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� Relate macroscopic permeability to
microscopic fiber arrangements.
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Owing largely to multiscale heterogeneity in the underlying fibrous structure, the physics of fluid flow in
and through fibrous media is incredibly complex. Using fully resolved finite element (FE) simulations of
Newtonian, incompressible fluid flow perpendicular to the fibers, the macroscopic permeability is
calculated in the creeping flow regime for arrays of random, ideal, perfectly parallel fibers.

On the micro-scale, several order parameters, based on Voronoi and Delaunay tessellations, are
introduced to characterize the structure of the randomly distributed, parallel, non-overlapping fiber
arrays. In particular, by analyzing the mean and the distribution of the topological and metrical
properties of Voronoi polygons, we observe a smooth transition from disorder to (partial) order with
decreasing porosity, i.e., increasing packing fraction.

On the macro-scale, the effect of fiber arrangement and local crystalline regions on the macroscopic
permeability is discussed. For both permeability and local bond orientation order parameter, the
deviation from a fully random configuration can be well represented by an exponential term as function
of the mean gap width, which links the macro- and the micro-scales.

Finally, we verify the validity of the, originally, macroscopic Darcy's law at various smaller length
scales, using local Voronoi/Delaunay cells as well as uniform square cells, for a wide range of porosities.
At various cell sizes, the average value and probability distributions of macroscopic quantities, such as
superficial fluid velocity, pressure gradient or permeability, are obtained. These values are compared
with the macroscopic permeability in Darcy's law, as the basis for a hierarchical upscaling methodology.

& 2013 Elsevier Ltd. All rights reserved.
ll rights reserved.

i),
1. Introduction

Fluid flow through fibrous materials has a wide range of applica-
tions including, composite materials, fuel cells, heat exchangers,
(biological) filters and transport of ground water and pollutants
(Bird et al., 2001). Permeability, i.e. the ability of the fluid to flow, is
perhaps the most important property in their manufacturing.

www.elsevier.com/locate/ces
www.elsevier.com/locate/ces
http://dx.doi.org/10.1016/j.ces.2013.04.049
http://dx.doi.org/10.1016/j.ces.2013.04.049
http://dx.doi.org/10.1016/j.ces.2013.04.049
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ces.2013.04.049&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ces.2013.04.049&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ces.2013.04.049&domain=pdf
mailto:kyazdchi@gmail.com
mailto:k.yazdchi@utwente.nl
http://dx.doi.org/10.1016/j.ces.2013.04.049


K. Yazdchi, S. Luding / Chemical Engineering Science 98 (2013) 173–185174
Prediction of the macroscopic permeability is a longstanding but still
challenging problem that dates back to the work of Happel (1959)
and Kuwabara (1959) with more recent contributions by Sangani and
Acrivos (1982), Drummond and Tahir (1984), Gebart (1992) and
Bruschke and Advani (1993). Most of these models/predictions are
complex with limited range of validity. For example, Gebart (1992)
presented an expression for the transverse permeability based on the
lubrication approximation valid for ordered structures, which are
different from the generally disordered fibrous materials. For a
review of the theory, predictability and limitations of these models
see Yazdchi et al. (2012), Deen et al. (2007) Zhu et al. (2008) and
references therein.

Based on the orientation of the fibers in space, fibrous struc-
tures can be categorized into three different classes: (i) 1D
structure in which all fibers are parallel with each other
(Sangani and Yao, 1988; Narvaez et al., 2013), (ii) 2D structure in
which fibers lie in parallel planes with directional or random
orientations (Sobera and Kleijn, 2006; Jaganathan et al., 2008) and
(iii) 3D structures in which fibers are directionally or randomly
oriented in space (Tomadakis and Robertson, 2005; Clague et al.,
2000; Stylianopoulos et al., 2008; Tomadakis and Sotirchos, 1993).
In general, macroscopic transport properties such as permeability
(or e.g. the heat transfer coefficient) are functions of geometrical
features of the porous medium; thus determination of exact
transport properties for 3D real fibrous materials with random
structures is very complex and in many cases not possible.
However, several researchers have argued that, in principle, the
permeability of random 2D and 3D media can be related to their
values for 1D structures (Jackson and James, 1986; Tamayol and
Bahrami, 2011; Mattern and Deen, 2007). Therefore, as basic step,
to provide physical insight into the significance of the microscopic
structure for the macroscopic transport properties, the transverse
permeability of 1D random structures is investigated in the
present study.

Darcy's law is the most widely used empirical relation for the
calculation of the pressure drop across a homogeneous, isotropic
and non-deformable porous medium. It states that, at the macro-
scopic level and the limit of creeping flow regimes, the pressure
gradient ∇p, and the flow rate have a linear relation given by

−∇p¼ μ

K
U; ð1Þ

where μ and U are the viscosity and the horizontal superficial
(discharge) velocity, respectively. The proportionality constant K, is
called the permeability of the medium and it strongly depends on
the microstructure (e.g. fiber/particle shape and arrangement, void
connectivity and inhomogeneity of the medium) and porosity.
Darcy's law was originally obtained from experiments (Lage and
Antohe, 2000) and later formalized using upscaling (Whitaker,
1986), homogenization (Mei and Auriault, 1991) and volume
averaging (Valdes-Parada et al., 2009) techniques. It has been
shown that Darcy's law actually represents the momentum equa-
tion for Stokes flow averaged over a representative volume
element (RVE). In fact, in this representation, all complicated
interactions between fluid and solid (fibers) are lumped into the
permeability (tensor), K.

