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ABSTRACT

The micromechanical and macromechanical behavior of idealized granular assemblies, made by linearly
elastic, frictionless, polydisperse spheres, are studied in a periodic, triaxial box geometry, using the dis-
crete element method. Emphasis is put on the effect of polydispersity under purely isotropic loading and
unloading, deviatoric (volume conserving), and uniaxial compression paths.

We show that scaled pressure, coordination number and fraction of rattlers behave in a very similar
fashion as functions of volume fraction, irrespective of the deformation path applied. Interestingly, they
show a systematic dependence on the deformation mode and polydispersity via the respective jamming
volume fraction. This confirms that the concept of a single jamming point has to be rephrased to a range
of variable jamming points, dependent on microstructure and history of the sample, making the jamming
volume fraction a state-variable.

This behavior is confirmed when a simplified constitutive model involving structural anisotropy is
calibrated using the purely isotropic and deviatoric simulations. The basic model parameters are found
to depend on the polydispersity of the sample through the different jamming volume fractions. The
predictive power of the calibrated model is checked by comparison with an independent test, namely
uniaxial compression. The important features of the uniaxial experiment are captured and a qualitative
prediction for the evolution of stress and fabric is shown involving a “softening” regime in both stress and

fabric - stronger for the latter — that was not prescribed into the model a priori.
© 2013 Nishant Kumar. Published by Elsevier B.V. on behalf of Chinese Society of Particuology and
Institute of Process Engineering, Chinese Academy of Sciences. All rights reserved.

1. Introduction and background

Granular materials are widely used as raw materials in various
industrial applications, including pharmaceutical, mining, chemi-
cal, agricultural, household products, and food sectors. Processes
involving milling, segregation, fragmentation, agglomeration, fil-
tration, and sieving, among others are common and often lead to
the generation of granular systems with large size ratios. The opti-
mization of these systems is exceptionally challenging and often
requires heuristic assumptions to be made. It is known, however,
that polydispersity influences the micro-mechanical behavior of
granular systems. For example, the shear strength and packing
fraction, which are important quantities in determining the stress
state and response of granular assemblies, have been shown to be
influenced by the size ratio of the packing (Géncii & Luding, 2013;
Shaebani, Madadi, Luding, & Wolf, 2012).

* Corresponding author. Tel.: +31 534894212.
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On the other hand, the bulk macroscopic behavior of granular
systems originates from the contact force network between their
constituent particles. The contact force networks, even for sys-
tems with uniform size distribution, are mostly inhomogeneous
leading to many interesting phenomena (Shaebani et al., 2012).
In recent studies involving the effects of polydispersity, empha-
sis has been placed on systems with narrow size distributions -
ostensibly to limit the effects of long-range structural order — with
the exception of a few cases where wider distributions have been
reported (Dodds & Weitz, 2002; Ogarko & Luding, 2012, 2013;
Voivret, Radjai, Delenne, & El Youssoufi, 2007, 2009).

Additionally, a micromechanical description, which takes into
account the discrete nature of granular systems, is necessary and
must be linked to the continuum description, which involves
the formulation of constitutive relations for macroscopic fields.
In recent years, several constitutive relations have been pro-
posed in literature (see Goddard, 1998, 2010; Kolymbas, Herle, &
von Wolffersdorff, 1995; Masin, 2012; Sun & Sundaresan, 2011;
Thornton & Zhang, 2010 among others), but only few take into
account the anisotropy that develops when granular systems are
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subjected to shear deformation (Luding & Perdahcioglu, 2011;
Magnanimo & Luding, 2011; Peyneau & Roux, 2008; Tejchman &
Wu, 2007) and no study, to our knowledge, connects anisotropy
and polydispersity. When a granular assembly is subjected to
shear deformation, a buildup of shear stress is observed, along
with an evolution of the structural anisotropy, which describes
the creation and destruction of contacts (Ai, Chen, & Ooi, 2013;
Alonso-Marroquin, Luding, Herrmann, & Vardoulakis, 2005; Azéma
& Radjai, 2012; Hareb & Doanh, 2012; Kumar, Imole, Magnanimo, &
Luding, 2013; Peyneau & Roux, 2008; Radjai, Roux, & Moreau, 1999;
Schroder-Turk et al., 2010; Walsh & Tordesillas, 2004). In this sense,
anisotropy represents a history-parameter for the granular assem-
bly. For anisotropic samples, scalar quantities are not sufficient to
fully represent the internal direction dependent contact structure;
therefore an extra tensorial quantity has to be introduced, namely
the fabric tensor (Oda, 1972; Satake, 1982). To gain more insight
into the microstructure of granular materials, numerical studies
on various deformation experiments can be performed (see Hanley,
O’Sullivan, Byrne, & Cronin, 2012; Peyneau & Roux, 2008; Thornton,
2010; Thornton & Zhang, 2006, 2010 among others).

In this study, we perform parametric studies with the goal of
understanding the effects of polydispersity on both microscopic
and macroscopic behavior of granular assemblies under isotropic,
uniaxial and deviatoric deformation conditions. As (scalar and
tensorial) microscopic quantities, we investigate the effects of poly-
dispersity on coordination number, fraction of rattlers and fabric.
The volumetric part of fabric is the measure of the strength of
contact network, while the deviatoric part gives insight on the
orientation of the contact network. On the macroscopic side, we
consider the effects of polydispersity on the scaled pressure and the
deviatoric stress. Another goal is to calibrate a constitutive model
using parameters from deviatoric volume conserving simulations
and test the predictive power of the calibrated model on an inde-
pendent test, namely uniaxial compression test. We propose an
objective definition for deviatoric stress and deviatoric fabric in a
triaxial box and present findings on their behavior as a function of
deviatoric strain. The parameters obtained from pure isotropic and
deviatoric deformations as functions of polydispersity and volume
fraction are finally inserted into the constitutive relations to predict
uniaxial deformation.

This paper is organized as follows: The simulation method and
parameters used and the generalized averaging definitions for
scalar and tensorial quantities are given in Section 2. The prepara-
tion and test procedures are explained in Section 3. Polydispersity
is introduced in Section 4.1 and its effect on the evolution of the
non-scaled pressure, coordination number and fraction of rattlers
for the different deformation modes is discussed in Section 4.2.
In Section 4.3, the macroscopic quantities (deviatoric stress and
deviatoric fabric) and their evolution are studied as functions of
polydispersity, volume fraction and deviatoric (shear) strain for
the different deformation modes. Finally, these results are used
to obtain/calibrate the macroscopic model parameters. Section 5
is devoted to theory, where we relate the evolution of the fabric
anisotropy to that of stress and strain, as proposed in Luding and
Perdahcioglu (2011) and Magnanimo and Luding (2011), to display
the predictive quality of the calibrated model.

2. Numerical simulation

The discrete element method (DEM) (Cundall & Strack, 1979)
has been used extensively in performing simulations in biaxial and
triaxial geometries (Duran, Kruyt, & Luding, 2010; Kruyt, Agnolin,
Luding, & Rothenburg, 2010; Luding, 2005b; Sun & Sundaresan,
2011) involving advanced contact models for fine powders
(Luding, 2008; Tomas, 2001), or general deformation paths (see

Table 1
Summary of particle parameters used in the DEM simulations.

Parameter Symbol Value Value in SI units
Time unit ty 1 1ws
Length unit Iy 1 1mm

Mass unit my 1 1pg
Number of particles N 9261

Average particle radius (r) 1 1mm
Polydispersity W = T'max/Tmin 1-10

Particle density P 2000 2000 kg/m?
Normal stiffness k 10° 108 kg/s?
Normal viscosity y 1000 1kg/s
Background viscosity Vb 100 0.1kg/s

Alonso-Marroquin et al., 2005; Thornton, 2010; Thornton & Zhang,
2010 and references therein). In this work, however, we restrict
ourselves to the simplest deformation tests — namely isotropic,
uniaxial and deviatoric - and to the linear contact model without
friction. Since DEM is a standard method, only the contact model
parameters relevant for our simulation are briefly discussed as well
as the basic system parameters.

