
Int J Mater Form
DOI 10.1007/s12289-013-1130-2

ORIGINAL RESEARCH

On the effect of numerical noise in approximate optimization
of forming processes using numerical simulations

J. H. Wiebenga · A. H. van den Boogaard

Received: 12 January 2013 / Accepted: 12 March 2013
© Springer-Verlag France 2013

Abstract The coupling of Finite Element (FE) simula-
tions with approximate optimization techniques is becoming
increasingly popular in forming industry. By doing so, it
is implicitly assumed that the optimization objective and
possible constraints are smooth functions of the design
variables and, in case of robust optimization, design and
noise variables. However, non-linear FE simulations are
known to introduce numerical noise caused by the discrete
nature of the simulation algorithms, e.g. errors caused by re-
meshing, time-step adjustments or contact algorithms. The
subsequent usage of metamodels based on such noisy data
reduces the prediction quality of the optimization routine
and is known to even magnify the numerical errors. This
work provides an approach to handle noisy numerical data
in approximate optimization of forming processes, cover-
ing several fundamental research questions in dealing with
numerical noise. First, the deteriorating effect of numeri-
cal noise on the prediction quality of several well-known
metamodeling techniques is demonstrated using an analyti-
cal test function. Next, numerical noise is quantified and its
effect is minimized by the application of local approxima-
tion and regularization techniques. A general approximate
optimization strategy is subsequently presented and cou-
pling with a sequential update algorithm is proposed. The
strategy is demonstrated by the sequential deterministic
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and robust optimization of 2 industrial metal forming pro-
cesses i.e. a V-bending application and a cup-stretching
application. Although numerical noise is often neglected in
practice, both applications in this work show that the general
awareness of its presence is highly important to increase the
overall accuracy of optimization results.
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Introduction

Decisions in a large number of optimization problems in
the metal forming industry are made by use of Finite Ele-
ment (FE) simulations coupled with a suitable mathematical
optimization algorithm. These so-called simulation-based
optimization approaches have proven to be much more
efficient than the conventional trial-and-error processes.
Moreover, they have contributed significantly in fulfill-
ing the continuously increases technical and economical
requirements.

Approximate optimization is an often used and well-
known approach to couple computationally expensive FE
simulations with an optimization procedure. An overview
of metamodeling applications in structural optimization can
be found in Barthelemy and Haftka [1] and more recently
in Simpson et al. [2]. Using these cheap surrogates, opti-
mization can be performed more efficiently by reducing the
number of required FE simulations.

An increasing variety of optimization problems in the
metal forming industry are being solved by approximate
optimization, e.g. design optimization problems [3, 4],
multi-objective optimization problems [5, 6], Robust Design
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Optimization (RDO) problems [7, 8] and Reliability Based
Design Optimization (RBDO) problems [9, 10]. In case of
RDO and RBDO, approximations of the statistical measures
of the objective function and constraints are generated by
applying e.g. Monte Carlo sampling on the metamodel. This
is feasible since the surrogate models can be evaluated very
efficiently.

The use of metamodels in an optimization approach
hinges on the assumption that the metamodel is a correct
representation of the FE calculations and that the FE simu-
lation correctly predicts the physical process. However, it is
well known that this is often not the case and that different
sources of errors are present. Oden et al. [11] state that
quantification of these errors is required to increase the
reliability and utility of simulation methods in the future.
Simpson et al. [2] recognize such errors as a major issue to
be solved in future research on approximate optimization,
especially with the continuous increase of the computa-
tional complexity of FE simulations. The objective of this
work is to initiate this research.

Notorious sources of numerical noise are discretiza-
tion errors, adaptive mesh refinement, automatic (adaptive)
step-size selection, round-off errors or changing contact
conditions [12]. These numerical errors often appear as
fluctuations around an expected smooth response. Achiev-
ing a good compromise between accurate simulation results
(by reducing these errors) and optimization results on the
one hand and computational efficiency on the other hand
is an on-going challenge. Especially in the metal form-
ing industry where computationally expensive non-linear
simulations are being used. An increasing number of com-
mercial FE codes offer numerical tools such as automatic
procedures for re-meshing or mesh refinement to answer
to this need. Although these techniques have proven their
value for a single deterministic simulation, it is demon-
strated in e.g. van Keulen and Toropov [13] that they may
cause increasing numerical errors when used in multiple
simulations.

To demonstrate numerical noise, consider Fig. 1 showing
results for 200 FE simulations of a V-bending applica-
tion. The bending angle (θ ) is plotted as a function of a
change in tooling geometry (L). This V-bending application
will be discussed in more detail in Section “Application 1:
V-bending process”. The FE simulation response clearly
shows deviations from the expected smooth numerical
response. These fluctuations are referred to as numerical
noise in this paper.

Several approaches have been proposed in literature
which account for the presence of numerical noise [14–
16]. These approaches make use of Response Surface
Methodology (RSM) approximations to filter out numerical
noise. Although very suitable for this purpose, these models
also show low flexibility with respect to possible strongly

Fig. 1 FE simulation response of a V-bending application demonstrat-
ing the presence of numerical noise

non-linear response functions in the design space. As an
example, note the bend in the response at L = 4.7 mm in
Fig. 1 which cannot be accurately described by a linear or
quadratic RSM model. Moreover, Oden et al. [11] already
mentioned that many naturally arising research questions
regarding numerical noise remain open, i.e. how to mini-
mize its deteriorating effect on prediction quality and how
to quantify numerical noise.

A general approach is therefore presented in this work
to handle and minimize the deteriorating effect of noisy
response data in approximate optimization, enabling the
use of any metamodeling technique. Both deterministic
and robust optimization problems are considered. For the
latter, the effect of numerical noise on the prediction of
statistical measures is considered. The above mentioned
research questions will be covered and a coupling is made
with a sequential optimization algorithm based on Expected
Improvement (EI). It is well known that the metamodel
quality can be improved by sequentially adding sampling
points, but the quality improvement is limited in case
numerical noise is present. Instead of relying solely on an
arbitrary chosen threshold value to terminate the EI algo-
rithm, an algorithm is presented based on the magnitude of
noise present in the response.

The paper is organized as follows, Section “Effect of
numerical noise” will first demonstrate the deteriorating
effect of numerical noise on the metamodel prediction
accuracy using an analytical test function. The numerical
noise is subsequently quantified and its effect is minimized
by the application of local approximation and regulariza-
tion techniques respectively, see Section “Accounting for
numericalnoise”. These techniques are subsequently incor-
porated in a general approximate optimization strategy
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and a coupling is made with an update algorithm in Sec-
tion “Approximate optimization strategy”. This approach is
applied in the sequential optimization of 2 industrial metal
forming processes in Sections “Application 1: V-bending
process” and “Application 2: Cup-stretching process”. The
former application is a deterministic optimization prob-
lem whereas the latter application is a robust optimization
problem. Finally, Section “Conclusions” will present the
conclusions and directions for future work.