The lack of a microscopic foundation has motivated the devel-
opment of relationships between macroscopic parameters, like
permeability, and microstructural parameters, like fiber arrange-
ments, shape and orientation or tortuosity (flow path). Chen and
Papathanasiou (2007, 2008) computationally investigated the flow
across randomly distributed unidirectional arrays using the
boundary element method (BEM) and found a direct correlation
between permeability and the mean nearest inter-fiber spacing.
Papathanasiou (1996) performed a similar study for unidirectional
square arrays of fiber clusters (tows) using the BEM. His employed
unit cells are characterized by two porosities: (i) inter-tow
porosity, determined by the macroscopic spatial arrangement of
the tows, and (ii) intra-tow porosity, determined by the fiber
concentration inside each tow. He showed that the effective
permeability of assemblies of fiber clusters depends strongly on
the intra-tow porosity only at low inter-tow porosity. In a recent
study, Yazdchi et al. (2012) proposed a power law relation
between the transverse permeability obtained from finite element
(FE) simulations and the mean value of the shortest Delaunay
triangulation (DT) edges, constructed using the centers of the
fibers. For sedimentary rocks, especially sandstones, Katz and
Thompson (1986) suggested, using percolation theory, a quadratic
relation between permeability and microstructural descriptors for
rocks, i.e. the critical pore diameter. Despite all these attempts, the
effect of microscopic fiber arrangements/structures, controlled by
the effective packing fraction, on macroscopic permeability is still
unclear.

The objective of this paper is to (i) computationally investigate
transverse flow through 1D, random fiber arrays in a wide range of
porosities, (ii) understand and characterize the microstructure, i.e.
the ordered and disordered states, using several order parameters,
(iii) establish a relationship between macroscopic permeability
and the microstructure of the fibrous materials and (iv) verify the
validity of the empirical Darcy's law at various length scales and
porosities. Our results can and will be used in more practically
relevant hybrid or coupled codes with two-way coupling between
the fibers and the fluid to more mimic a real fiber-tow production/
impregnation process as a big step toward the same for the most
general full 3D random structures.

To this end, the algorithm used to build the initial fiber
configurations and the numerical finite element (FE) procedure
for solving flow/momentum equations are presented in Section 2.
In Section 3, the geometrical (Voronoi tessellation) and bond
orientational order parameters are introduced to quantify the
microstructure. In particular, the transition from disordered to
ordered regimes is discussed in detail. The connection between
structural (dis)order and macroscopic permeability is explained
using shortest Delaunay triangulation edges in Section 4. Finally,
the validity of Darcy's law at different length scales is investigated
by dividing the system into both smaller uniform cells and
irregular Voronoi/Delaunay polygons/triangles in Section 5. The
paper is concluded in Section 6 with a summary and outlook for
future research and applications.
2. Mathematical formulation and methodology

A Monte Carlo (MC) approach was used to generate N¼3000
randomly distributed, non-overlapping fiber arrays in a square
domain with length, L. Given an initial fiber configuration on a
triangular lattice, the MC procedure perturbs fiber center locations
in randomly chosen directions and magnitudes (Chen and
Papathanasiou, 2007, 2008). The perturbation was rejected if it
leads to overlap with a neighboring fiber (up to 104 perturbations
were used in our simulations). With this procedure, we were able
to generate various packings at different porosities, ε¼1−Nπd2/
(4L2) with d the diameter of fibers, varying from dense/ordered
(ε¼0.3) to vary dilute/disordered (ε¼0.95) regimes. Fig. 1 shows a
schematic of such a packing; the fiber long axis is normal to the
flow direction, at porosity ε¼0.6. Due to wall/edge effects, only the
center part of the system will be analyzed. The effect of several
microstructural parameters such as method of generation, system
size, wall/periodic boundaries have been discussed elsewhere
(Yazdchi et al., 2012).

The FE software ANSYSs was used to calculate the horizontal
superficial (discharge) velocity, U, from the results of our computer
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Fig. 1. Illustration of N¼3000 randomly distributed fibers (particles) using a Monte Carlo procedure at porosity ε¼ 0:6 with minimum inter-fiber distance Δmin¼0.05. The
zoom shows the corresponding horizontal velocity field.
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simulations as

U ¼ 1
A

Z
Af

udA¼ 1

L2
∑
e
ueAe; ð2Þ

where A, Af and u are the total area of the unit cell, the area of the
fluid and the intrinsic fluid velocity, respectively. The subscript “e”
indicates the corresponding quantity for each triangular element.
Using Eq. (1), the permeability of the fibrous media can then be
calculated. On the flow domain, the steady state Navier–Stokes
equations combined with the continuity equations were discre-
tized into an unstructured, triangular mesh. They were then solved
using a segregated, sequential solution algorithm. The developed
matrices from assembly of linear triangular elements are then
solved based on a Gaussian elimination algorithm. Some more
technical details are given in Yazdchi et al. (2011, 2012). At the left
and right pressure- and at the top and bottom and surface of the
particles no-slip boundary conditions, i.e. zero velocity is applied.
Similar to Chen and Papathanasiou (2007, 2008), a minimal
distance, Δmin¼δmin/d¼0.05 is needed in 2D to avoid complete
blockage. We assigned a virtual diameter dn ¼ dð1þ ΔminÞ to each
fiber, leading to the virtual porosity εn ¼ 1−ð1−εÞð1þ ΔminÞ2. While
ε represents the porosity available for the fluid, εn (i.e. porosity
with artificially enlarged particles) is actually used for packing
generation. The effect of Δmin on fiber arrangement and macro-
scopic permeability is investigated in Yazdchi et al. (2012). The
mesh size effect was examined by comparing the simulation
results for different resolutions (data not shown here). The
number of elements varied from 5�105 to 106 depending on the
porosity regime. The lower the porosity the more elements are
needed in order to resolve the flow within the neighboring fibers.
The horizontal velocity field of such a simulation at porosity ε¼0.6
is shown in Fig. 1. We observed some dominant flow channels,
especially at low porosities, which contribute over-proportionally
to the fluid transport. More discussions on quantifying these
channels and their relation to the macroscopic permeability are
provided in Section 4.
3. Microstructure characterization