The simplest normal contact force model, which takes into
account excluded volume and dissipation, linear repulsive and lin-
ear dissipative forces, is given as f, = fyfi = (k§ + y§) i, where k is
the spring stiffness, y is the contact viscosity parameter, § is the
overlap and § is the relative velocity in the normal direction fi. An
artificial background dissipation force, f, = — ypv;, proportional to
the velocity v; of particle i is added, resembling the damping due to
a background medium, as e.g. a fluid. A short summary of the val-
ues of the parameters used in DEM simulations is shown in Table 1.
Note that the units are artificial and can be consistently rescaled to
quantitatively match the values obtained from experiments (due
to the simplicity of the contact model used), as shown in (Luding,
2008). We want to point out here that the choice of contact model
(linear or non-linear) affects the collisional behavior between two
particles as well as the bulk behavior (Ji & Shen, 2006; Shéfer,
Dippel, & Wolf, 1996). When linear and hertzian contact models
are compared, a major difference is related to the initial contact
stiffness, where the former presents a finite constant value, while
for the later, the stiffness is a function of the deformation, namely it
is zero at the beginning. However, the difference between the two
models become smaller when the consolidation pressure becomes
higher, as is the case in this study.

2.1. Microscopic variables

In order to link the macroscopic load carried by the sample with
the active microscopic contact network, all particles that do not
contribute to the force network are excluded from the computation.
Frictionless particles with less than 4 contacts are thus “rattlers”,
since they cannot be mechanically stable and hence do not con-
tribute to the contact network (Goncii, Duran, & Luding, 2010;
Imole, Kumar, Magnanimo, & Luding, 2013a; Madadi, Tsoungui,
Latzel, & Luding, 2004). The simple definition of coordination num-
ber is C=M/N, where M is the total number of contacts and N=9261
is the total number of particles. If the overlap at a contact between
two particles is greater than or equal to zero, i.e., § >0, the con-
tact contributes to the force network. The corrected coordination
number is C*= M4/N4, where My is the total number of contacts of
the N4 particles with at least 4 contacts, and the rattler fraction is
¢r=(N—Ng)/N.

The total volume of particles is Zgﬂvp =47wN(r3)/3, where

(r3)/3 is the third moment of the size distribution discussed in
detail in Section 4.1 and the volume fraction is defined as v =

(1/V)ZPN=1va where V is the volume of the box. Note that for
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the calculation of the total volume of particles, the volume which
should be subtracted due to particle overlaps is neglected.

2.2. Macroscopic variables

Here, we focus on defining averaged macroscopic tensorial
quantities, including strain, stress and fabric (structure) tensors,
that reveal interesting bulk features and provide information about
the state of the packing due to its deformation.

For any deformation, we can describe the externally applied
strain through the infinitesimal strain tensor E. Its isotropic part
ey (Gonctii et al.,, 2010; Imole et al., 2013a) is defined as:
Exx + Syy + &2z 1 1 -
—3 = §tr(E) = §tr(E)dt, (1)
where £4q = £qq dt with ca =xx, yy and zz as the diagonal elements
of E in the Cartesian x, y, z reference system. The trace integral of
3ey, denoted as the volumetric strain &y is the true or logarithmic
strain, i.e., the volume change of the system relative to the initial
reference volume, V.

From the DEM simulations, one can determine the stress tensor

ey = é&ydt =

as

1 c
a=le ®f, 2)

ceV

which is an average over the contacts in the volume V of the dyadic
products between the branch vector I¢ and the contact force f¢,
where the contribution of the kinetic energy has been neglected
(Luding, 2005a). The isotropic component of the stress is the pres-
sure P=tr(o)/3.

Besides the stress, we will focus on the fabric tensor in order
to characterize the geometry/structure of the static aggregate,
defined as

F= %ZVPZnC(@nC, (3)

PeV ceP

where VP is the volume of particle P, which lies inside the averaging
volume V, and n€ is the normal unit branch-vector pointing from
center of particle P to contact ¢ (Kumar et al., 2013; Luding, 2005a).
The average isotropic fabric is F, =tr(F)=g3vC, where v and C are,
respectively, the volume fraction and the coordination number,
and gz is a function of moments of the size distribution (Goncii
et al, 2010; Shaebani et al., 2012), as explained in detail in Section
4.1. We want to highlight here that a different formulation for the
fabric tensor considers simply the average orientation of contacts
as follows (Oda, 1972; Satake, 1982):

F = NiZnC@;nc, (4)
CCENC

where N is the total number of contacts. The relationship between
Egs. (3) and (4) is:
P~ F__3F

T g€ R (5)

where the equality holds for the monodisperse case.

In addition to the isotropic components, we use the following
definition to quantify the magnitude of the deviatoric parts (Kumar
et al, 2013) of tensors Q (stress ¢, strain E or fabric F):

. Fsgn(Q)\/(QXX = Q) +(Qy — Q) +(Qer — Qo) +6(Q + Qs + Q)

= 2
(6)

where Qxy, Qyy, and Qz; are the diagonal components, and Qxy, Qyz,
and Q are the off-diagonal components of the symmetric tensor
Q. Fsgn(Q) is the sign function with possible values +1, 0, and -1,
whose definition depends on the deformation path (see Section
4.3).In the case of stress, Eq. (6) equals the von Mises stress, 0gey =
\/% , with J, as the second deviatoric stress invariant.

When a biaxial or triaxial compression is performed, such that
the strain, stress and fabric stay almost coaxial with principal
axes parallel to the initial reference system, the off-diagonal terms
become negligible and the diagonal terms coincide with the eigen-
values.

3. Preparation and test procedure

After the (common) initial isotropic preparation, the packing is
deformed following three different procedures, namely isotropic,
uniaxial, and deviatoric paths (a detailed procedure can be found in
Imole et al., 2013a). For convenience, the definitions of the different
modes will be based on their respective strain-rate tensors. Also
note that the deformations applied to systems are always “slow”
enough to maintain the quasi-static regime and hence minimize
the dynamical effects (Hanley et al., 2012; Imole et al., 2013a).

3.1. Initial isotropic preparation

Since careful, well-defined sample preparation is essential in
any physical experiment to obtain reproducible results, the prepa-
ration consists of three parts: (i) randomization, (ii) isotropic
compression, and (iii) relaxation, all equally important to achieve
the initial configurations for the subsequent analysis. (i) The initial
configuration is such that spherical particles are randomly gener-
ated in a 3D box without gravity, with low volume fraction and
rather large random velocities, such that they have sufficient space
and time to exchange places and to randomize themselves. (ii) This
granular assembly is then isotropically compressed, in order to
approach a direction independent initial configuration with tar-
get volume fraction vy =0.64, slightly below the jamming volume
fraction, i.e. the transition point from fluid-like behavior to solid-
like behavior (Majmudar, Sperl, Luding, & Behringer, 2007; Makse,
Johnson, & Schwartz, 2000; O’'Hern, Langer, Liu, & Nagel, 2002; van
Hecke, 2010). (iii) This is followed by a relaxation period at con-
stant volume fraction to allow the particles to fully dissipate their
energy and to achieve a static configuration in mechanical equilib-
rium, after sufficient relaxation indicated by the drop in kinetic to
potential energy ratio to almost zero.

