, left scale) and
reduced average energy [⟨ε⟩/ε, blue line, right scale] for a system of
five equally spaced levels as a function of the reduced temperature T/
θ. The vertical black line is at T/θ = 1.7665 (the value for which P1 is
maximum). The horizontal black line is at ⟨ε⟩/ε = 1.

Figure 4. Populations of the first four states (red lines, left scale) and
reduced average energy [⟨ε⟩/ε, blue line, right scale] for a system of
ten equally spaced levels as a function of the reduced temperature T/θ.
The vertical black lines are at T/θ = 1.4534 and 2.7345 (the values for
which P1 and P2 are maximum, respectively). The horizontal black
lines are at ⟨ε⟩/ε = 1 and 2.
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lower at T1 than at T2 and that for other speeds the contrary
happens. How can this be explained? To face this point, let us
consider a simple didactical problem.
Consider an infinitesimal change in the temperature from T

to T + δT. For which speeds will f(v) decrease, and for which
will it increase? This problem can be solved by setting the
derivative of f(v) with respect to T equal to zero, eventually
obtaining after some algebraic steps, that for v lower than (3/
βm)1/2, f(v) decreases, while for higher values, f(v) increases.
The quantity (3/βm)1/2 is also known as the root-mean-
squared speed.
On the other hand, this result can be trivially obtained using

eq 8 (one can easily verify that this equation is valid also for a
continuous distribution of the energies if the concept of the
“population” of a state with a given energy is changed to that of
“density of particles” with that energy). Note that in this
problem, f(v) plays the role of the populations in the case of
discrete states. The translational average energy is ⟨ε⟩ = [3/
(2β)], while the kinetic energy of a particle is ε = mv2/2. The
equality ε = ⟨ε⟩, which following eq 8 equals to zero the
derivative of the density of particles with respect to the
temperature, is valid for v = (3/βm)1/2. This derivation also
clarifies why the root-mean-squared speed is the required
quantity: it is the speed for which the kinetic energy is equal to
the average energy and it is another important value to be
discussed along with the most probable speed, vp = (2/βm)1/2,
and the mean speed, v = (8/πβm)1/2.
Dependence on T of the Rotational Structure of the
Vibrational Spectrum of Diatomic Molecules

Another important subject in the chemistry curriculum is
considered: the rotational structure of the vibrational spectrum
of diatomic molecules. In the classroom, the problem is usually
discussed by showing a graphical representation in which the
intensities of the bands in the P- and R-branches are reported
for a given temperature. In such a problem, after a set of
approximations (see ref 15, chapter III for a complete
discussion), the band intensities are proportional to the
population of the rotational level with quantum number J in
the starting state, which, in turn, is proportional to (2J + 1)
e−βJ(J + 1)hcB (where B is the rotational constant and c the speed
of light).
Also in this case, in our opinion, it is relevant to discuss how

the rotational structure of the spectrum changes upon a

modification of the temperature, with particular attention to the
bands that are expected to be less intense after a small
modification of the temperature and to those that, on the
contrary, will be more intense. The discussion can be simplified
(gaining in the conceptual comprehension of the problem), if
the rotational level can be considered dense with respect to the
thermal energy β−1 so that J can be considered as a continuous
variable. As in the case of the Maxwell−Boltzmann distribution
of the speed, one can proceed by setting the derivative of the
population with respect to T equal to zero, but the same result
can be obtained trivially from eq 8 by setting the energy of the J
level, J(J + 1)hcB, equal to the average energy for a rigid rotator,
which, with the approximations here considered, is ⟨ε⟩ = β−1,
thus obtaining

β
+ =J J

hcB
( 1)

1
(19)

This equation can be further simplified for large J, obtaining

β
=J
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1

(20)

Therefore for J lower than (βhcB)−1/2, the band intensity will
reduce and the opposite will happen for higher J. A simulation
of the spectrum of two diatomic molecules at three different
temperatures is reported at page 126 of Herzberg’s book (ref
15): the reported spectra can be intuitively discussed using the
logic here reported. Other more complex examples in which the
populations of the rotational states are discussed can be found
in literature, for instance ref 16 (see Figure 2).
Dependence on T of the Isomer Concentrations for an
Isomeric Equilibrium