An important element in understanding of fibrous materials is
the description of the local fiber arrangements and the possible
correlations between their positions. The classical way for char-
acterizing the structure, like disorder to order transition, is by
inspection of its radial distribution function g(r), which is defined
as the probability of finding the center of a fiber inside an annulus
of internal radius r and thickness dr (Chen and Papathanasiou,
2007, 2008; Yazdchi et al., 2012; Reis et al., 2006). As the crystal-
lization begins to occur at moderate porosities, peaks appear for
values of r which correspond to the second (linear) neighbors in a
hexagonal lattice in 2D or a FCC or HCP arrangements in 3D. The
complete randomness of the fiber distribution on larger scale will
assure that g(r)¼1. However, as pointed out by Rintoul and
Torquato (1996), this method is unsatisfying for two reasons: on
the one hand the absence of clear peaks does not necessarily mean
the absence of crystallization, and on the other hand it is difficult
to determine exactly when the peak appears. In this section, we
propose another way to characterize more quantitatively the
microstructure of 2D, non-overlapping fiber packings, namely by
analyzing (i) the statistical geometry of the Voronoi/Delaunay
tessellation and (ii) the bond orientational order parameter, in a
wide range of porosities.

3.1. Voronoi diagram (VD)

The Voronoi tessellation can be used to study the local and/or
global ordering of packings of discs/fibers in 2D. Motivation stems
from their variety of applications in studying correlations in
packings of spheres (Oger et al., 1996; Richard et al., 1999), analysis
for crystalline solids and super-cooled liquids (Tsumuraya et al.,
1993; Yu et al., 2005), the growth of cellular materials (Pittet,
1999), and the geometrical analysis of colloidal aggregation
(Earnshaw et al., 1996) and plasma dust crystals (Zheng and
Earnshaw, 1995). For a review of the theory and applications of
Voronoi tessellations, see the books by Okabe et al. (1992) and
Berg et al. (2008), and the surveys by Aurenhammer (1991) and
Schliecker (2002).

For equal discs (i.e. a simplified 2D representation of unidirec-
tional random fiber arrays), as considered here, given a set of two
or more but a finite number of distinct points (generators) in the
Euclidean plane, we associate all locations in that space with the
closest member(s) of the point set with respect to the Euclidean
distance. The result is a tessellation, called Voronoi diagram, of the
plane into a set of regions associated with members of the point
set, see thick red lines in Fig. 2. This construction is unique and fills
the whole space with convex polygons. In a hexagonally close
packed (densest) configuration, i.e. εnhex≅0:093, the Voronoi tessel-
lation consists of regular hexagons. It allows us to define the
notion of “neighbor” without ambiguity for any packing fraction:
two spheres/discs are neighbor if their Voronoi polyhedra share
one face/edge. It can be easily generalized to radical tessellation
for polydisperse assemblies of spheres (Richard et al., 1998) or



Fig. 2. Illustration of the Voronoi (red line) and Delaunay (black lines) tessellations for the center part of a system of identical discs/fibers at (a) dilute, ε¼ 0:8 and (b) dense,
ε¼ 0:4 regimes for Δmin¼0.05 (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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discs (Gervois et al., 1995) by using the Laguerre distance between
obstacles, which takes into account the size of each point species.

The Delaunay triangulation (DT) is the dual graph of the
Voronoi diagram. This graph has a node for every Voronoi cell
and has an edge between two nodes if the corresponding cells
share an edge, see thin black lines in Fig. 2. DT cells are always
triangles in 2D, and are thus typically smaller than Voronoi cells.

Recently, various studies have focused on the geometrical proper-
ties of Voronoi tessellations resulting from random point processes,
i.e. ε¼ 1, to densely packed hard discs or spheres. In particular, Zhu
et al. (2001) and Kumar and Kumaran (2005) observed that by
decreasing the porosity the degree of randomness of the tessellation
is decreased—the probability distribution functions (PDFs) of the
statistical properties of the geometrical characteristics become more
and more peaked and narrower—until the unique critical value of a
regular tessellation, i.e. of hexagonal cells, is adapted.

In order to gain further insight into the relative arrangement of
the Voronoi cells, their topological correlations and metric properties
have been studied in the following. In particular, we focus on (i) the
distribution and evolution of the number of faces, p(n) together with
their 2nd and 3rd moments and (ii) the shape and regularity (or
isotropy) of the Voronoi polygons at different porosities.

3.1.1. Topological correlations for Voronoi tessellations
This section is dedicated to the study of the evolution of the

probability distribution of n-sided polygons, p(n) when changing
the porosity. Note that only the information obtained from the
inner fibers, which were at least 5 fiber diameters away from the
walls, was included in our analysis. This treatment should satis-
factorily eliminate the wall/edge effects up to high densities. To get
better statistics, the results were averaged over 10 realizations
with 104 MC perturbations. The two straightforward conservation
laws are

∑
n
pðnÞ ¼ 1 ðnormalizationÞ; and ð3Þ

∑
n
npðnÞ ¼ 6 ðthe average number of edges is 6Þ; ð4Þ

as the consequence of the Euler theorem (Okabe et al., 1992;
Smith, 1954). The distributions of the cell topologies, p(n) of
Voronoi tessellations, generated at various porosities are observed
to follow a discretized and truncated Gaussian shape (not shown
here). The perfectly ordered structure is manifested by hexagonal
cells, i.e. n¼6 and p(n)¼1, and disorder/randomness shows up as
the presence of cells with other than six sides (topological defects).
The increase of disorder in the disc/fiber assemblies at high
porosities leads to an increase of the topological defect concentra-
tion, i.e. a broadening of p(n).