3.2. Isotropic compression mode

Further isotropic compression (negative strain-rate in our con-
vention) can now be used to prepare initial configurations at
different volume fractions, each one with subsequent relaxation,
achieved at different steps during loading and unloading, as dis-
played in Fig. 1. Furthermore, this path can be considered as the
isotropic element test by itself (Goncti et al., 2010). It is realized by
a simultaneous inward movement of all the periodic boundaries of
the system, with diagonal strain rate tensor

-1 0 O
E=é&] 0 -1 0 |,
0 0 -1

where &y(> 0) is the rate amplitude applied to the walls until the
target maximum volume fraction vmax = 0.82 is achieved. The simu-
lations are continued with negative &, in the unloading mode, until
the initial vq is reached. The unloading branch configurations are



N. Kumar et al. / Particuology 12 (2014) 64-79 67

Og T T T T
08 S~ / :
/
0.7 ;/vc "l 4
g
> 0.6 }\Vo .
A B C
0.5 E
04 .
03 1 1 L
0 200 400 600 800 1000
Time (ms)

Fig. 1. Evolution of volume fraction as a function of time. Region A represents the
initial isotropic compression below the jamming volume fraction v.. B represents
relaxation of the system to fully dissipate the systems energy and C represents the
subsequent isotropic compression up to vmax = 0.820 and then decompression. Cyan
dots represent some of the initial configurations, at different v;, during the loading
cycle and blue stars during the unloading cycle, at the same v;, which can be chosen
for further study (see Imole et al. (2013a) for more details).

more reliable since this part of the deformation is much less sen-
sitive to the protocol and rate of deformation during preparation
(Gonctii et al., 2010; Imole et al., 2013a). Consequently, we will use
those initial states for our analysis.

3.3. Uniaxial compression mode

Uniaxial compression is one of the element tests that is initiated
at the end of the “preparation”. The uniaxial compression mode
in the triaxial box is achieved by a prescribed strain path in the
z-direction, while the other boundaries x and y are non-mobile.
During loading (compression) the volume fraction increases, like
for isotropic compression, from vy=0.64 to a maximum volume
fraction of vmax = 0.820 (as shown in region C of Fig. 1), and reverses
back to the original volume fraction vg during unloading. Uniaxial
compression is defined by the strain-rate tensor

00 O
E=¢,{00 0 |,
00 -1

where &, is the strain-rate (compression>0 and decompres-
sion/tension <0)amplitude applied. The negative sign (convention)
of E;, corresponds to a reduction of length, so that tensile defor-
mation is positive. Even though the strain is imposed only on
the mobile “wall” in the z-direction, which leads to an increase
of compressive stress on this wall during compression, also the
non-mobile walls experience some stress increase due to the
“push-back” stress transfer and rearrangement of the particles dur-
ing loading, as discussed in more detail in the following sections.
This is in agreement with theoretical expectations for solid mate-
rials with non-zero Poisson’s ratio. However, the stress on the
passive walls is typically smaller than that of the mobile, active
wall, as consistent with findings from laboratory element tests
using the biaxial tester (Morgeneyer & Schwedes, 2003; Zetzener
& Schwedes, 1998) or the so-called A-meter (Kwade, Schulze, &
Schwedes, 1994a,b).

3.4. Deviatoric deformation mode

The preparation procedure, as described in Section 3.1, provides
different configurations with volume fractions v;. Starting from the
values v; in the unloading branch of the isotropic path as shown in
Fig. 1, we perform volume conserving deviatoric deformations with
strain-rate tensor

10 0
E=ép [0 0O 0 |,
00 -1

where &p; is the strain-rate (compression > 0) amplitude applied to
the wall with normal in z-direction. The chosen deviatoric path is on
the one hand similar to the pure-shear situation, and on the other
hand allows for simulation of the biaxial experiment (with two
walls static, while four walls are moving (Morgeneyer & Schwedes,
2003; Zetzener & Schwedes, 1998)), in contrast to the more dif-
ficult isotropic compression, where all the six walls are moving.
(Pure shear is here used to identify constant volume deviatoric
loading with principal strain axis keeping the same orientation as
the geometry (cubical) of the system for the whole experiment.
In this case, there is no rotation (vorticity) of the strain principal
axis and no distortion/rotation of the sample due to deformation.)
Different types of volume conserving deviatoric deformations can
be applied to shear the system, but very similar behavior has been
observed (Imole et al., 2013a).

4. Polydispersity

Most granular materials are highly polydisperse in nature. It is
known that size polydispersity affects the mechanical behavior of
granular systems (e.g., shear strength) as well as their space-filling
properties (e.g., packing fraction) (Goncii & Luding, 2013; Ogarko &
Luding, 2012, 2013), which are crucial in many engineering appli-
cations like road construction or soils liquefaction problems (see
(Anderson, 1996; Belkhatir, Arab, Della, & Schanz, 2012; Belkhatir,
Arab, Schanz, Missoum, & Della, 2011) and references therein). Nev-
ertheless the attention has been restricted so far to monodisperse
or binary mixtures or narrow size distribution. Here we use sam-
ples with different degrees of polydispersity to study the effect
of increasing polydispersity on the evolution of microscopic and
macroscopic parameters during various deformation modes.

4.1. Polydispersity of the granular assemblies studied

We define polydispersity in terms of the width W= rmax/min.
where rmax and r;, represent the radii of the largest and smallest
particles in the overall ensemble of a distribution uniform in size
(Gonct et al., 2010; Goncii & Luding, 2013):

w+1 2w(r) 2(r)
2(w—1)<r>@<w+1_r)@(r_w+1)’ 7
with step function &(x>0)=1 and ®(x<0)=0. From the distribu-

tion of radii, one can calculate the parameter g3 that describes the
polydispersity of a 3D spherical system (Goncii et al., 2010) as:

o 1=B2+ G + (B, = 2G)(r*) /(i) + G/ (n)(r?))
1+ Glr2)/(n? - 1]

where the constants B, =1.077 and C, =0.2629 are described in
Goncii et al. (2010) and () is the nth moment of r up to the 5th
degree. Only for the monodisperse case, the simplification gz =1
holds. Otherwise, g3 increases with polydispersity w and saturates
at high values about 1.627.

fin)=

. (8)

83
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Fig. 2. Snapshots of three systems with polydispersity w equal to (i) 1.5, (ii) 2, and (iii) 5, respectively, with the same volume fraction v =0.82. The color code indicates the
contacts of the particles, with red representing big contacts, blue representing no contacts. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of the article.)

In order to study the effects of polydispersity on micro-macro
behavior of a granular assembly, we prepare different packings
with polydispersity ranging from w=1 to 10. These packings are
deformed following the paths described in Section 3. As an exam-
ple, we show in Fig. 2 isotropic samples with w=1.5, 2, and 5 for
constant volume fraction v=0.82. Note that for the same volume
fraction v, the volume of the box is higher for higher polydispersity,
since (r3) increases with w for fixed (r) =1. For higher polydispersity,
particles of smaller size fill more efficiently the pore space between
larger particles. However, lower polydispersity in packings of gran-
ular materials is associated with alterations in the structural order
(Ogarko & Luding, 2012; Voivret et al., 2007). (Note that here results
for a uniform radius distribution are presented. The trend will be
different if the type of distribution is different e.g., uniform surface
or uniform volume distribution.)

4.2. Effect of polydispersity on isotropic quantities

In the following, we will study the influence of polydispersity
on scaled pressure, coordination number and fraction of rattlers,
during the three deformation paths described in Section 3.