Consider a molecule with two isomers A and B that are in
equilibrium

⇄A B

This problem is treated in most textbooks of statistical
thermodynamics. The full set of states of the molecule can be
divided in two subsets, those indicated with the index iA (iB)
describing isomer A (B), so that
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The numbers of isomers A and B, NA and NB, are
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where use has been made of eq 8 and ⟨εA⟩ is the average energy
of the A isomer
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By noticing that

Table 1. Values of T/θ (T*/θ) for which the Population
Reaches a Maximum (P*) for the Lowest States of the
Systems with 5 and 10 Equally Spaced Levels and for the
Harmonic Oscillator

i 5 statesa 10 statesa harmonic oscillator

T*/θ P* T*/θ P* T*/θ P*

1 1.7665 0.2608 1.4534 0.2503 1.4427 0.2500
2 2.7345 0.1513 2.4663 0.1481
3 5.1834 0.1151 3.4761 0.1055
4 16.3976 0.1015 4.4814 0.0819
5 5.4848 0.0670
6 6.4872 0.0567
7 7.4889 0.0491
8 8.4902 0.0433
9 9.4912 0.0387

aWhen the values are not reported, the population shows a monotonic
increase as a function of T (without a maximum).
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(⟨εB⟩ is defined analogously to ⟨εA⟩), one eventually has
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This equation can be used to qualitatively discuss the
variation of NA and NB as a function of temperature. It is worth
noticing that in this approach the energies of the two isomers
are measured from a common zero.
Suppose that A has the lowest ground-state energy (the

reaction A → B is endothermic): at low T, the average energy
⟨εA⟩ is lower than ⟨εB⟩ and the derivative in eq 26 is negative,
thus NA is a decreasing function of T. By increasing T, both
⟨εA⟩ and ⟨εB⟩ increase and, in general, the energy inequality
⟨εA⟩ < ⟨εB⟩ remains valid (note that the translational
contribution to the average energy is the same for the two
isomers, therefore only the internal degrees of freedom have a
differential effect). In this situation, NA continuously decreases
as T increases. Obviously, the contrary happens for NB.
However, one can imagine that for some particular cases, ⟨εA⟩
can grow upon heating faster than ⟨εB⟩, so that for a given T*,
one eventually has ⟨εA⟩ = ⟨εB⟩ and for higher temperatures,
⟨εA⟩ > ⟨εB⟩. In such a situation, NA will show a minimum (NB a
maximum) for T = T*. This behavior, even if not common, has
been found in studies concerning the relative stability of
fullerene isomers as a function of T.17−19 When more than two
isomers are considered in the equilibrium, a generalization of eq
26 must be used

∑β ε ε
∂
∂

= ⟨ ⟩ − ⟨ ⟩
≠

⎛
⎝⎜

⎞
⎠⎟

N
T

N
N

k N [ ]
V I A

I
A A

B
2
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At the end of this section, it is worth noticing that the
dependence of Pi on T in all the systems considered here can be
fully accounted for (both qualitatively and quantitatively) by
the strategy developed in the Mathematical Derivation. The
didactic effectiveness of eqs 7 and 8, in particular, is borne out
by the simplification it brings to the analysis of the qualitative
behavior of Pi, as well as by the possibility to have a simple
model accounting for the complex behavior of the system under
study.

■ CONCLUSION

We have presented the derivation of a simple equation relating
the energy difference Ei − ⟨E⟩ (the energy of a given state i
minus the average energy) to the derivative of the population of
the ith state (Pi) with respect to the temperature. Such a
relation, in the authors’ opinion, has a relevant didactic content,
as has been shown by the examples discussed here. The
dependence of Pi on T can be simple (monotonic increase or
decrease) or more complex (a first part in which Pi increases
with T and a second part where Pi decreases with T). This
behavior may appear counterintuitive for the students if the
dependence of Pi on T is discussed only for simple models
(such as the two-state model). We suggest including this
derivation and some simple applications in the statistical
thermodynamics courses just after the derivation of the
equation that relates ⟨E⟩ to the partition function.
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