In the literature, both the topological defect concentration
1−p(6), and the variance (2nd central moment) μ2 ¼ 〈n2〉−〈n〉2≡
〈ðn−〈n〉Þ2〉≡∑npðnÞðn−6Þ2 of the cell topologies, are used as measures
of the degree of disorder (Miklius and Hilgenfeldt, 2012; Le Caer
and Delannay, 1993; Lemaítre et al., 1991, 1993; Rivier, 1994).
Lemaítre et al. (1993) were, to our knowledge, the first to suggest
that the equation of state μ2 ¼ f ðpð6ÞÞ could be universal in
mosaics. In this sense, all information about topological disorder
in these systems is contained in p(6). Astonishingly, Lemaítre's law
holds very robustly for most of experimental, numerical, and
analytical data (Gervois et al., 1992).

Fig. 3(a) shows the correlation between p(6) and the topologi-
cal variance μ2 for different microstructures and at various
porosities. In the ordered regime, i.e. pð6Þ40:65, mainly 5, 6 and
7 sided polygons with pð5Þ≅pð7Þ≅ð1−pð6ÞÞ=2 occur, and by applying
the maximum entropy principle with the constraints in Eqs.
(3) and (4) (Rivier, 1994), we obtain μ2 ¼ 1−pð6Þ; it has the trivial
virial expansion that corresponds to an ideal gas. By increasing the
porosity, i.e. ε40:45 or εn40:39, one enters the disordered
regime and μ2≅1=ð2πp2ð6ÞÞ. Finally, in the limit of vanishing
density (ε¼ 1), the fibers are randomly distributed and one has
pð6Þ≅0:3 and μ2≅1:78. This limit is obtained by analyzing the
Voronoi polygons generated from 107 randomly distributed points.
The transition porosity εnt ≅0:39 can be more clearly determined by
plotting the third central moments of the n-sided polygon dis-
tributions, μ3 ¼ 〈ðn−〈n〉Þ〉3 against porosity, as shown in Fig. 3(b).
Note that this value is still far above the random close packing
limit εnrcp≅0:16 (Berryman, 1983), as compared also to the mini-
mum hexagonal lattice porosity εnhex≅0:093, the freezing point
εnf ≅0:309 (Alder and Wainwright, 1962) or the melting point
εnm≅0:284 (Alder and Wainwright, 1962).
3.1.2. Metric properties
The metrical properties of two-dimensional froths are often

studied in terms of the average n-sided cell areas, 〈An〉 or the
average cell perimeters, 〈Ln〉. Lewis's law (Lewis, 1931) and Desch's
law (Desch, 1919) are two empirical relations which state that the
average cell areas and perimeters vary linearly with n for certain
systems, while for others nonlinear analogs have been observed
(Le Caer and Delannay, 1993; Quilliet et al., 2008; Glazier et al.,
1987). Only recently, using the local, correlation-free granocentric
model approach with no free parameters, Miklius and Hilgenfeldt
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(2012) construct accurate analytical descriptions for these empiri-
cal laws in 2D and Clusel et al. (2009) in 3D.

Combining the cell area and its perimeters, we apply the
concept of shape factor, to further quantify the shape/circularity
of the Voronoi cells as

ζ¼ L2

4πA
: ð5Þ

In this dimensionless representation, two Voronoi polygons can
have the same number of sides, n, but different values of ζ (due to
the irregularity of the polygons), since one of the advantages is
that the shape factor, ζ is a continuous variable while n is discrete.
This quantity was recently used to study crystallization of 2D
systems, both in simulations (Moucka and Nezbeda, 2005) and
experiments (Reis et al., 2006; Abate and Durian, 2006; Wang
et al., 2010). By construction, ζ¼ 1 for a perfect circle, and is larger
for more rough or elongated shapes, like pentagons or heptagons.
For a hexagonal lattice (densest packing) one has ζhex ¼ 1:103 and,
in general, for a regular n-sided polygon ζ¼ ðn=πÞ tan ðn=πÞ.

The shape factor distributions, pðζÞ and the way they change
with porosity are displayed in Fig. 4(a). For dilute systems
(disordered regime), pðζÞ exhibits a broad and flat distribution
with values above ζhex, maximum at about ζ≃1:25 and an expo-
nential tail. In this case, in fact, the particles are randomly
distributed with no preferential type of polygons. At lower
porosities, this peak progressively moves toward lower values, i.
e. to more circular domains, and eventually bifurcates into two
sharper peaks. Fig. 4(b) shows the average shape factor, 〈ζ〉 taken
over all polygons at different porosities for various system sizes
(number of particles, N). The numerical results show that 〈ζ〉 is not
noticeably affected by system size. Interestingly, we observed that
its value increases almost linearly with porosity (for 0:3o
εo0:85). A similar linear dependence was observed for packing
configurations obtained from a different generation algorithms,
namely an energy minimization approach (Yazdchi et al., 2012),
data not shown here. Unlike the data presented in Fig. 3, the trend
does not indicate a change at the transition porosity εt≅0:45
(εnt ≅0:39), and therefore this is not a good criterion for detecting
the order to disorder transition. Finally, in the limit of random
point distributions one has 〈ζ〉≅1:4. This value is obtained from 107

randomly distributed points.
A drawback of the shape factor is that, with this definition, the

regularity (or isotropy) of the Voronoi polygons cannot be



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
6 neighbors
Voronoi neighbors
Cutoff distance (g(r))

Random points

disordered

ordered

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8
Global
Local

freezing point

disordered

ordered6
lo

ca
l

Ψ

6
Ψ

ε ε

Fig. 6. (a) Illustration of the sensitivity of the local ψ l
6 to the nearest neighbor selection method. (b) Variation of the global, ψg

6 and the local, ψ l
6 bond orientational order

parameter plotted against porosity, using the Voronoi/Delaunay neighbors.