4.2.1. Confining pressure
Starting from Eq. (2), we define the non-dimensional pressure
(Gonct et al., 2010; Imole et al., 2013a) as

2(r)

p= Wtr(a), (9)

with (r) the first radius moment (average radius) and k the spring
stiffness defined in Section 2, while the scaled pressure is:

= B — po(—eu)l1 = vl (10)
where pg, yp, and the critical volume fraction v are fit parameters,
—é&y is the volumetric strain. When comparing the two expressions
of non-dimensional and scaled pressure, we notice that in Eq. (10),
the pressure is normalized by “vC”, that is, the contribution of the
density of contacts is canceled. Hence, p*is only proportional to the
average deformation (overlap) of the particles at a given volume
fraction and to the distance from jamming point through —e&,.

In Fig. 3, we plot the variation of the non-dimensional pressure
p with volume fraction v during isotropic, uniaxial, and deviatoric
deformation for polydispersities w= 1.5 and 5. Note that p increases
with v, starting from v, with slight differences related to different
modes, as discussed in Imole et al. (2013a). For a given volume
fraction, we observe a decrease in the pressure with increasing
polydispersity w. Better insights into this feature are gained by

p*

0.14 [ v 1 " Y T v 1 1T
0.02 —r—r—

012 F [ .
0011 ]
(UL .
0.08 - o —
Q“ [ ]
0.06 [- b
0.04 w= 15,150 -
[ w= 5,150 —o]
w=15,UNI ]
0.02 |- w=5,UNI 1
w = 15, DEV -]
e w= 5,DEV —o—]

0 sar&' > | PR S TR R S S

0.64 0.68 0.72 0.76 0.8 0.84

Fig. 3. Variations of non-dimensional pressure p with volume fraction v for the
isotropic (@, red), uniaxial (v, green), and deviatoric (4, blue) deformation modes,
as shown in the legend. Small symbols represent w= 1.5 and big symbols represent
w=5, Inset is the zoomed-in area near the jamming volume fraction v.. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
web version of the article.)

looking at the distribution of overlaps §(r)/(r) as a function of
the scaled particle radius rsc = (r — 'min)/(Fmax — 'min)» @S Shown in
Fig. 4(a) and (b) for two volume fractions, v=0.686 and v=0.82.
The particle radii are scaled such that rsc=0 and rsc=1 represent
the smallest and largest particle in the configuration, respectively.
A first observation is the unsurprising increase in the average over-
lap for all modes and polydispersities with increasing compression
from v=0.686 in Fig. 4(a) to v=0.82 in Fig. 4(b), in agreement with
Fig. 3. Based on this, we can claim that 2(r) P/koc§(r)/(r), at least
for small deformations and for the linear contact model. In addi-
tion, for both volume fractions shown, the overlap increases with
increasing particle radii.

Focusing on the deformation mode trend, for both polydisper-
sities, the deviatoric deformation leads to the highest pressure,
followed by the uniaxial and isotropic modes, respectively. This
trend is clearly visible at lower volume fractions, as shown in the
inset of Fig. 3, while for increasing volume fraction, the effect of
the deformation mode reduces, as evidently shown by the collapse
of data in Fig. 4(b). The agreement is confirmed by observing the
average overlap (d) in Fig. 4(a) and (b), with the data from uniaxial
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compression lying between the isotropic and deviatoric datasets.
The trend observed in the variation of the scaled pressure and dis-
tribution of the average overlaps are consistent with the fact that
the isotropic and deviatoric modes are pure modes, while the uni-
axial mode is a superposition of isotropic and deviatoric modes
(Luding & Perdahcioglu, 2011).

Fig. 5(a)-(c) shows the effects of varying polydispersity on the
scaled pressure in Eq. (10), where p* is plotted against volumet-
ric strain —¢y for isotropic, uniaxial, and deviatoric deformations.
For a single deviatoric deformation the volume fraction is constant
along the path and hence the pressure remains practically constant.
In this work the data describing deviatoric mode will always refer
to the values in the critical state, after large deformation (see Imole
etal.(2013a) for more details), unless stated otherwise. In the small
strain region, for all deformation modes, the datasets collapse on
each other. Only with increasing —&y, a small deviation of the sim-
ulation data is observed for the isotropic and deviatoric modes, due
to the non-linear correction that shows up atlarge strainin Eq. (10).
The analytical expression of the scaled pressure in Eq. (10) fits the
simulation data well for all three deformation modes and polydis-
persity, in agreement with findings in Goncii et al. (2010), Gonci
and Luding (2013), and Imole et al. (2013a).

The comparison of Figs. 3 and 4 puts in evidence a very interest-
ing feature in the behavior of pressure. When the contact density
vC is scaled out in p* the curves collapse irrespective of poly-
dispersity leading to the conclusion that this factor affects the
contact network while the deformation mode (and the distance
from jamming) influences the evolution of average overlap. The fit-
ted parameters for p*in Eq. (10) are given in Fig. 6 and Table A1. The
parameter py is fairly constant with increasing polydispersity, with
po values higher for the isotropic case and uniaxial and deviatoric pg
being very close. This is in agreement with expectations, as in both
uniaxial and deviatoric deformations, anisotropy develops along
the path, and the value of the non-dimensional pressure increases
for the (pure) isotropic case. The non-linear contribution from yp,
fluctuates for smaller polydispersity and becomes significant for
higher w.

By fitting Eq. (10) for pressure, we can extract the dependence
of the jamming volume fraction v. on the polydispersity w and
the deformation mode, as shown in Fig. 7. The jamming volume
fraction increases with increasing polydispersity, showing highest

Table 2
Summary of parameters v? and v in Eq. (11) that fit the vc vs. w simulation data
shown in Fig. 7, for the isotropic, uniaxial, and deviatoric deformation modes.

Mode V2 Ve

ISO 0.6453 0.6710
UNI 0.6394 0.6675
DEV 0.6381 0.6647

Ogarko and Luding (2012) 0.6500 0.6828

values of v. for the isotropic case, with v¢ values for the “mixed” uni-
axial mode falling in between the isotropic and deviatoric datasets.
This is consistent with findings in Imole et al. (2013a), where
VIS0 > pUNI . yDEV I this case a similar argument holds as men-
tioned for pg, related to the development of anisotropy during the
over-compression, that explains the trend of the jamming volume
fraction between isotropic, deviatoric and uniaxial. This confirms
that the jamming volume fraction is not an independent (single)
value, i.e. it is not a material parameter, but depends on the defor-
mation history of the packing.

A theoretical prediction for the variation in v under isotropic
compression of polydisperse hard spheres was presented by
Ogarko and Luding (2012), as follows:

Ve(w) = v — (v —Vv)(Bw2 —2w3), (11)

where 1€ and v are the jamming volume fractions for w=1 and
w — oo, respectively. We apply Eq. (11) to the three deformation
modes, and in Fig. 7 we show the prediction for hard spheres
together with the v simulation data for the three modes, and the
fitting curves, where the parameters v? and v are presented in
Table 2. Despite the quantitative disagreement due to the differ-
ence between hard and soft spheres, both systems show a very
similar trend, the predictions working well for all the three modes.
The simulations in Ogarko and Luding (2012), leading to Eq. (11),
were carried out by very slow isotropic compression from the low
density collisional regime, where the fluctuation velocities were
not relaxed as done in this study. The strong kinetic energy fluc-
tuations represent a type of “tapping” that allows the system to
relax toward a better packed configurations with larger v.. The
data in Fig. 7 from Ogarko and Luding (2012) thus represents an
upper limit of optimal compaction, which is not reached by e.g.
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slow over-compression to vmax = 0.82. Eq. (11) can then capture the
variation of v. with polydispersity, irrespective of the deformation
modes, when the fit parameters are properly defined. This interest-
ing feature shows that v¢ acts as a state variable, able to describe
the configuration of the assembly and represent its history, as also
reflected by the overlaps in Fig. 4.