Effect of numerical noise

Computer simulations are deterministic in nature meaning
that repeated runs for the same input parameters will yield
exactly the same result [17–19]. However, a small devi-
ation in the variable selection can cause the FE code to
have a different mesh or different number of increments.
Consequently, this may give a relatively large difference
in response which is for the greater part a numerical arti-
fact rather than a physical response change. Other causes of
noisy or perturbed behavior of objective functions in opti-
mization problems are demonstrated in Giunta et al. [14]
and Toropov et al. [20]. It is shown in Siem and den Hertog
[21] that the subsequent usage of metamodels to approxi-
mate the noisy response may result in a low quality response
approximation and may even magnify the prediction error.
Combining the resulting metamodel with any optimization
algorithm will provide the user with an inaccurate prediction
of the optimum.

Bias-Variance trade-off

Following the approximate optimization approach, the
metamodel prediction ŷ(x) of the simulation-based
response y(x) can be formulated as:

y(x) = ŷ(x) + ε (1)

When considering deterministic computer experiments,
the remaining fitting error ε should ideally be zero in the
training points. This corresponds to a zero bias error which
means that the metamodel should interpolate through the
response values at the training points. The bias error can be
decreased by increasing the complexity of the metamodel
(e.g. increasing the order of polynomial) or use interpo-
lating metamodels. However, the prediction accuracy of
such models deteriorate when dealing with noisy data since
decreasing the bias error will tend to provide a larger vari-
ance error as a result of over fitting. The variance error
is the variation of the metamodel prediction for different
subsets of DOE points extracted from the full training set.
The variance error can again be decreased by smoothing the
metamodel, but if this idea is taken too far then the bias error

will increase again as a result of under fitting. This natural
trade-off is referred to as the bias-variance trade-off [22].

In addition, both the bias and variance error can be
decreased by increasing the number of training points.
However, when using e.g. computationally expensive FE
simulations, the number of points is severely limited. As
long as data is sparse, i.e. the number of Design Of Exper-
iment (DOE) points is small, interpolating models are still
able to generate a smooth approximation of the noisy data.
However, metamodels based on sparse data will generally
only serve as a first estimate of the true response func-
tion. Sequential optimization steps are subsequently applied
to efficiently increase the accuracy of the response predic-
tion at regions of interest containing the optimal design [23,
24]. By doing so, data become more dense in a local region
of the design space which may again result in erroneous
approximate predictions if the calculated response data are
contaminated with noise.

Application to an analytical test function

To demonstrate these phenomena and the effect of noise,
consider the following analytical test function:

y(x) = (6x − 2)2 sin(12x − 4) + ε

ε ∼ N
(
με, σ 2

ε

)
= N (0, 12) (2)

Two data sets are considered, a smooth and perturbed
data set. For the latter, the analytical test function is pertur-
bed with a normally distributed noise (ε) with mean με = 0
and constant standard deviation σε = 1 where the magni-
tude of the perturbation is assumed small compared to the
overall change in response behavior. Both data sets contain
20 DOE points, 10 globally distributed points augmented
with 10 local DOE points added near the global optimum

Fig. 2 Polynomial Model (PM) approximation of the smooth data set
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Fig. 3 Polynomial Model (PM) approximation of the perturbed data
set

of the test function to create a more dense sampling such as
obtained by sequential approximate optimization. A family
of Polynomial Models (PM) with an order up to 10 is fit-
ted based on the commonly used quadratic loss function or
L2-norm, see Section “Response surface methodology” in
Appendix. Application of this loss function is referred to in
this work as the basic form. The deviation of the metamodel
ŷ(x) from the test function y(x) is determined using the
Root Mean Squared Error (RMSE) evaluated at n points xi :

RMSE = √
MSE =

√√√√1

n

n∑
i=1

(ŷ(xi) − yi)2 (3)

The results for the smooth and perturbed data set are
presented in Figs. 2 and 3 respectively. The resulting error
estimates for the smooth and perturbed data set are given in
Table 1 and denoted by RMSES and RMSEP respectively.
In case no noise is present in the data, increasing the order
of the polynomial will decrease the RMSES. The best fit for
the smooth data set is found to be a polynomial fit of order
10. Now for the perturbed data set, the best approximation
of the test function is found to be a polynomial fit of order
8, see Table 1. Decreasing the order to 6 will result in a
poor representation of the test function and a high bias error

Table 1 Error estimates of the Polynomial Model (PM) approxima-
tion in basic and regularized form of the smooth and perturbed data
set

Metamodel form RMSES RMSEP RMSEP

basic basic regularized

PM - Order 6 10.9 11.8 11.2

PM - Order 8 5.0 8.6 7.3

PM - Order 10 1.8 22.1 12.2

(especially near the optimum), see Fig. 3. On the other hand,
increasing the order of the polynomial fit to 10 will decrease
the bias error but increase the variance error. This can be
recognized in Fig. 3 by the over fitting of the polynomial
model at the sparsely sampled regions of the design space.
The increasing flexibility of the model is becoming more
tuned to the noise present in the data. For the perturbed data
set, the polynomial of order 8 has the best generalization
capability providing an optimal trade-off between closeness
to the data and smoothness of the function.

Accounting for numerical noise

Next, two fundamental research questions considering
numerical noise will be covered: how to minimize its dete-
riorating effect on prediction quality and how to quantify
noise. The former question requires finding the optimal
balance between bias and variance errors in the construc-
tion of metamodels without a priori knowledge of the
underlying true response function. This can be achieved by
regularization techniques and will be discussed in Section
“Regularization”. An approach for estimating the magni-
tude of noise will be presented in Section “Quantification
of noise”.

Regularization

In case of regularization, the L2-norm is extended with an
additional term [25]. In this work, ridge regression, also
known as Tikhonov regularization [26], is applied where the
best approximate model from the family H of approximate
models is selected as the solution of:

min
ŷ∈H

(
Z(ŷ) = 1

n

n∑
i=1

(ŷ(xi) − yi)
2 + λ

∫
‖D2ŷ(x)‖Hdx

)

(4)

where λ is the regularization parameter and D2ŷ(x) rep-
resents the value of the second derivative of the proposed
model. The first term includes the quadratic loss function
which enforces closeness to the data or a low bias error.
The second term penalizes high local curvature enforcing
a smooth approximate model or low variance error. The
optimal regularization parameter can be identified by min-
imizing the Generalized Cross-Validation (GCV) function
[27]. This function is based on leaving out an arbitrary ele-
ment yi after which the corresponding regularized solution
ŷλ should predict this observation well. The regularization
parameter is chosen that minimizes the GCV function [28]:

GCV(λ) =
1
n

n∑
i=1

(ŷλ(xi) − yi)
2

(1 − tr A(λ)/n)2 (5)
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where A(λ) is the matrix which produces the regularized
solution when multiplied with y, i.e. ŷλ = A(λ)y.