K. Yazdchi, S. Luding / Chemical Engineering Science 98 (2013) 173–185178
deduced. In other words, one has no information about the
deviation of each vertex of a polygon from the principal axis.
Therefore, we define a new dimensionless parameter, Φ as

Φ¼
��� I1−I2
I1 þ I2

���; ð6Þ

where I1 and I2 are the area moments about the principal axes of a
polygon. For all Voronoi shapes, Φ varies between zero and unity,
although our numerical results show that it does not exceed a
maximum value corresponding to a random cloud of points
Φ≅0:43 (see Fig. 5). For the polygons which are “isotropic”, like
hexagons, one has I1≅I2 and therefore Φ≅0. Polygons which are
stretched along one of their principal axes have larger values of Φ,
with Φ¼ 1 for as maximum as possible.

Fig. 5 shows the average 〈Φ〉 taken over all polygons against
porosity. As the porosity increases, the 〈Φ〉 also increases, indicat-
ing a more anisotropic shape, until it reaches its maximum value
for random points, i.e. Φ≅0:43. Interestingly, two linear functions
with different slopes can be fitted to the disordered and ordered
regimes. Just as was observed in Fig. 3(b), the transition (crossing
of the two lines) occurs at εt≅0:45 (εnt ≅0:39).

3.2. Bond orientational order parameter

The bond orientation angle, ψ6, which is defined in terms of the
nearest-neighbor bond angles, measures the hexagonal registry of
nearest neighbors. This quantity has been used to detect local/
global crystalline regions both in 2D and 3D, see for example
Kumar and Kumaran (2006), Halperin and Nelson (1978), Jaster
(1999), Kawasaki and Onuki (2011), Kansal et al. (2000) and
references therein. The sixfold global bond-orientational order
parameter of the 2D, non-overlapping fibrous system is defined as

ψg
6 ¼

1
N

��� ∑N
i ¼ 1

1
ni

∑
ni

j ¼ 1
e6iθij

���; ð7Þ

where θij is the angle between particle i and its neighbors j with
respect to an arbitrary but fixed reference axis, and ni denotes the
number of nearest neighbors of particle i. ψg

6 is sensitive to
(partial) crystallization and increases significantly from ψg

6 � 0
for a dilute system to ψg

6 ¼ 1 for a perfect hexagonal lattice.
A more local measure of orientational order can be obtained by

evaluating the bond-orientational order of each particle individu-
ally, and then averaging over all particles to give

ψ l
6 ¼

1
N

∑
N

i ¼ 1

1
ni

��� ∑ni

j ¼ 1
e6iθij

���: ð8Þ

such a local measure of order is more sensitive to small local
crystalline regions within a packing compared to its global
counterpart ψg

6, and thus avoids the possibility of “destructive”
interference between differently oriented crystalline regions
(Kansal et al., 2000). Since ψg

6 and ψ l
6 differ in the averaging

procedure, they yield different numerical values.
The first step in evaluating ψ6, which was not precisely

addressed before, is to detect the nearest neighbors of a reference
particle i. Fig. 6(a) shows the sensitivity of the local ψ l

6 to the
number of nearest neighbors obtained from (i) a cutoff distance
taken from the first minimum in the radial distribution function,
g(r) (ii) Voronoi/Delaunay neighbors or (iii) using up to and
including the 6 nearest neighbors. Although the average of
Voronoi neighbors is 6 (Eq. (4)), the local ψ l

6 calculated on the
Voronoi neighbors have lower values than the ones calculated
from the 6 nearest neighbors. Voronoi neighbors and the neigh-
bors based on the cutoff distance result in almost the same
numerical values. For decreasing porosity, the local ψ l

6 rises
sharply at εt≅0:45, indicating highly correlated local order. How-
ever, the transition is not sharp, since the order parameter
increases slightly for ε≤0:7. In very dilute regimes, the local order
parameter ðψ l

6Þran≅0:21 is larger than zero, leading to the interest-
ing question of whether there is a minimum, nonzero value of this
parameter for a random system. A possible answer is that in
random non-overlapping fiber arrays, there are still some local
crystalline regions, due to the lack of geometric frustration, which
are not correlated. In Fig. 6(b) the numerical values of the global,
ψg
6 and local, ψ l

6 are compared and plotted against porosity, using
the Voronoi neighbors. Unlike the local definition, the global ψg

6 is
almost zero in the disordered regime, due to phase cancellations,
and increases sharply at ε≅0:37, i.e. the freezing point (Alder and
Wainwright, 1962), with the onset of hexagonal order.

Beyond the classification of the microstructure, one would like
to understand how (dis)order affects the transport properties, like
permeability, of the fibrous material. This is the topic of the next
section.
4. Macroscopic properties

Recently, Yazdchi et al. (2012) showed that the mean values of
the shortest Delaunay triangulation (DT) edges are nicely corre-
lated with the macroscopic permeability at dilute and moderate
porosities. In this section, we elaborate more on characterizing
these channels (edges).