4.2.2. Coordination number

It has been shown in Goncii et al. (2010) and Imole et al. (2013a)
that under isotropic deformation, the corrected coordination num-
ber, C* follows the power law:

c*(v)=c0+c1(v%—1)a, (12)

where Cj =6 is the isostatic value in the frictionless case. o and C;
are fit parameters, while we use v, from p* extrapolation analysis
as input value, leading to one less fit parameter for C*. We observe a
very small variation (3%) of o with polydispersity and deformation
modes (Imole et al., 2013a) but for simplicity we set it to a fixed

value of 0.60 in this work (Peyneau & Roux, 2008). Only C; is then
the residual free fit parameter.

In Fig. 5(d)-(f), we compare the variation of the corrected coor-
dination number C* as a function of volume fraction v during
isotropic, uniaxial and deviatoric loadings and show its dependence
on polydispersity. The behavior is qualitatively similar for all the
three deformation paths: contacts close and the coordination num-
ber increases with increasing volume fraction. Moreover, for the
three modes, configurations with lower polydispersity result in a
higher number of contacts per particle. The data are well fitted by
Eq.(12)with the fit parameter C; as function of w shownin Fig. 8(a).
A systematic decrease in Cy is observed with increasing polydis-
persity w. The C; values of the “mixed” uniaxial mode lie between
the isotropic and deviatoric datasets. Increase in the polydispersity
beyond w=4.5 did not lead to a further change of C;, better clarified
by the collapse of the C* lines (cf. Fig. 5(d)-(f)). This suggests that
uniform size polydispersity influences the micromechanics only
within a certain limit. For highly polydisperse packings (w>5), the
limit is approached because the critical volume fraction v saturates
(see Fig. 7). For other size distribution functions, this behavior can
be different.

In order to further investigate the behavior of the coordination
number C* we study the distribution of contacts per particle radius
fraction. In Fig. 9(a) and (b), we plot the average number of con-
tacts (excluding the rattlers) for a radius range, defined as C*(r),
versus the scaled radius rsc =(r — rmin)/(Tmax — 'min) for v=0.686
and v=0.82 for the three deformation modes. C*(r) increases with
increasing rgc for all the three modes, that is the number of con-
tacts is larger for bigger particles. This is expected because the
bigger particles have larger surface area and thus can be in con-
tact with more particles. A similar argument explains the relation
between the particle coordination number C*(r) and polydisper-
sity: smaller w leads to higher number of contacts for the smallest
particles and to a weaker variation of C*(r) with rs.. The crossover
rsc value shifts toward the left for higher volume fractions. As
expected, for higher volume fractions, C*(r) increases faster with
I'sc, as shown in Fig. 9(b), since more contacts are formed as the
volume of the box becomes smaller. Comparing the deformation
modes, only very small differences appear, at low volume frac-
tion, v=0.686, as shown in Fig. 9(a) and negligible for high volume
fraction, v=0.82, as seen in Fig. 9(b), in agreement with the argu-
ment proposed in Section 4.2.1 for p*. The average values (C*(r))
for isotropic deformation are smaller, larger for deviatoric, and the
“mixed” uniaxial deformation mode lies in between the two (Imole
et al., 2013a).

w

w

Fig. 8. Comparison of the fit parameters for the analytical equations of coordination number C* and rattler fraction ¢, using Eq. (12) with Co =6, «=0.60, and Eq. (13),
respectively, for the isotropic (®, red), uniaxial (v, green), and deviatoric (4, blue) deformation modes: (a) effect of polydispersity w on the coordination number C* fit
parameter, C;, and (b) and (c) effect of polydispersity w on rattler fraction ¢, fit parameters, ¢ and ¢,. The fit parameters are presented in Table A1. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of the article.)
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4.2.3. Fraction of rattlers
The analytical expression for the fraction of rattlers is proposed
(Gonctii et al., 2010; Imole et al., 2013a) as

9:(v) = geexp [y (- 1) (13)

where ¢. and ¢y are fit parameters, and v, is the jamming volume
fraction inferred from Eq. (10) for the different deformation modes.
We show the effect of polydispersity on the fraction of rattlers
under isotropic, uniaxial and deviatoric deformation in Fig. 5(g)-(i),
respectively, and the variation of fit parameters with w in Fig. 8(b)
and (c) (numerical values are reported in Table A1). A first obser-
vation is that the fraction of rattlers decreases exponentially with
increasing volume fraction (Imole et al., 2013a) in agreement with
Eq. (13). Furthermore, the increase of polydispersity leads to an
increase of the fraction of rattlers in the system. This is not surpris-
ing, as the volume occupied by finer/smaller particles is smaller in
highly polydisperse systems. Contacts of these smaller particles are
transient since they have more freedom to move within the system
(for this size distribution - not in general). In some cases, they may
become “caged” between larger particles without having sufficient
(four or more) contacts with their neighbors. This leads to a drop
in the coordination number and a (related) increase in the fraction
of rattlers.

Also interesting is the variation of the parameters of Eq. (13),
¢c and ¢y which represent the initial point and the slope, respec-
tively. A systematic increase in ¢. with increasing polydispersity is
observed in Fig. 8(b), whereas the slope ¢, decreases with increas-
ing polydispersity as shown in Fig. 8(c). This indicates that even
though the fraction of rattlers in highly polydisperse systems is
higher, the rate at which rattlers are lost in these systems dur-
ing compression decreases with w. This is again related with the
“cage” argument, as very small particles are caged by big particles
and need a high compression degree to gain new contacts as com-
pared to medium sized particles (see Fig. 9(a) and (b)). Interestingly,
both parameters ¢. and ¢y, as presented in Fig. 8, are seemingly
unaffected by the deformation mode, stating that the history of the
sample can be fully represented by ¢, when the fraction of rattlers
is analyzed.

Finally, we plot in Fig. 10 the variation of the isotropic fabric
F, =g3vC versus volume fraction during isotropic compression. F,
increases with volume fraction v and polydispersity w and shows
a trend with respect to w opposite to that of the corrected coor-
dination number C* shown in Fig. 5(d)—(f). This can be explained
by observing the rattlers: when particles with less than four con-
tacts are included in the calculation of C, the value of F, grows
with increasing w and v. For both polydispersities shown, near the
jamming volume fraction, deviatoric deformation has the highest
Fy, isotropic deformation has the lowest and the “mixed” uniaxial
mode is in between the two, as shown in the inset of Fig. 10. This
variation disappears for large volume fractions. However, the dif-
ferences between the three modes for F, are smaller compared to
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Fig. 10. Variations of isotropic fabric F, with volume fraction v for the isotropic (@,
red), uniaxial (v, green), and deviatoric (4, blue) deformation modes. As shown in
the legend, small symbols represent w=1.5 and big symbols represent w=>5. Inset
is the zoomed-in area near the jamming volume fractions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
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isotropic fabric F, for different w.

the isotropic part of stress p, as it is related to small differences in
the average contact number per particle (Fig. 9(a) and (b)).

4.3. Effect of polydispersity on deviatoric quantities

In this section, we present the effects of polydispersity on the
evolution of deviatoric stress and deviatoric fabric along uniaxial
and deviatoric deformation paths. The deviatoric stress is a macro-
scopic property which quantifies the stress anisotropy (Imole et al.,
2013a), while the deviatoric fabricis a microscopic property related
to the orientation of the contact network. Here, we focus on the sim-
ulation results for the uniaxial and deviatoric deformation modes
since the deviatoric quantities only fluctuate around zero for the
isotropic mode. Later in Section 5, we will use the information
obtained from the above mentioned quantities to calibrate a con-
stitutive model. As a result, we will test the predictive ability of the
model on an independent uniaxial compression test.