A description of the regularized fitting procedure for
the family of polynomial models is provided in Section
“Response surface methodology” in Appendix. The RMSEP

results for these models considering the perturbed data set
is presented in the fourth column of Table 1. For all poly-
nomial models, a closer representation of the test function
is obtained by application of regularization, represented by
the decreasing RMSEP values. Also note that for the poly-
nomial model of order 10 the over fitting is significantly
suppressed. Again, the polynomial model of order 8 results
in the lowest RMSEP. The GCV function for this model
is plotted in Fig. 4 from which the optimal regularization
parameter λ = 0.1 can be identified. Application of other
well known (regularized) metamodel types to the analytical
test function will be demonstrated in Section “Approximate
optimization strategy”.

Quantification of noise

Quantification of noise requires determining the deviation
between response measurements and the expected smooth,
but unknown, underlying true function. Therefore, a low
complexity approximation of the true function is created
by smoothing. Each response measurement is replaced by
a local average of surrounding measurements such that the
level of noise is reduced without (much) biasing the value
obtained. In this work, a local smooth approximation is
created based on Least-Squares Smoothing (LSS) after the
technique used in Savitzky-Golay filters [29]. Applying a
local smooth approximation benefits from a more densely
sampled design space obtained by sequential optimization
used to accurately predict a local estimator and thus result

Fig. 4 Generalized Cross Validation (GCV) function for the regular-
ized polynomial model of order 8

in a low bias error. Moreover, the true function is assumed
to be low multimodal in a local region of the design space.
One could argue to use the metamodel approximation itself,
but this assumes that the mean of the true function is locally
estimated accurately. This assumption can be violated in
practice due to a variety of reasons, e.g. the existence
of a local bias error in the metamodel due to the global
metamodel fitting procedure.

In the LSS approach, a polynomial least–squares fit is
created inside a moving window [25]. The subsets of DOE
points are determined by a nearest neighbors algorithm
using an ellipsoid search region for a multi–dimensional
moving window. In case of a 1 dimensional moving win-
dow, this reduces to finding an equal number of points to
the left (nl) and to the right (nr ) of the DOE point where
nl = nr = 2. By utilizing a moving window, it is assumed
that relatively distant DOE points have some redundancy
which can be used to reduce the level of noise and that
the true function can be locally well-fitted by a polyno-
mial function. To account for the irregularly sampled data,
a LSS prediction ŷlss is made based on a quadratic poly-
nomial approximation (see in Section “Response surface
methodology” in Appendix) :

ŷlss = Xβ (6)

where X is the design matrix containing the quadratic basis
functions and β are the regression coefficients. Note that the
method of least squares chooses the β’s such that the L2-
norm is minimized considering the points that are within the
moving window. For the 1D moving window, this results in:

L2 =
nr∑

k=−nl

ε2
i+k =

nr∑
k=−nl

(ŷlss(xi+k) − yi+k)
2 (7)

This procedure is repeated for each point xi . The result-
ing LSS model is a more accurate description of the true
function than the scattered data points. Assuming the error
variance (σ 2

ε ) to be constant and the errors to be approxi-
mately normally distributed, an estimate of the magnitude of
noise (σ̂ε) can be obtained using the smooth function by tak-
ing the the variance of the estimated residuals (ε̂i) evaluated
at all xi where:

ε̂i = yi − ŷlss(xi) (8)

The local LSS model of the perturbed data set is provided
in Fig. 5. The smoothing is applied in a local region with
an increased sample density, i.e. 0.6 ≤ x ≤ 0.9. Evaluating
the magnitude of numerical noise through Eq. 8 results in
σ̂ε = 0.86. In case ŷlss(xi) is replaced by the function y(x)

in Eq. 8, the magnitude of noise is determined at σε = 0.89.
Clearly, the local LSS model results in an accurate estima-
tion of the noise present in the perturbed data set. Based on
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Fig. 5 Local Least-Squares Smoothing (LSS) model of the perturbed
data set and accompanying ±2σ̂ε noise interval

this estimation, one can plot the ±2σ̂ε noise interval around
the local LSS model, see Fig. 5.

Approximate optimization strategy

This work is centered around application of approximate
models in optimization strategies. The first step in approxi-
mate optimization is the definition of an objective function
(f ) and possible constraints (g) which are functions of the
design variables (x). In case of robust optimization, also
noise variables (z) are present. Note the difference here
between noise variables and numerical noise. The former
are physical parameters whereas the latter is a numerical
artifact. In case numerical noise is present in the response
function, it is shown that application of regularization and
local approximation allows the user to minimize the deterio-
rating effects of numerical noise and quantify its magnitude.
Next, these techniques are incorporated in a general approx-
imate optimization strategy and a coupling is made with
a sequential robust optimization algorithm. The strategy
will be demonstrated by application to the analytical test
function and sequential optimization of 2 metal forming
processes in Sections “Application 1: V-bending process”
and “Application 2: Cup-stretching process”.

Data sampling

At the basis of any approximate model or metamodel is a
DOE plan. In this work, a DOE is created based on a space-
filling Latin Hypercube Design (LHD) combined with a

Full Factorial Design (FFD). This ensures that both the inte-
rior and the outer boundaries of the design space are well
sampled. Since the non-linear simulations are very time-
consuming, a minimum number of simulations is preferred.
The number of DOE points is chosen equal to 10 times the
number of variables as recommended in [30].

As mentioned in Section “Effect of numerical noise”,
metamodels based on sparse data will generally only serve
as a first estimate of the FE simulation response. Sequen-
tial optimization steps are applied to efficiently increase
the accuracy of the response prediction at regions of inter-
est containing the optimal design. This is simulated for the
analytical test function by supplementing the initial DOE
of 10 points with an additional 10 DOE points near the
global optimum. It is shown that problems occur if the den-
sity of data points varies in the design space. The noise
present in the data especially causes over fitting of the
approximate model in the sparsely sampled regions of the
design space. The update algorithm used in this work will be
discussed in more detail in Section “Optimization and
update algorithm”.

Training and evaluation

For research purposes, multiple metamodel types are used
for creating a family of approximate models. The shape and
complexity of the response behavior of the objective func-
tion and constraints in the whole design space is unknown
beforehand. Next to the polynomial models, the following
metamodel types are considered in this work:

– Kriging
– Radial Basis Functions (RBF)
– Neural Networks (NN)

Fig. 6 Basic metamodel approximation of the perturbed data set
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Fig. 7 Regularized metamodel approximation of the perturbed data
set

In the basic form, these models are fitted based on the
L2-norm and show interpolating behavior. Similar to poly-
nomial models, the loss function can be replaced by a
regularized form to account for numerical noise. A descrip-
tion of the different types of metamodeling techniques
used in this work, both in basic and regularized form, is
provided in Section “Appendix: Metamodel types”. Essen-
tially, one can choose any type of metamodel to be used
in this procedure as long as the fitting quality for each
response is sufficient for use in approximate optimization.
This will be discussed in more detail in Section “Model
selection and validation”.

