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Over the last 70 years, the use of biophysical models has been
indispensible to further our understanding of neurophysiology.
Examples include the Hodgkin-Huxley equations that describe
the dynamics of voltage dependent membrane currents of the
giant axon of the squid (Hodgkin and Huxley, 1952) or, more
recently, computer simulations of interactions of very large
populations of spiking neurons (Izhikevich and Edelman, 2008).

Neural mass and neural field models are a special type of mod-
els that aim to describe average macroscopic behavior of a large
number of spiking neurons, aiming to capture relevant dynamics
of a neuronal population (Destexhe and Sejnowski, 2009; Deco
et al., 2008). While neural mass models do not model the spatio-
temporal dynamics of the mean neuronal activity, neural field
models involve differential operators with both temporal and spa-
tial terms (Deco et al., 2008). A common element is the mean-field
approximation that results in properties that relate to an average
statistical behavior. A well-known example from physics is the
use of temperature or pressure to reflect macroscopic properties
of a large number of molecules in a gas.

Since the EEG is also a macroscopic quantity, reflecting the
average postsynaptic currents of cortical pyramidal neurons,
neural mass and neural field models are naturally connected to
the EEG (David and Friston, 2003). Although detailed behavior
of the individual spiking neurons is not included in neural mass
models, they have several advantages in the context of EEG
rhythms. They have low dimensionality, i.e. a limited number
of variables that are modeled and a correspondingly low number
of parameters that need to be defined. Therefore, simulations can
be performed rapidly and analysis of the models is relatively
easy, which allows the identification of underlying general
dynamical principles.

Applications for neural field and neural mass approaches are
varied, ranging from physiology (Bojak et al., 2010; Spiegler
et al., 2011) to clinical applications, for instance to study effects
of propofol on the EEG (Hindriks and van Putten, 2012), burst sup-
pression during anesthesia (Liley and Walsh, 2013), or pathological
EEG in postanoxic coma (Tjepkema-Cloostermans et al., 2014) and
epilepsy (Soltesz and Staley, 2008; Coombes and Terry, 2012).

In this issue, Aarabi and He present a neural mass model to
simulate intracranial EEG, that is subsequently applied to predict
seizures (Aarabi and He, 2014). Although various neural mass mod-
els have been developed to simulate EEG and the transitions to
seizures (van Drongelen et al., 2005; Suffczynski et al., 2004; Lopes
da Silva et al., 2003; Nevado-Holgado et al., 2012), the current con-
tribution is indeed a first application of a physiologically motivated

model to evaluate pre-ictal intracraniel EEG (iEEG) changes in
patients with focal epilepsy for seizure prediction.

One of the challenges in meanfield modeling is to incorporate
the key physiological components relevant for the problem at
hand. As the authors state, an important feature of their model is
that it contains a recurrent connection of the inhibitory interneu-
rons that is presumably needed to simulate the fast activities in
the gamma band that is present in the hippocampus. Their model
generates realistic spectra, where patient specific parameter values
are subsequently estimated using the real-world spectra estimated
from the iEEG recordings. Similar approaches have been applied to
human waking scalp EEG (Rowe et al., 2004; van Albada et al.,
2010).

As the spectral characteristics of the iEEG appear to change
towards the seizure period, the estimated parameter values will
vary, as they need to be adjusted to simulate these time evolving
spectra. By applying statistics to the temporal changes in the esti-
mated parameter values, Aarabi and He reach average sensitivities
for seizure prediction of 87% and 93%, and average false prediction
rates between 0.2-0.15 per hour for maximum seizure occurrence
periods of 30 and 50 min, respectively. These results are indeed
impressive, and far better than other methods proposed thus far,
that essentially used a phenomenological approach by evaluating
features of the nonlinear iEEG time series.

It is also interesting that Aarabi and He find preictal changes in
iEEG from electrodes both near the focus and remote, and in some
patients the preictal changes were even more significant outside
the epileptogenic zone. This substantiates other findings, showing
that in focal epilepsies remote neuronal networks are affected or
involved in the interictal period, as well (see e.g. Bartolomei
et al., 2013 and references therein). Differences in network
topology, connectivity and structural integrity were also recently
reported in a rat model of focal epilepsy, using resting state fMRI
(Otte et al., 2012).

What is not discussed in the current contribution, but will in a
future paper, is how the actual values of the biophysical parame-
ters change as a function of time. The observed changes in the
parameters may also elucidate potential mechanisms responsible
for the transition towards the seizure. Clearly, for practical pur-
poses of seizure prediction this would not be needed, but to further
our understanding of the presumed “control parameters” this is
relevant. Moreover, it may allow patient specific predictions, that
potentially can be experimentally validated. This would not only
give additional support to the validity of the model, but may also
suggest potential targets for (patient specific) intervention.
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