4.3.1. Deviatoric stress

In Fig. 11(a), we plot the deviatoric stress ratio (Sqey =0 dev/P)
as a function of deviatoric strain eg4e, during deviatoric deforma-
tion for packings with three different polydispersities. The volume
fraction vis 0.751 in all cases, and stays constant during the numer-
ical experiments. The deviatoric stress grows initially with rate
from random initial values (a small random initial anisotropy is
present in each sample) until an asymptote, s3i* at steady state is
reached, where it remains fairly constant (Cui & O’Sullivan, 2006;
Imole et al., 2013a; Kumar et al., 2013; Krijgsman & Luding, 2013;
Luding, 2004). The steady state value increases with polydispersity
with highly fluctuating values varying in the range of 0.11+0.02,
0.12+0.03 and 0.1540.035 for w=1.5, 2, and 5, respectively. Sur-
prisingly, while the deviatoric stress o ey is practically unaffected
by w, the pressure P decreases with increasing polydispersity (see
Fig. 3), leading to the dependence of the ratio o4e,/P On w as
observed. On the other hand, the slope s, proportional to the shear
stiffness (scaled by pressure) of the initial isotropic configurations,
is a function of the isotropic fabric F,, as shown in the inset of
Fig. 11(a). The relation between isotropic fabric and polydisper-
sity, extensively discussed in Goncii et al. (2010) and reported in
Fig. 10, makes fs a decreasing function of w.

Furthermore, in Fig. 12(a) we plot the deviatoric stress as a
function of deviatoric strain during uniaxial compression, for pack-
ings with different polydispersity w=1.5, 2, and 5. The uniaxial
test starts from initial volume fraction v;=0.72 (the same value
used for the previous deviatoric simulations), and reaches the
maximum volume fraction vmax =0.82. As for the deviatoric sim-
ulations, higher polydispersity also leads to higher s72 at steady
state for the uniaxial deformations. The same argument about
the dependence of pressure on polydispersity holds and explains
the behavior in Fig. 12(a). We observe larger fluctuations for the
uniaxial deformation mode as compared to the deviatoric defor-
mation, with averages and errors s('g:,x ~ 0.10£0.025,0.114+0.035
and 0.15+0.04 for w=1.5, 2, and 5, respectively. We relate the
increasing fluctuations to the non-conserved volume (Imole et al.,
2013a)and more “violent” rearrangements. Note that different sign
conventions are used in Eq. (6) to calculate the deviatoric stress for
deviatoric and uniaxial simulations, since the definition of the sign
function Fsgn depends on the deformation mode, as discussed in
Section 2, i.e. the strain eigen-system. The sign function for uniaxial
compression (negative strain components versus positive stress
and fabric) is

Fsgn(Q) = sgn(Qzz — 0.5(Qxx + Qyy)),

where the z-wall is moving and the x- and y-walls are not. For
deviatoric deformation

Fsgn(Q) = sgn(Qyy — Qxx),

with x-wall expanding, y-wall compressing and a non-mobile z-
wall. The sign convention explains the different initial values
associated to the same initial packings in Figs. 11(a) and 12(a).

4.3.2. Effect on deviatoric fabric

The variation of the deviatoric fabric F4e, as a function of the
deviatoric strain &gey is shown in Fig. 11(b) for the same devia-
toric simulations as above. Fge, builds up from different random
(small) initial values with rate B¢ to different saturation values
Fx. Interestingly, the slope Br seems to be constant (besides large
fluctuations), irrespective of different polydispersity of the initial
configurations. This is surprising, as the initial samples have differ-
ent contact network densities Fy, due to polydispersity, and leads
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to the interesting conclusion that the incremental response of devi-
atoric fabric only depends on Fge, and volume fraction as state
variables, while the role of the isotropic contact network is neg-
ligible. The critical value FJ23* shows a different trend from S, but
similar to s72% as it increases with polydispersity w. This is reason-
able, when we think of the kinematics at small scale, i.e. particles
with a large difference in size have more freedom to rearrange and
modify the contact network during compression. The behavior of
Sget is consistent with the decrease of C* in Fig. 5(e)~(f), as a lower
coordination number is usually associated with a higher anisotropy
(La Ragione & Magnanimo, 2012).

In order to further investigate the anisotropic behavior of the
material, we study the deviatoric fabric Fye, (r) per particle radius
for the volume conserving deviatoric tests focusing on the large
shear strain configurations, i.e. &40, =0.40. We focus only on the
contact orientation and cancel the influence of the particle radius,
by slightly modifying Eq. (3) such that this quantity stays bin inde-
pendent. For each radius r, we calculate

) = - 2V ZVPZn“ ®nt, (14)

v > Vr PeV;

ceP

where the value of fabric is scaled by the ratio ZVP /ZVr between
the total volume of the particles having radius r and the total vol-
ume of the particles. Please notice that Eq. (14) coincides with
Eq. (3) when all the radii are considered and > V;=> VF. In
Fig. 13(a) and (b), we plot the deviatoric part of fabric, Fyey(r)
versus the scaled radius rsc=(r — r'min)/(fmax — 'min) for v=0.686
and v=0.82. F4ey(r) increases with increasing rsc, meaning that
the bigger particles form a sub-network, whose orientation fol-
lows the applied shear strain. These are the particles that belong
to the force chains (Radjai et al., 1999) and carry the majority of
the applied load. On the other hand, Fye,(r) is small for small rsc,
as the small particles arrange randomly, i.e. isotropically and are
“caged” in the voids among the bigger particles, as already men-
tioned in Section 4.2.2. Large fluctuations do not allow to clearly
read how the behavior of Fye,(r) Vs 1'sc depends on polydispersity
w.

The variation of the deviatoric fabric under uniaxial deforma-
tion is presented in Fig. 12(b) for different polydispersities. In a
similar fashion to the deviatoric stress ratio, Fge, builds up from

different (random, but small) initial values and reaches different
maxima for different polydispersities, with w=5 showing the high-
est peak, while the slope B stays unaffected by w. For larger strain,
the structural anisotropy decreases rapidly toward zero (data not
shown). This indicates that more new contacts are created in the
axial direction compared to the perpendicularisotropic plane at the
beginning of the loading path while at higher deviatoric strain, the
fabric behaves in an opposite fashion as new contacts are created in
the horizontal direction rather then in the vertical one, where most
available neighbors already have come into contact. The “softening”
in deviatoric fabric does not correspond to any decrease in devi-
atoric stress that grows monotonically until saturation is reached
(see Fig.12(a)). The origin of this interesting feature associated with
uniaxial simulation, where stress and fabric show non-colinearity,
and the strain eigen-system is prescribed by the wall motion, will
be presented elsewhere (Imole, Wojtkowski, Kumar, Magnanimo,
& Luding, 2013b).

5. Calibration of the continuum model and prediction

In this section, we will present the microscopic simulation
results with a short review of an anisotropy continuum model as
introduced in Luding and Perdahcioglu (2011). We will calibrate
the free parameters in the model as function of polydispersity w
and volume fraction v, using the isotropic and purely deviatoric
deformation experiments. Finally, using the model, a prediction of
an independent test, i.e. the uniaxial deformation mode, will be
presented.

5.1. Reduced theoretical model

Most standard constitutive models with wide application fields,
like elasticity, elasto-plasticity, or fluid/gas flow models of various
kinds, were applied also to granular flows, sometimes with success
but typically only in a very limited range of parameters and flow
conditions (for overviews see Bauer, Huang, & Wu, 2004; Einav,
2012; Goncii & Luding, 2013; Imole et al., 2013b; Jiang & Liu,
2007; Luding & Perdahcioglu, 2011; MiDi, 2004; Tejchman & Wu,
2007 and references therein). While most of these theories can be
and some have been extended to accommodate anisotropy of the
microstructure, only very few models account for an independent
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evolution of the microstructure (e.g. Goddard, 2006; Luding &
Perdahcioglu, 2011; Sun & Sundaresan, 2011).