Application of the above mentioned metamodel types in
basic and regularized form to the perturbed data set is pre-
sented in Figs. 6 and 7 respectively. Studying Fig. 6 in more
detail, one can recognize the over fitting behavior of the
models caused by forcing the models to interpolate through
the perturbed data points. Figure 8a shows a detail plot near
the global optimum from which the interpolating behavior
becomes even more apparent. Combining these metamodels
with an optimization algorithm will likely result in erro-
neous results due to the early stalling of the optimization

Table 2 Error estimates of the metamodel approximation of the
perturbed data set

Metamodel form RMSEP RMSEP

basic regularized

Polynomial - Order 8 8.6 7.3

Kriging 15.2 6.7

Radial Basis Function 9.0 7.0

Neural Network 28.3 6.5

algorithm in a local optimum. Also note that some addi-
tional local optima appear following from the over fitting
behavior of the polynomial model.

The problem of approximating perturbed response data
with a varying sample density in the design space is largely
resolved by allowing the models to regress the data, see
Fig. 7 and the detail plot in Fig. 8b. Note that both the
optimal value for the objective function and design vari-
able can be accurately predicted using the regularized
metamodels. The significant improvement of approximation
accuracy with respect to the test function is also con-
firmed by the reduction of the RMSEP for all metamodels,
see Table 2.

Model selection and validation

Until now, the quality of the metamodel approxima-
tion is determined using the response function y(x) in
Eq. 3. In case the function is unknown, one can resort
to Cross Validation (CV) where the ability of a meta-
model to predict untried measurements is tested. Using
CV, one leaves out a measurement point x−i and fits
the metamodel through the remaining response measure-
ments. Analogous to Eq. 3, one can determine a Cross
Validation Root Mean Squared Error (RMSECV) by replac-
ing ŷ(xi) with the metamodel prediction ŷ−i at x−i .
Leave One Out Cross Validation (LOOCV) is applied for
all metamodel types present in the family of metamod-
els, both in basic form and regularized form. For each
response, the metamodel type is chosen that minimizes the
RMSECV.

Table 3 shows the resulting RMSECV values for all
metamodels in basic and regularized form. Similar to the
RMSEP values as presented in Table 2, the improvement of
the approximation accuracy is predicted based on the CV
results, although these values are now based on the (per-
turbed) response measurements instead of the known test
function. Model selection is based on the lowest RMSECV

value, i.e. NN. This example shows that CV can be used to
validate metamodel accuracy in case noise is present in the
response measurements.

Table 3 Error estimates of the metamodel approximation of the
perturbed data set obtained by Cross Validation (CV)

Metamodel form RMSECV RMSECV

basic regularized

Polynomial - Order 8 3.9 2.5

Kriging 4.9 1.4

Radial Basis Function 3.3 1.1

Neural Network 5.8 0.9
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Fig. 8 Detail plot of the (a)
basic and (b) regularized
metamodel approximation of the
perturbed data set

a b

Optimization and update algorithm

The regularized metamodels can now be used for optimiza-
tion by application of an optimization algorithm. To obtain
an accurate and reliable solution, the optimal metamodel
prediction has to be validated by performing FE simulations
in the optimum. If the accuracy is not sufficient according
to the design engineer, a sequential improvement step can
be applied to update the metamodel successively.

An update algorithm is required to select the location of
the next DOE points. In this work, the location of the newly
added DOE points are based on maximizing the Expected
Improvement (EI) [17]. The expected value of the improve-
ment can be expressed in a closed form given by Jones et al.
[18]:

E(I )

=
{(

fmin−ŷ(x)
)
�
(

fmin−ŷ(x)
s(x)

)
+s(x)φ

(
fmin−ŷ(x)

s(x)

)
if s >0

0 if s =0
(9)

with φ and � the probability density and cumulative distri-
bution function of the standard normal distribution respec-
tively. The improvement is calculated by taking the differ-
ence between the mean value prediction ŷ(x) with respect to
the minimum feasible calculated response of the true objec-
tive function value fmin if y < fmin. In addition to the mean
value prediction ŷ(x0) at any location x0, the EI algorithm
makes use of the prediction error s(x0) provided by the meta-
model. For RSM, Kriging, RBF and NN, the estimate of the
prediction error ŝ equals the square root of Eqs. 17, 27, 33,
and 40 respectively. In other words, the predictor ŷ(x0) rep-
resents a realization of a stochastic process Y in which the
randomness is governed by the uncertainty s(x0) about the
true objective function [17, 19]. Maximizing the EI finally
provides the coordinates of the infill point x

′
. After evaluat-

ing the new infill point by a FE simulation, the metamodel
is globally updated and validated taking into account the

additional response. An optimization procedure is started
and the new prediction of the optimum is determined.

The termination of the update algorithm is generally
based on an arbitrarily chosen threshold for the EI. In
case no numerical noise is present in the response data,
a fast decline of the EI function is generally obtained by
adding DOE points [24]. However, the quality improvement
is limited in case numerical noise is present resulting in an
inefficient termination algorithm. Therefore, a termination
threshold is proposed in this work based on the magnitude
of noise present in the data. The approach makes use of the
increasing accuracy with which the actual noise is predicted
for an increasing number of DOE points. To explain this in
more detail, consider Fig. 9 in which the local LSS model

Fig. 9 Local LSS model, accompanying ±2σ̂ε noise interval and
resulting noise bandwidth of the perturbed data set and augmented
data set



Int J Mater Form

of the original data set is plotted including the ±2σ̂ε noise
interval. In addition, the local LSS model and accompany-
ing ±2σ̂ε noise interval is plotted based on an augmented
data set with 4 sequentially added DOE points near the
global optimum. Evaluating the magnitude of numerical
noise through Eq. 8 for the initial and augmented local LSS
model results in σ̂ε = 0.86 and σ̂ε = 0.96 respectively. For
a sparse data set, the magnitude of noise is underestimated.
Adding DOE points results in a more accurate approxima-
tion of the magnitude of noise, converging to σε = 1 for the
test function, see Eq. 2.

The ±2σ̂ε noise interval for both local LSS models can
be translated to noise bandwidths for x. The bandwidth of
the original and augmented local LSS model around the
global optima (visualized by the solid square markers) are
0.690 ≤ x ≤ 0.805 and 0.675 ≤ x ≤ 0.810 respectively and
are depicted in Fig. 9. Note how the bandwidth growths
for an increasing number of DOE points, converging to a
maximum size for σε = 1. Now any sequentially added data
point will only contribute to an increased metamodel pre-
diction accuracy if it falls outside these noise bandwidths.
In other words, the update algorithm is to be terminated if
sequentially added points fall within the noise bandwidths.
The update procedure will automatically terminate based
on the noise present in the response data due to the prop-
erty of increasing bandwidth for an increasing number of
DOE points, and thus increasing accuracy with which σε

is calculated. Depending on the calculation time of the FE
simulation, the user can choose to terminate the algorithm
if multiple subsequent points (e.g. 3 points) fall within the
noise bandwidth, also increasing the stability of the update
algorithm.