4.1. Effective channels based on Delaunay triangulations

Similar to Yazdchi et al. (2012), we define γ as the mean
channel width (gap), i.e. surface-to-surface distance based on the
shortest Delaunay edges 〈et〉, (averaged over Delaunay triangles)
normalized by the fiber diameter, γ ¼ ð〈et〉−dÞ=d. Fig. 7 shows these



Fig. 7. The minimum Delaunay edges plotted for each Delaunay triangle for (a) dilute, ε¼ 0:8 and (b) dense, ε¼ 0:4 systems. The link between two particles is thicker when
the channel is wider. Only the center part of the system is shown.
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shortest edges with channel width indicated by line thickness.
These edges form a percolated edge-network channels through
which the flow must go and, therefore correlate nicely with the
permeability (see next section). Fig. 8 shows the PDF of widths and
the histogram of the orientations of these channels. The distribu-
tion of the width of the channels, pðγÞ undergoes a transition from
a very wide distribution to a narrower with increasing peak at
lower γ, and eventually to a steep exponential distribution as the
porosity decreases. For a perfect triangular lattice it reduces to
exactly the inter-fiber (surface-to-surface) distance, i.e.
γ ¼ Δmin ¼ 0:05. The orientation of the channels is not much
affected by the porosity and remains isotropic (no preferential
direction) even for partially ordered structures at ε¼ 0:4.

4.2. Permeability calculation

Based on the Navier–Stokes equation, Gebart (1992) derived the
permeability of an idealized unidirectional reinforcement consist-
ing of regularly ordered, parallel fibers both for flow along and for
flow perpendicular to the fibers. The solution for flow along fibers
has the same form as the Carman–Kozeny (CK) equation (Yazdchi
et al., 2011; Carman, 1937), while the solution for transverse flow
has a different form

K

d2
¼ C

ffiffiffiffiffiffiffiffiffiffiffi
1−εo
1−ε

r
−1

 !2:5

; ð9Þ

where εo is the critical porosity below which there is no permeat-
ing flow and C is a geometric factor (C≅0:1, εo≅0:2146 for square
and C≅0:0578, εo≅0:0931 for hexagonal arrays (Gebart, 1992)).
Eq. (9) can be rewritten in terms of γ as

K

d2
¼ Cγ2:5; ð10Þ

which is exact for regular/ordered arrays and was shown to be
valid also for disordered arrays at high and moderate porosities
(Yazdchi et al., 2012), with C≅0:2. Relation (10) is remarkable, since
it enables one to accurately determine the macroscopic perme-
ability of a given packing just by averaging the narrowest Delaunay
gaps, γ from Delaunay triangles. Fig. 9(a) shows the variation of the
normalized permeability (in red) as a function of γ together with
the local bond orientational order parameter, ψ l

6 (in blue points).
The structural transition from disorder to order, indicated by
strong increase in ψ l

6, directly affects the macroscopic permeabil-
ity. In disordered regimes, the permeability data nicely collapse on
the theoretical power law relation (Eq. (10)). However, by appear-
ance the local crystalline regions at εo0:45, the data start to
deviate from the power law. In fact the lubrication theory, i.e. Eqs.
(9) or (10), are only valid for perfectly ordered (hexagonal/square)
or disordered (random) configurations with different pre-factor, C,
in Eq. (10). Systems that are partially ordered have lower perme-
ability compared to the predicted value in Eq. (10), i.e. (K/d2)ran,
due to stagnancy of the fluid between fiber aggregates or within
crystalline regions of close-by fibers. With decreasing porosity the
data deviate from the solid line showing the appearance of
ordering in the structure. In Yazdchi et al. (2012), we showed that
this deviation can be represented by an exponential term

K

d2
¼ Cγ2:5gðγÞ with gðγÞ ¼ ð1−g0e−mγÞ; g0≅0:5; m≅3 ð11Þ
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Fig. 9(b) shows that indeed, for both permeability and local
bond orientation order parameter, this deviation, i.e., χp ¼
j1−K=Kranj≡g0e−mγ2 and χψ l

6
¼ j1−ψ l

6=ðψ l
6Þranj respectively, can be

well represented by an exponential term. The macroscopic perme-
ability departs from the random prediction less strongly than the
microscopic local bond order parameter—while both are functions
of the Delaunay mean gap distance, γ. The numerical results show
that the other micro-measures do not display this exponential
deviation and, therefore, the local bond orientational order para-
meter seems better representing the transition from disordered to
ordered configurations.
4.3. Further discussion and perspective for applications

Composite materials with various microstructures are ideally
suited to achieve multifunctional features for the applications in
modern technology at various length scales. Progress in our ability
to synthesize composites or porous materials at a wide range of
length scales and smart designing via computer simulations is
expected to lead to new multifunctional materials. To our knowl-
edge, there is so far no effective (semi)analytical method that can
predict, with acceptable accuracy, the effective properties (such as
permeability) of fibrous materials, while taking into account the
effects of microstructure. To achieve a reliable prediction, one
needs to work on a full description of the structural details of
fibrous materials. However, it is extremely difficult, if not impos-
sible, to completely describe the internal structure of a fibrous
medium due to its complex and stochastic nature. Our study is
only one step toward a more complete multi-scale modeling of
realistic 3D random fibrous structures.