We use the constitutive model, as proposed in Luding and
Perdahcioglu (2011), generalized for a D-dimensional system:

8P = DBS¢y + ASS¢& ey,
804ey = DASey + GOtSSegey, (13)
SA = ﬁASigﬂ(agdev)(Amax - A)(Sé‘dev-

The model involves three moduli, namely, the classical bulk
modulus B (Goncii et al., 2010), the octahedral shear modulus
G°%, and the “anisotropy modulus” A. Due to the modulus A, the
model provides a cross coupling between the two types of stress
and strain in the model, namely the hydrostatic and the shear
(deviatoric) stresses react to both isotropic and deviatoric strains.
S =(1—sgey/sqax) is an abbreviation for the stress isotropy with
the stress ratio Sqey already introduced in Section 4.3. The param-
eter sp2* resembles the macroscopic friction (depending on our
definition, Sqey = 39 =3 sin ¢, where q is the shear stress ratioand g is
the internal friction angle as in Azéma, Radjai, and Saussine (2009)
and others, while fs is the growth rate of sqe,. The parameter Amax
in the evolution equation of A represents the maximum anisotropy
that can be reached at saturation, and 85 = B¢ determines how fast
the asymptote is reached (growth rate) when a material is sub-
jected to deviatoric strain eg4e, (Imole et al, 2013a). Both A™MaX
and B, are model parameters and can be extracted by fitting the
macroscopic simulation results. In a nutshell, the anisotropy model
is based on the basic postulate that an independent evolution of
stress and structure is possible and the macroscopic modulus A
accounts for the deviatoric deformation history, being proportional
to the microscopic rank-two deviatoric fabric Fye,. More detailed
explanations about the constitutive model and its parameters can
be found (in Imole et al., 2013a; Luding & Perdahcioglu, 2011;
Magnanimo & Luding, 2011; Krijgsman & Luding, 2013).

The reduced model, with some simplifying assumptions as
introduced in Imole et al. (2013a) and Luding (2004, 2005b),
reduces to only two independent evolution equations for the devi-
atoric stress ratio Sqey, and the deviatoric fabric Fge,, where the
former is given by:

_ <max max 0 —pBse
Sdev = Sgev — (Sdev - Sdev)e shdev, (16)

where sg o, and s7eX represent the initial and maximum values of
Sdev and fs is its growth rate. Similarly, the deviatoric fabric is
approximated by:

Faev = Fiay — (Fgey' — Fgev)eiﬁngev ) (17)
where Fgev and FJi* represent the initial and maximum (satura-

tion) values of the deviatoric fabric, and S is its rate of change.
5.2. Calibration for polydisperse samples

In the following, we use these two equations as empirical fit
functions, since they are special cases of the complete constitu-
tive model with anisotropy, to deduce the model parameters as
functions of volume fraction v from various volume-conserving
deviatoric simulations (Imole et al., 2013a). In particular, the influ-
ence of polydispersity w on the fitting parameters is studied. As
an example, the deviatoric data for w=1.5, 2, and 5 are fitted using
Eqgs.(16)and (17) and the four parameters sgioX, Bs, Fioex, and Bg are
extracted. The procedure is applied to the full set of polydisperse
packings with many different v (not shown).

Fig. 14(a) and (b) shows respectively the variation of s3i?* and
Fgg‘/x with v, for different w. Both sfi‘};x and Fé‘;ﬁ‘," decrease with
increasing volume fraction v and approach a finite limit for large
volume fractions. This is because for higher volume fractions, the
motion of spheres is more constrained by more contacts and hence
the anisotropy developed during the deformation becomes smaller.
Moreover, with increasing polydispersity, the asymptotic values of
Sqex and FJ2X increase, as explained in detail in Section 4.3.

Fig. 15(a) and (b) shows respectively the variations of fs
and B with v relative to the jamming volume fraction, i.e. the
scaled volume fraction v/v. —1, for different w from the same
deviatoric simulations as above. A decreasing trend is seen for B
versus v/vc — 1, with larger scattering as compared to sji2X. With
increasing polydispersity, the variation of 8s with polydispersity w
reduces (this can be seen by looking at the inset in Fig. 11(a) since
Fy in that dataset depends only on polydispersity), so we neglect
this variation in this work. A similar decreasing trend in S with
v/ve —1 is seen, while, besides fluctuations, B is less dependent
on w (see inset in Fig. 11(b)). In Figs. 14 and 15, we also report the
values of the four parameters for the monodisperse packing, w=1.
We note that when s and SBf are plotted in Fig. 15(a) and (b),
the data for w=1 show anomalously large values. This is probably



76 N. Kumar et al. / Particuology 12 (2014) 64-79

0.24 T T T T

(@)

0.22 -
0.2 |

0.18 -

max

F

max
Sdev

0.16 -

0.14 -

0.1

Y A S
0.64

dev

0'2 T T T T
(b) w=1 *
w=13
w=15 -+
0.15 - 1 w=2 X
w=25
w=3
01 _ w=35
w=4 O
w=45 @
w=5 A
0.05 - w=10 a
0 i 1 1 1 1 i
0.64 0.68 0.72 0.76 0.8 0.84
A%

Fig. 14. Comparison of variations of parameters for normalized deviatoric stress sqe, and deviatoric fabric Fge, with polydispersity w for the deviatoric deformation mode:
(a) the maximum normalized deviatoric stress sj** plotted against volume fraction v and (b) the maximum deviatoric fabric Fj;?* plotted against volume fraction v. The
arrow indicates the increasing w. The corresponding dashed lines are the fit using Eq. (18).

due to partial, local crystallization (Schroder-Turk et al., 2010 and
references therein) present in the monodisperse case.

A clear difference between the fit parameters of deviatoric
stress and deviatoric fabric, namely the steady values sgi, Fii2x

(Fig. 14(a) and (b)), and the growth rates Bs and Bg (Fig. 15(a)
and (b)) can be seen. This confirms that stress and fabric indeed

200 —— —r—r—rr — T

dev

evolve independently with deviatoric strain (Imole et al., 2013a;
La Ragione & Magnanimo, 2012), as is the basic postulate for the
anisotropy constitutive model.

We propose a generalized analytical relation to fit the stress
parameters s°%, Bs and the fabric parameters Fj22%, B, obtained
from different volume-conserving deviatoric simulations. Their
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Table 3

Fitted coefficients for the fitting parameters in Egs. (16) and (17), using Eq. (18)) with v, (w) extracted from Table A1, by fitting the results obtained from various volume-

conserving deviatoric deformation simulations with different w.

w vc R b B
Qmax Q o Q o Qmax Qu o Q o
1.0 0.6389 0.0888 0.1308
13 0.6427 0.0935 0.1386
1.5 0.6444 0.0976 0.1491
2.0 0.6500 0.1106 0.1684
2.5 0.6557 0.1164 0.1741
3.0 0.6587 0.1226 0.11 12 0.1789 4.8 31 116 22 72 6
3.5 0.6599 0.1303 0.1830
4.0 0.6609 0.1292 0.1810
4.5 0.6614 0.1278 0.1777
5.0 0.6620 0.1279 0.1782
10.0 0.6634 0.1273 0.1751

dependence on volume fraction v (see Imole et al. (2013a), for
w=3), is well described by the general relation:

Q = Qmax(W) + Qu(w) exp (—a(w) (ﬁ - 1)) : (18)

where Qmax(W), Qv(w) and o(w) are the fitting parameters depend-
ing on polydispersity w, with the values presented in Table 3, v is
the volume fraction and v(w) is the jamming volume fraction for
the deviatoric deformation mode depending on w (see Fig. 7). For all
four model parameters, Qmax(w) is the limit value for large volume
fraction, Q¢ = Qmax(w) + Qy(w) represents the limit at v — v(w), and
o(w) is the rate of variation (decay) with the volume fraction.