Points of discussion

As a point of discussion, note that the proposed approach
provides a measure for the magnitude of numerical noise
present in the data which is subsequently used for determin-
ing an efficient termination threshold for the update algo-
rithm. In case no numerical noise is present, the local LSS
model will predict a noise bandwidth of zero, preventing
the termination algorithm to become active. In this case, a
threshold for the EI has to be defined to terminate the update
algorithm.

In case numerical noise is present in the response data,
the proposed approach becomes active. One could argue to
set up more detailed FE model (e.g. finer mesh) to reduce
the magnitude of numerical noise. However, these models
will be far more computationally expensive and unsuitable
for use in an optimization procedure. Moreover, it is noted
here that it is of less interest to accurately determine the
exact measure of noise or to provide an accurate estimate
of the confidence interval on the objective function value.

Again, this would require more detailed FE models or many
computationally expensive simulations. If the user is inter-
ested in the exact average performance in the optimum, it
would be more beneficial to set up a more detailed FE model
after termination of the update algorithm.

The proposed approach will be demonstrated next by the
sequential optimization of 2 metal forming processes.

Application 1: V-bending process

The proposed approximate optimization strategy, including
the regularization and local approximation techniques, will
now be applied to optimize a V-bending process. The indus-
trial application is performed in cooperation with Philips
Consumer Lifestyle. An impression of the production pro-
cess and resulting product is shown in Fig. 10. A piece of
sheet metal is placed in between a punch (upper tool) and
a die (lower tool), after which the punch is lowered by a
prescribed displacement. During the bending process, the
material experiences local elastic and plastic deformation.
After withdrawal of the punch, the product shows elastic
springback.

Figure 10a shows the FE model of the part and tools.
A 2D model is created assuming a plane strain condition.
The implicit code MSC. Marc has been used as FE code.
Due to symmetry of the product, only one half of the
geometry has been modeled. Both the die and punch are
modeled to be non-rigid and discretized using quadrilateral
elements.

The dimensions of the punch (L) is chosen as a design
variable x with values ranging between 4.1 mm and 5
mm, see Fig. 10b. The flange angle θ , spanned up by the
marked line segments in Fig. 10c, is essential to ensure an
optimal performance of the final assembled product. The
challenge of this study is therefore to determine the opti-
mal setting for L for which θ equals the target angle of
θt = 91.75◦. Note that this application is considered in
Wiebenga et al. [24] as a 9D robust optimization problem.
The focus in this work is on numerical noise, therefore a
single design variable and response function is considered

a b c

Fig. 10 (a) 2D FE model of the V-bending process, (b) definition of
the design variable L and (c) angle θ defining the flange shape of the
final product
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for simplicity. The quantified optimization formulation is
given by:

find x

min |θ − θt |
s.t. 4.1 ≤ L ≤ 5 (10)

For the purpose of this research, a reference data set is
generated by performing 200 FE simulations. The response
values for θ and reference model are presented in Fig. 11.
The reference model is obtained by LSS approximation
of the response set using nl = nr = 10. The bending
angle shows uncorrelated fluctuations about a smooth trend.
The smooth response trend line is expected when modeling
a physical phenomenon. The fluctuations are particularly
caused by changes in the computational mesh and contact
conditions. Clearly, numerical noise is present. Evaluating
the magnitude of numerical noise through Eq. 8 for this data
set results in σ̂ε = 0.01. Moreover, the target objective func-
tion value of f̂opt = 91.75◦ is found for the optimal setting
Lopt = 4.45 mm.

Data sampling and initial approximate optimization

Following the approximate optimization approach as pre-
sented in Section “Approximate optimization strategy”, an
initial DOE of 10 points is created. The family of reg-
ularized metamodels is subsequently fitted and validated.
Based on the validation results as presented in Table 4, a
regularized Kriging model is identified as the most accu-
rate fit. Figure 12a presents the initial 10 DOE points and
the regularized Kriging approximation. In addition, its basic
counterpart is plotted showing a rather smooth behavior. It
shows that in case perturbed data is very sparse, problems
are not likely to occur since perturbations in the data can

Fig. 11 V-bending simulation response and resulting reference LSS
model

Table 4 Coefficient of determination (R2) of the family of metamod-
els based on the V-bending data set

Number of data points 10 (initial) 20 (final)

Reg. Polynomial - Order 2 0.93 0.92

Reg. Kriging 0.98 0.98

Reg. Radial Basis Function 0.94 0.95

Reg. Neural Network 0.97 0.99

still be accommodated with a smooth approximate function.
This is also reflected in the coefficient of determination of
the basic Kriging model, i.e. R2 = 0.95. Based on the regu-
larized Kriging model, the optimal objective function value
is determined at Lopt = 4.49 mm, see the diamond marker in
Fig. 12a.

Sequential optimization

The deviation between the optimal design variable set-
ting prediction based on the metamodel and the reference
LSS model can be decreased by the sequential optimiza-
tion procedure. The EI, given by Eq. 9 and calculated
based on the Kriging model, is given in Fig. 12a. Max-
imizing the EI results in the design variable coordinate
L

′ = 4.49 mm of the first infill point. After determining
the response at this location, the family of metamodels is
updated. As a result, also the prediction error and the EI are
revised.

The intermediate metamodel results and accompanying
local LSS models after adding 3, 6 and 9 DOE points are
presented in Fig. 13a, b and c respectively. In addition,
the ±2σ̂ε noise intervals are plotted where the magni-
tude of noise is estimated at σ̂ε = 0.0069, σ̂ε = 0.0071
and σ̂ε = 0.0078 respectively. Compared to the reference
data set, the magnitude of noise is initially underestimated
but converges to the reference solution for an increas-
ing number of locally added DOE points. As a conse-
quence, also the width of the resulting noise bands increase,
terminating the update algorithm after adding 10 DOE
points. The last 3 subsequent DOE points fall within the
noise band.

Figure 12 shows the final result of applying the sequen-
tial optimization procedure. The validation results of fitting
the family of regularized metamodels to the final data set
is presented in the last column of Table 4. Although very
close to the regularized Kriging model, the regularized NN
model is identified as the most accurate final fit and plot-
ted in Fig. 12 with its basic counterpart. Clearly, the latter
model shows over fitting behavior which is also reflected
by its low coefficient of determination of R2 = 0.80. Also
note that this metamodel approximation results in multiple
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Fig. 12 Metamodel
approximation of the (a) initial
and (b) final updated V-bending
data set

a b

optima that meet the target angle θt = 91.75◦. All these solu-
tions fall within the bandwidth of noise. The regularized

NN model accurately predicts a unique optimal setting of
L

′ = 4.45 mm which meets the reference solution.