The simple microstructural relationships proposed here as
predictions of the macroscopic permeability are remarkable:
(i) they enable us to accurately determine the macroscopic
permeability of a given packing just by measuring the 2nd
narrowest channels (or equally the narrowest Delaunay edges),
from only particle/fiber positions; (ii) they provide a powerful
predictive tool for various fibrous product designs and perfor-
mance optimizations; and (iii) they can be utilized to obtain
simple (manufacturable) composite microstructures with targeted
effective properties (Torquato et al., 2002, 2009). Such analyses
will lead to more insights into the genesis of optimized micro-
structures and can be pursued in future work. Furthermore, our
results can be used for calibration and validation of more advanced
models for particle–fluid interactions within a multi-scale coarse
graining and two-way coupled approach for moving fibers and
deforming fiber-bundles, as carried out in our ongoing work
(Srivastava et al., in preparation).
5. Darcy's law—upscaling the transport equations

The empirical Darcy's law, Eq. (1), is the key constitutive
equation required to model up-scaled (under)ground water flow
at low velocities and to predict the permeability of porous media.
Though the volume-averaged equations, like Darcy's law, are used
extensively in the literature, the method relies on length- and
time-scale constraints which remain poorly understood. As shown
in the previous section, the macroscopic transport properties, such
as permeability, are linked to more fundamental equations describ-
ing the microscale behavior of fluids in porous materials, see also
Bird et al. (2001) and Grouve et al. (2008).

In this section, we verify the validity of the macroscopic
phenomenological Darcy's law at various length scales in a wide
range of porosities. We recognize that the application of the pore-
scale analysis requires characterization of the pore-scale geometry
(and/or size) of the porous material. The Voronoi/Delaunay tes-
sellation and their statistics are employed to obtain this essential
geometrical (and/or length-scale) information.

5.1. Uniform cells

In order to study the validity of Darcy's law at different length
scales, we divide our system into smaller uniform square cells as
shown in Fig. 10(a) for porosity ε¼ 0:6. The corresponding fully
resolved horizontal velocity field is shown in Fig. 10(b). Since we
have sufficient number of elements between neighboring fibers, i.
e. at least ∼10 elements, all the velocity fluctuations and flow
patterns can be captured at this length-scale. By upscaling
(smoothing out) the velocity field, the permeability of each square
cell, Kc can be calculated from Darcy's law, as

Kc ¼ μUc

∇pc
; with Uc ¼ 1

Ac
∑
ec
uecAec ; Ac ¼ a2c ð12Þ

where Uc, ac, ec and ∇pc ¼ ½ðptr þ pbr Þ=2−ðptl þ pbl Þ=2�=ac (t, b, r and l
represent the pressure values at top, bottom, right and left sides of
the cell, respectively) are average velocity, cell length, the ele-
ments within the cell and the pressure gradient for each individual
cell, respectively. The variation of average cell velocity, Uc at
porosity ε¼ 0:6 for the different cell areas, Ac normalized by the
particle area, Ap ¼ πd2=4 is shown in Fig. 10(c) and (d) for Ac=Ap≅20
and Ac=Ap≅160, respectively. At higher resolutions, i.e. smaller
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Ac=Ap, we see larger fluctuations (i.e. more flow heterogeneity/
details) around the macroscopic average velocity, U ¼ 4:07�
10−6[m/s] obtained for the whole system, using the parameters
specified in Section 2. This can be observed more clearly from the
PDF of the cell average velocities, Uc at different resolutions as
shown in Fig. 11(b). For small averaging cells, i.e. Ac=Ap � 1, the
probability distribution of average cell velocities, pðUcÞ can be
described by the two-parameter Gamma distribution as

pðUcÞ ¼ λθ
Uθ−1

c expð−θUcÞ; for θ; λ40; ð13Þ

ΓðθÞ
where θ and λ are, by definition, shape and scale parameters and
ΓðθÞ is the Gamma function.

The mean value of Gamma distributed average cell velocities is
〈Uc〉¼U ¼ ðθ=λÞ. Written in terms of averaged velocity, pðUcÞ has
only one free parameter which is

p
Uc

U

� �
¼ θθ

ΓðθÞ
Uc

U

� �θ−1

exp −θ
Uc

U

� �� �
; for θ40: ð14Þ

The value of θ starts from θ¼ 1, i.e. exponential distribution, for
small cell size, Ac=Ap≅1 (see the black line in Fig. 11(b)) and
increases to ∼3 for larger cell sizes, Ac=Ap≅10. For larger
Ac=Ap420, the pðUc=UÞ becomes more and more peaked and
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narrower. The PDF of cell porosities, pðεc=εÞ at the macroscopic
(average) porosity ε¼ 0:6 is shown in Fig. 11(a). We observed that
at small cell sizes, the pðεc=εÞ follows a uniform distribution, i.e.
horizontal line. However, at larger resolutions, the pðεc=εÞ is fitted
best by a Gaussian distribution as

p
εc
ε

� �
¼ 1

s
ffiffiffiffiffiffi
2π

p exp −
1
2

εc=ε−1
s

� �2
 !

; ð15Þ

where s is the standard deviation of the data. By increasing the
cell size, s decreases till it becomes only scattered points around
the mean value, i.e. εc=ε≃1. Similar behavior and distributions were
observed at different porosities (data not shown here). Note that at
all cell lengths, the mean value of average cell velocity, 〈Uc〉 or
pressure gradients, 〈∇pc〉 are equal to their total average velocity, U
or pressure gradient, ∇p (with maximum discrepancy of 2% due to
ignoring the boundary elements and size effect, not shown here).

Knowing the average velocity and pressure gradient for each
cell, one can calculate, from Eq. (12), the permeabilities for each
individual cell as shown in Fig. 12(a) as scattered data for different
porosities and cell sizes. The solid line shows the macroscopic
permeability obtained for the whole system.