Fig. 13 Best metamodel
approximation (left) and local
LSS approximation (right) of
the V-bending data set after (a)
3, (b) 6 and (c) 9 updates

a

b

c
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This industrial application shows that the presence
of numerical noise cannot be neglected in practice.
Accounting for it in approximate optimization is highly
important to increase the overall accuracy of the
optimization results, especially in combination with
sequential optimization procedures or dense sampling
strategies.

Application 2: Cup-stretching process

The second industrial application considered in this work is
the stretching process of a hemispherical cup, performed in
cooperation with Tata Steel. See Fig. 14 for an impression
of the 3D model and resulting product. The cup is produced
out of a deep drawing steel for which the full anisotropic
material behavior is obtained by mechanical testing. The
in–house implicit FE code DiekA [31] is used to set up a
FE model of the forming process, see Fig. 14a. The quar-
ter circle blank is discretized using triangular Kirchhoff
shell elements with 5 integration points through the thick-
ness, see Fig. 14b. The blank is subsequently stretched by a
prescribed punch displacement of 42 mm with the friction
coefficient set to 0.14.

During the forming process, the material in the cup wall
will be stretched significantly. After 42 mm punch dis-
placement, the material mainly experiences plane strain
deformation in a band halfway the cup wall, see Fig. 14b.
Fracture will occur at this location once the peak strain
exceeds the forming limit. To determine the moment of frac-
ture, an accurate prediction of the strain in the cup wall is
required.

For the purpose of this research, the maximum major
strain (ε) is evaluated in the Rolling Direction (RD) of the
blank, see Fig. 14b. The blank radius (R) is chosen as a
design variable ranging between 80 mm ≤ R ≤ 100 mm.
Since the element size of the quarter circle blank is kept
constant at 1.4 mm, the number of elements per blank size

a

b

Fig. 14 (a) 3D model of the stretching tools and (b) final hemispher-
ical cup

configuration increases from approximately 6022 to 9424
elements for the smallest and largest blank size respectively.
As with the process in practice, the material thickness (t)
shows variation around a mean value. The scatter in mate-
rial thickness is obtained by measuring 48 blanks and can
be described by a normal distribution t ∼ N (μt , σ

2
t ) with

μt = 0.8 mm and σt = 0.02 mm. As a result, the objective
becomes a function of the weighted sum of both the mean
μf and standard deviation σf of the strain response. Note
that σf is the standard deviation as a result of the noise vari-
able t which differs from σε which is the standard deviation
of the error caused by numerical noise. The challenge of this
robust optimization study is to find the optimal setting R for
which the strain in RD, including its scatter caused by the
noise variable t , does not exceed the forming limit strain of
εl = 0.4. The quantified optimization formulation is given
by:

find x

max μf

s.t. μf + 3σf ≤ 0.4 (11)

80 ≤ R ≤ 100

t ∼ N (0.8, 0.022)

A reference data set is obtained beforehand by perform-
ing 1071 FE simulations at an equidistant grid of 51 × 21
design and noise variable settings respectively for the pur-
pose of this investigation. The upper and lower bound of the
noise variables are set at μt + 3σt and μt − 3σt , respectively.
A graphical representation of the maximum major strain
in the RD is given in Fig. 15. The response shows sudden
discontinuities in the direction of the blank radius caused
by changes in the computational mesh. A more smooth
response can be observed in the direction of the blank thick-
ness. Although the characteristics of noise are different
compared to the previous application, the sudden disconti-
nuities in the response can be seen as numerical noise since
they do not represent the smooth physical performance and
thus a similar problem is faced in approximate optimization.

A smooth reference solution is obtained by LSS approx-
imation of the response set using 10 nearest neighbors
determined by an elliptical search region. Evaluating the
magnitude of numerical noise in the major strain response
through Eq. 8 results in σ̂ε = 0.003. The LSS model of the
reference data set and accompanying ±2σ̂ε noise interval is
depicted in Fig. 16a. Note that for this multi-dimensional
optimization problem, the greatest magnitude of numerical
noise in the blank radius direction is dominant in determin-
ing σ̂ε for the whole design space. The objective function
can now be determined based on the reference data set as
well as the LSS model by Monte Carlo sampling. Both
results are plotted in Fig. 16b. Note the significant effect
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Fig. 15 Reference data set of
the cup-stretching application
represented by a (a) surface plot
and (b) contour plot

a b

Fig. 16 (a) Reference LSS
model and accompanying ±2σ̂ε

noise interval, and (b) objective
function prediction based on the
reference data set and reference
LSS model

a
b

Fig. 17 (a) Initial regression
NN model and (b) resulting
objective function prediction a b
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Fig. 18 (a) Final regression
Kriging model and (b) contour
plot showing the initial (black)
and added (gray) DOE points

a b

of numerical noise on the robust objective function result-
ing from the reference data set. In addition, the ±2σ̂ε noise
interval of the objective function is plotted obtained by
sampling onto the LSS model. The magnitude of numer-
ical noise for the objective function is determined at σ̂ε

= 0.002. Using the reference LSS model of the objective
function, the target value of f̂opt = 0.4 is found for the
optimal setting R

′
= 87.5 mm, see the diamond marker

in Fig. 16b.

Robust optimization

An initial DOE of 20 points is created in the 2D combined
design–noise variable space. After running the FE simula-
tions corresponding to the settings specified by the DOE,
the family of regularized metamodels is fitted in the com-
bined space. The regularized NN model is identified as
the most accurate fit, see Fig. 17a. The resulting objective
function prediction is plotted in Fig. 17b. Solving Eq. 11
results in the optimal value R

′
= 85.1 mm, see the cir-

cle marker in Fig. 17b. Clearly, sequential optimization is
required to improve the overall prediction accuracy of the
metamodel and decrease the discrepancy with the optimal
value prediction of the reference solution.

Sequential robust optimization

The initial DOE is augmented with additional DOE points
by the sequential optimization procedure. The extension of
the EI algorithm to account for the influence of noise vari-
ables is presented in Wiebenga et al. [24]. The termination
criterion as presented in Section “Optimization and update
algorithm” is reached after adding 19 DOE points. The
final regularized Kriging metamodel solution is depicted in
Fig. 18a. The initial and sequentially added DOE points are
plotted in Fig. 18b. Note how the design space has been
sampled extensively near the global optimum in the control
variable space.

A plot of the final objective function prediction and ref-
erence objective function is provided in Fig. 19a. The final
optimum is found close to the reference optimum at R

′
=

87.3 mm, see the circle and diamond marker in Fig. 19a.
The local LSS model and accompanying ±2σ̂ε noise inter-
val is provided in Fig. 19b where the magnitude of noise is
estimated at σ̂ε = 0.0016. Although the magnitude of noise
is still underestimated compared to the reference data set,
the update algorithm is efficiently terminated after adding
3 subsequent DOE points within the noise band. Further
improvement of the robust objective function prediction is

Fig. 19 (a) Final objective
function prediction and (b) local
LSS model

a b
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not expected based on the presence of numerical noise in the
FE simulation response.

Conclusions

This work demonstrates the presence and the severe dete-
riorating effect of numerical noise on the approximation
quality of metamodels, limiting the accuracy and gen-
eral usability of approximate optimization techniques. It is
shown that the use of regularization in the fitting proce-
dure of metamodels can alleviate the problem when noise
is present in the FE simulation response. Quantification of
noise is achieved by local smoothing of response data. The
proposed general approximate optimization approach
includes these techniques and makes a coupling with
a sequential optimization algorithm based on expected
improvement. Application of the approach to two indus-
trial optimization cases show the efficient termination of the
update algorithm based on the magnitude of numerical noise
present in the response data. Moreover, despite the presence
of numerical noise the approach shows a fast and accurate
convergence towards the global optimum while maintaining
the benefits of approximate optimization.
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Appendix: Metamodel types

The aim of a metamodel, denoted by ŷ(x), is to accurately
predict the trend of the FE simulation response or true model
y(x). Consider a nonlinear regression model, including a
random error term ε, defined by:

y(x) = ŷ(x) + ε (12)

What follows is a description of different types of meta-
modeling techniques used in this work to construct ŷ(x).

Response surface methodology

The Response Surface Methodology (RSM) is a well known
method for creating an approximate model of a response
[32]. Although this method is generally used for construct-
ing a response surface from physical experiments, many
authors have applied it to numerical experiments as well.
One of the reasons is it’s ability to filter out numerical noise
[14–16].

Using RSM, a polynomial model is fitted through the n

response measurements or observations y allowing for a ran-
dom error term ε. Equation 12 can now be written in matrix
form as:

y = Xβ + ε (13)

where

y =

⎡
⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎦ , X =

⎡
⎢⎢⎢⎣

1 x11 x12 · · · x1m

1 x21 x22 · · · x2m

...
...

...
. . .

...

1 xn1 xn2 · · · xnm

⎤
⎥⎥⎥⎦ ,

β =

⎡
⎢⎢⎢⎣

β0

β1
...

βm

⎤
⎥⎥⎥⎦ , and ε =

⎡
⎢⎢⎢⎣

ε1

ε2
...

εn

⎤
⎥⎥⎥⎦

Now, X is an n × p matrix of the levels of independent
variables with p = m + 1, β is a p × 1 vector of regression
coefficients, and ε is an n × 1 vector or random error terms.
Note that the design matrix X can incorporate non-linear
terms with respect to the m design variables. The order of
these terms are referred to as the order of the polynomial
model. The metamodel is given by ŷ = Xβ. The unknown
regression coefficients β are determined by minimizing the
error sum of squares at the training points, also referred to
as quadratic loss function or L2-norm:

εTε = (y − Xβ)T(y − Xβ) (14)

Differentiating Eq. 14 with respect to β and setting the
results to zero yields the best estimation of β:

β̂ = (XTX)−1XTy (15)

where β̂ denotes the estimator of β. The response prediction
ŷ0 at an unknown design variable setting x0 is now given by
the explicit function:

ŷ0 = xT
0 β̂ (16)

The variance at this location is given by:

var[ŷ0] = σ 2xT
0 (XTX)−1x0 (17)

The unbiased estimate of the error variance σ 2 is given by:

σ̂ 2 = εTε

n − p

=

n∑
i=1

ε2
i

n − p

=

n∑
i=1

(ŷi − yi)
2

n − p

(18)

The prediction uncertainty of the metamodel is given by
the square root of the variance as calculated in Eq. 17.

www.m2i.nl
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Regression in response surface methodology

Instead of estimating the unknown regression coefficients
based on the error sum of squares through Eq. 14, in case
of ridge regression these are obtained by minimizing the
regularized loss function:

εTε + λβT β (19)

where the regularization parameter λ governs the rela-
tive importance of the regularization term, penalizing large
weights, compared with the error sum of squares term. The
ridge regression formulation results in the solution:

β̂ = (XTX − λI)−1XTy (20)

where the optimal λ can be identified by generalized cross-
validation. A modification of Eq. 18 in case of ridge
regression is provided in MacKay [33].

Kriging

Computer simulations are deterministic in nature mean-
ing that repeated runs for the same input parameters will
yield exactly the same result. Therefore, the remaining error,
denoted by ε in Eq. 12, should formally be zero [19]. In
other words, the metamodel should interpolate through the
response values at the training points.

The approach proposed in Sacks et al. [17] and Jones
et al. [18] is referred to as Design and Analysis of Com-
puter Experiments (DACE) where generally Kriging is used
as interpolation technique. Kriging involves a defined base
function or regression part, similar to fitting a RSM meta-
model. The random error term ε in Eq. 12 is replaced by
basis functions or a stochastic part Z(x) to compute the
exact predictions at the available training points:

y = Xβ + Z(x) (21)

where Z(x) is assumed to be a Gaussian stochastic process
with mean zero, process variance σ 2

z , and spatial covariance
function given by:

cov(Z(xi), Z(xj )) = σ 2
z R(xi, xj ) (22)

where R(xi, xj ) describes the correlation between the
known measurement points xi and xj . The correlation func-
tion R determines the shape of the metamodel between mea-
surement points and is, in case of a Gaussian exponential
correlation function, given by:

R(θ, xi , xj ) = exp−θ(xi−xj )2
(23)

Now, in case m design variables are present, the correla-
tion function depends on the m one-dimensional correlation
functions as follows:

R(θ, xi , xj ) =
m∏

l=1

exp−θl (xil−xj l)
2

(24)

The entries of the vectors θ = {θ1, θ2, . . . , θm}T and the
distance between the known measurement points xi and xj

determine the structure of R(θ, xi , xj ). Analogous to RSM,
a Kriging metamodel is fitted in order to minimize the mean
squared error between the Kriging metamodel ŷ(x) and the
true but unknown response function y(x) [19, 34]:

min E(ŷ(x) − y(x))2

s.t. E(ŷ(x) − y(x)) = 0 (25)

In other words, the mean squared error is minimized sub-
ject to the unbiasedness constraint that ensures there is no
systematic error between the metamodel and the true func-
tion. The Best Linear Unbiased Predictor (BLUP) ŷ0 at an
untried design variable setting x0 is now given by:

ŷ0 = xT
0β + rT

0 R−1(y − Xβ) (26)

where x0 is the design matrix containing the settings of
the untried point x0 and X the design matrix containing
the training points. The vector r0 contains the correlation
between the point (x0, y0) and the known measurement
(xi, yi). R is a matrix containing the correlation between the
training points given by Eq. 23.