As expected, smaller cell areas lead to more scattered (fluctu-
ating) permeabilities around the macroscopic value (black line).
For sufficiently large cell sizes, i.e. ac∼L, the average of cell
permeabilities, 〈Kc〉 approaches the macroscopic permeability, K
obtained for the whole system. Fig. 12(b) shows the deviation of
〈Kc〉 from the macroscopic permeability plotted against normalized
cell area, Ac/Ap at different porosities. By increasing the normalized
area, the deviation decreases linearly with slope ∼ −1. Interest-
ingly, this trend is almost the same at all porosities.
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In summary, the permeability for each cell is very sensitive to
the averaging area with slow statistical convergence to the
macroscopic value. Small areas, i.e. Ac�Ap, lead to more fluctua-
tions in permeability in which the average, unlike velocity and
porosity, will not approach the macroscopic value. Incorporating
the observed distributions in a more accurate stochastic drag
closure (or permeability) for advanced, coarse fluid-particle simu-
lations is partly done in Srivastava et al. (in preparation) and can
be further conducted in future.
5.2. Unstructured cells

To study the effect of shape of the averaging cell on the
macroscopic permeability and averaging procedure, the Voronoi
polygon and their dual graph, the Delaunay triangulations (DT),
are employed as basic averaging area in this section.

The variation of average velocity at porosity ε¼ 0:6 is shown in
Fig. 13 using (a) Delaunay triangulation and (b) Voronoi polygons
as averaging area. The average Voronoi area 〈AVD〉 is always
identical to the inverse of fiber density (number of fibers per unit
area) equal to 〈AVD〉¼0.5. Similarly, the average Delaunay triangle
area is half of the Voronoi areas, i.e. 〈ADT〉¼〈AVD〉/2¼0.25. As
expected using DT, due to smaller average cell area or higher
resolution, one can capture more fluid details/heterogeneity and
distinguish the dominant fluid channels.

The probability distribution function of cell porosities and
average cell velocities at macroscopic porosity ε¼ 0:6 is shown
in Fig. 14. We observe that the PDF of the average cell porosity not
only depends on the cell sizes but also on the shape of the cell
area. Although the average cell area for both VD and DT are
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relatively small, however the PDF of cell porosities can be fitted by
a Gaussian distribution, i.e. similar to larger uniform cell sizes.
Surprisingly, the PDF of average cell velocities is not much affected
by the cell shape/size and can be well approximated by a Gamma
distribution for all VD, DT or uniform cells with θ� 1, see Eq. (14).

Fig. 15 shows the PDF of (a) pressure gradients and (b) normalized
permeabilities using Voronoi cells at various porosities. We observed
that PDF of pressure gradients in Voronoi polygons follows a Cauchy
distribution as

p
∇pVD
∇p

� �
¼ 1

π

α

ð∇pVD=∇p−1Þ2 þ α2

 !
; ð16Þ

where α is the scale parameter and specifies the half-width at half-
maximum (HWHM). For an infinitesimal scale parameter (α� 0), the
Cauchy distribution reduces to the Dirac delta function. However, the
PDF of permeabilities within each Voronoi cell can be best fitted to a
Gamma distribution. The both pressure gradient and permeability
distributions seem to be weakly dependent on macroscopic porosity.

Similar to the analysis for uniform cells (Fig. 11), one can now
define a coarse-grained length scale for Delaunay or Voronoi cells
to investigate the evolution of distributions of pressure gradient or
fluid velocity at coarser levels. This has been carrying out in our
ongoing research.
6. Summary and conclusions

The transverse permeability for creeping flow through unidir-
ectional (dis)ordered 1D an array of fibers/cylinders/discs has been
studied numerically using the finite element method (FEM).
Several micro-structural order parameters were introduced and
employed to characterize the transition, controlled by the effective
packing fraction, from disorder to partial order. In this context, the
Voronoi and Delaunay diagrams are of interest as they provide
information about nearest neighbors, gap distances and other
structural properties of fibrous materials. In an ongoing research,
the Delaunay triangulations have been also used both as a contact
detection tool and a FE mesh in dense particulate flows (Srivastava
et al., in preparation). Recently, we observed that the structural
transition also affects the flow behavior at inertial (high Reynolds
numbers) regimes (Yazdchi and Luding, 2012; Yazdchi, 2012;
Narvaez et al., 2013).

The microstructure can be characterized by the means and
distributions of local parameters, such as the number of faces,
shape and regularity of Voronoi polygons, shortest Delaunay
triangulation edges or gaps and local bond orientation measures.
The numerical results show that the 3rd moment of the prob-
ability distribution of six-sided Voronoi polygons shows an
increase at the transition porosity εnt ≅0:39. The average shape of
the Voronoi polygons, 〈ζ〉 increases almost linearly by increasing
the porosity, regardless of the system size and packing generator
algorithm. Furthermore, the average area moment of the Voronoi
polygons, 〈Φ〉 increases linearly by increasing the porosity with
larger slope in the ordered case, relative to the disordered one.

The numerical experiments suggest a unique, scaling power
law relationship between the permeability obtained from fluid
flow simulations and the mean value of the shortest Delaunay
triangulation gaps. Locally ordered regions, which cause a drop in
the macroscopic permeability, can be detected by the local defini-
tion of the bond orientational order parameter, ψ l

6. With decreas-
ing porosity, both permeability and local bond orientational order
parameter display an exponential deviation from the random case
—where the bond order parameter deviation grows about three
times faster.
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Finally, the validity of the macroscopic Darcy's law at various
length scales was studied using both uniform and Voronoi/Delaunay
cells, in a wide range of porosities. We found universal but different
distributions for pressure gradient and permeabilities using Voronoi
polygons as an averaging area. The physical interpretation and
correlation between these probabilities has to be addressed in the
future, as the application of the proposed model/distributions for
other macroscopic properties, like the heat conductivity. Moreover,
the extension to real, non-parallel, deforming 3D structures of
(possibly) moving fibers with friction and reptation remains a
challenge for future work.
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