The Mean Squared Error (MSE) can be calculated at
location x0 by:

MSE(y0) = σ 2
z

(
1 − [

xT
0 rT

0

] [0 XT

X R−1

][
x0

r0

])
(27)

The unknown Kriging parameters β, σ 2
z , and θ can be

estimated by Maximum Likelihood Estimation (MLE) [17].
Note that maximization of the likelihood function is equiva-
lent to a minimization of the error sum of squares when the
error can be assumed to be a Gaussian noise. This optimiza-
tion procedure is solved using the DACE toolbox provided
by Lophaven et al. [34].

Regression in Kriging

In case data is contaminated with noise, it makes more
sense to approximate the given data instead of interpolating
the data. The generalization capability of Kriging mod-
els can be improved by adding a regularization constant
λ to the leading diagonal of the correlation matrix R as
R + λI [35]. This enables a Kriging model to regress the
data and approximate noisy functions. Without the regres-
sion constant, each point is given an exact correlation with
itself, forcing the metamodel to pass through the train-
ing points. The regression constant enables control on the
interpolation feature of the Kriging model. The regression
constant λ is now optimized along with the other unknown
parameters in the MLE providing the regression Kriging
predictor:

ŷ0 = xT
0β + rT

0 (R + λI)−1(y − Xβ) (28)
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A modification of Eq. 27 in case of regression Kriging is
provided in Forrester et al. [36].

Radial basis functions

A function approximation constructed by the linear combi-
nation of basis functions hi(x) takes the form:

y(x) =
n∑

i=1

wihi(x) (29)

where each basis function is weighted by an appropriate
coefficient wi . The idea behind Radial Basis Functions
(RBF) is that every known DOE point i ’influences’ its sur-
roundings the same way in all directions according to a
basis function, so that hi(x) = φ(r) where r is the radial
distance r = ‖x − xi‖2. Now the RBF approximation is a
linear combination of the basis functions centered at all n

DOE points:

y(x) =
n∑

i=1

wiφ(‖x − xi‖2) (30)

A commonly used radial basis function is the Gaussian
exponential function. Referring to Eq. 23 and compose the
Gaussian with the radial distance r , the radial basis function
is given by:

φ(r) = exp−(θr)2
(31)

The weights wi can be found by minimizing the error
sum of squares at the training points. Evaluating Eq. 29
results in solving a linear system of equations of the form
Hw = y. The estimated mean response ŷ0 at x0 is provided
by:

ŷ0 = hT
0 ŵ (32)

The variance at this location is given by:

var[ŷ0] = σ 2hT
0 (HTH)−1h0 (33)

Similar to RSM, the unbiased estimate of the error variance
σ 2 is given by Eq. 18.

Regression in radial basis function approximation

The regularized loss function is formulated as:

εT ε + λwT w (34)

Minimization of the loss function results in the best
estimation of the regularized weight coefficients:

ŵ = (HT H − λI)−1HT y (35)

Also note the resemblance with Eq. 20. A modification
of the error variance in case of ridge regression is provided
in MacKay [33] and Orr [37].

Artificial neural networks

Neural Networks (NN) follow the same form as Eq. 29
where the choice of the letter h for the basis functions
reflects the interest in NN which have hidden units. In addi-
tion to the basis functions, the building blocks of NN are
neurons and connections. Differences in the learning rules
and the network topology result in different NN architec-
tures or NN concepts. In this work, two layer feedforward
backpropagation NN are utilized.

A two layer NN architecture is presented in Fig. 20. This
architecture is referred to as feed forward since information
only proceeds forward through the network and there are
no feedback loops in between the layers. Starting with the
first layer of S neurons, the output a of the so-called Hidden
layer (HL) is given by:

a = G(1)(d(HL)), d(HL) = W(HL)x + b(HL) (36)

The layer includes a weight matrix W(HL) ∈
R

S×m, an input vector x, a bias vector b(HL) =
{b(HL)1, b(HL)2, . . . , b(HL)S}T, basis functions or activation
functions G and an output vector a = {a1, a2, . . . , aS}T.
The basis functions used in this work are the tangent sig-
moid and the linear basis functions. The tangent sigmoid
basis function G(1)(d) can take any arbitrary input value
d ∈ R and suppress the output into the range (−1, 1) by:

G(1)(d) = 2

1 + exp(−2d)
− 1 (37)

The output of the linear basis function G(2)(d) equals its
input:

G(2)(d) = d (38)

The output of the hidden layer a is the input for the next
layer. This layer is referred to as the Ouput Layer (OL)
since its output is also the output of the network. The basis
function used in the hidden layer is the tangent simoid func-
tion whereas the linear function is used in output layer.
These functions are preferred because of their differentia-
bility which enables determining partial derivatives used in
parameter estimation.

Fig. 20 Two layer NN architecture
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The predictor of a two layer architecture with a single
network output is now given by:

ŷ(x) = G(2)(d(OL)) = d(OL), d(OL) = wT
(OL)a + b(OL)

(39)

In essence, Eq. 39 is the linear combination of the
weighted tangent sigmoid basis functions. The unknown
parameters in Eq. 39 are the bias term of the output
layer b(OL), the vector with output layer weights w(OL) =
{w(OL)1, w(OL)2, . . . , w(OL)S}T and the hidden layer bias
vector b(HL) and weight matrix W(HL). The unknown
weight and bias parameters can be estimated by minimiz-
ing the error sum of squares at the training points. This
unconstrained nonlinear optimization problem is solved
using a Levenberg-Marguardt optimization algorithm. The
procedure is also referred to as Bayesian regulation
backpropagation [33].

The variance estimation theory for nonlinear regression
as in Eq. 17 and 33 also applies to NN [38]:

var[ŷ0] = σ 2gT
0 (JTJ)−1g0 (40)

where J is a matrix whose ij th entry is given by ∂ŷ(xi)/∂zj

and g0 is a vector whose ith entry is ∂ŷ(x0)/∂zj , evaluated
at the optimal parameter vector ẑ where z represents the col-
lection of all unknown parameters. Note that for estimating
the weights in NN, J is already calculated as part of the
optimization procedure. The unbiased estimate of the error
variance σ 2 is given by Eq. 18. The procedure as described
in this section is solved using the NN Matlab toolbox [39].

Regression in artificial neural networks

With many weight and bias parameters involved in NN,
there is a considerable danger of overfitting. The gener-
alization capability can be improved by minimizing the
regularized loss function as in Eq. 34. Note that regular-
ization both assists in avoiding over fitting due to a high
number of hidden units S (and thus many weights and biases
to be determined) and the presence of numerical noise in
the response data. The loss function is minimized using the
Levenberg-Marguardt backpropagation algorithm as imple-
mented in the NN Matlab toolbox [39]. A modification of
the error variance in case of ridge regression is provided
in [38].
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