Here we study and discuss the four cases separately. For sJ2%,
from Fig. 14(a), we observe a systematic variation of Qmax with w
and the curves are parallel. Hence Q, and « can be considered inde-
pendent of w. Scaling the curves in s3i* by (ST — Qmax(w))/Qu,
leads to a collapse of the data, as shown in Fig. 15(c). For B, in this
work, we neglect its weak variation with w and assume constant
values for the fitting parameters Qmax, Qv and @. When looking at
the structural anisotropy, since both Fi23* and S tend to O as the
volume fraction increases, we assume, for consistency in the sim-
ulation data, that Qmax =0 in their fitting functions. We observe in
Fig. 14(b) that the variation of Qy with w is systematic for F323%.
When Fé‘;?/x is scaled by (Fg;‘;*/" — Qv)/Qy, the data collapse as shown
in Fig. 15(d). Since the curves have the same trend « is set constant,
independent of w. As shown in the inset of Fig. 11(b), B is inde-
pendent of the initial configuration, that is w, and we set constant
Qy and « in this case.

Interestingly, we can reduce Eq. (18) in a very compact form by
expressing the two w-dependent parameters Qmax(w) for sT3X and

de
Qy(w) for Fix as functions only of ve=vc(w): :

STX(v, ) = Qmax(ve) + Qv exp(—a(v/ve — 1))
Bs(V, W) = Qmax + Qvexp(—a(v/v. — 1))
FMaX(y, w) = Qy(vc) exp(—a(v/ve — 1))

Br(v, w) = Qv exp(—a(v/ve — 1)

(19)

with Qmax =—1+1.7v. for s(‘j‘g,x and Qy=-0.9+1.6v for Fcrlg‘;‘,". Using
these two equations, every term in Eq. (19) can be expressed as
either constant, or as function of v, that becomes a unique state
variable able to describe the history of the material due to its defor-
mation mode. Using these equations, together with v, data from
Table 2, and constant parameters from Table 3, we can represent
the variations of the model parameters s, s, Fiia* and Bg with
volume fraction v and polydispersity w, and use them to predict
the behavior during uniaxial deformation.

5.3. Prediction of uniaxial deformation for polydisperse samples

Fig. 12(a) shows the deviatoric stress ratio s4., against deviatoric
strain €4ey for uniaxial deformations, compared with the predic-
tions of Eq. (16) with coefficients s3i2*(v, w) and Bs(v, w) taken from
Eq. (19). The proposed model, although in its simplified version,
captures the behavior of the material qualitatively, Sqey increasing
exponentially to a maximum value and then decreasing due to the
volume fraction and polydispersity dependence of the parameters.

Fig. 12(b) shows the evolution of deviatoric fabric, Fyey,, With
deviatoric strain, €4ey, for uniaxial deformations - as above -
together with the predictions of Eq. (17), with parameters taken
from Eq. (19). The model is still able to qualitatively describe
the behavior of the deviatoric fabric, but with order of 30% over-
prediction for large strain. Note that the softening present in some
of the deviatoric DEM data, is on purpose not plugged into the
model as a constraint, which renders the weak softening present
in some of the uniaxial data as a valuable prediction of the model.
For better understanding, the complete coupled model needs to be
used and possibly improved, as will be presented elsewhere.

6. Summary and outlook

We use the discrete element method to investigate the behavior
of three-dimensional frictionless granular assemblies charac-
terized by different polydispersities and subjected to various
deformation paths. In particular, isotropic loading/unloading, devi-
atoric (pure) shear, and uniaxial compression are studied.

The main goal is to analyze and understand the reciprocal influ-
ence of polydispersity and deformation history on the response
of the material, where the structural/bulk effects are highlighted
by using the simplest linear visco-elastic contact model. The
evolution of the scaled pressure as a function of volumetric strain
(relative to the jamming volume fraction v.) is well described by
an analytical (linear, to very good approximation) scaling equation,
see Eq. (10). This shows that the isotropic fabric is proportional to
the isotropic stress provided proper parameters, slightly depend-
ing on the deformation mode, are included. Notably, only the
jamming volume fraction, among the fit parameters for the pres-
sure, describes the role of both polydispersity and deformation
history on the material behavior. As reported earlier in Imole
et al. (2013a), the isotropic jamming volume fraction v, is not a
constant value for a particular material and system configuration
but is strongly dependent on the deformation mode and history of
the packing. Moreover, v, increases with polydispersity, following
the behavior described in Ogarko and Luding (2012), with the
isotropic and deviatoric tests giving the highest and lowest values,
respectively, while the uniaxial dataset lies in between. On the
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contrary, the shear jamming volume fraction, slightly below the
isotropic jamming volume fraction, has been confirmed as a lower
limit value in recent studies, independent of the deformation
path (Bi, Zhang, Chakraborty, & Behringer, 2011). The detailed
simulations by Ogarko and Luding (2012), using hard instead of
soft spheres, represent lower or upper bounds to v. if they are
carried out extremely fast or slow, respectively. However, the
relation between these distinct results has to be further studied.

The behavior of polydisperse systems has been predicted by
Ogarko and Luding (2012), to depend on the moments of their size
distribution, provided the rattlers are excluded. For larger w, the
moments (scaled by (r)) do not change much above w ~ 3-4, which
explains the saturation of many quantities - for the uniform size
distribution used in this work.

When the micromechanics is analyzed, the coordination num-
ber decreases with polydispersity, while the fraction of rattlers
displays an opposite trend, increasing with w. In these cases, the
evolution of the state variables can be predicted using the evolution
equations from Goncii et al. (2010), with parameters depending on
the polydispersity of the packing, while the laws for the critical
volume fraction vc.(w) as extrapolated from the pressure behavior
are used. Interestingly, the free fit parameters are not affected by
the deformation modes in the case of the micromechanical quanti-
ties, that is, they are fully described by the evolution of the critical
volume fraction, acting as history variable for the sample.

During deviatoric and uniaxial deformations, both deviatoric
stress ratio and deviatoric fabric evolve with the deviatoric strain,
reaching saturation values that increase with polydispersity. The
initial growth rate of stress, s, depends on polydispersity due to
the relation between the shear stiffness of isotropic samples and
the volumetric fabric Fy(w). On the other hand the growth rate of
deviatoric fabric B is fairly independent of polydispersity (besides
fluctuations), suggesting that the incremental response of the gran-
ular deviatoric fabric is not directly related to its isotropic state F.

The DEM data of isotropic compression (Goncii et al., 2010) and
volume-conserving deviatoric tests are used to calibrate a sim-
ple constitutive model that involves anisotropy as proposed in 2D
by Luding and Perdahcioglu (2011) and Magnanimo and Luding
(2011). The four parameters that characterize the model, sz,
Bs, Fgg", and Bf are expressed as functions of volume fraction
and polydispersity. They show a very similar behavior, decreasing
exponentially from a maximum value at the jamming volume frac-
tion to a saturation minimum. Also in this case, where only two
parameters are dependent on w and thus v.(w), the dependence
on polydispersity can be fully described through the established
variation of the jamming volume fraction v¢.(w) with w.

As final step, the constitutive model calibrated on isotropic and
deviatoric data is used to predict both stress and fabric evolution
under uniaxial deformation, with very good qualitative success
and within 70-80% quantitative agreement. The successful predic-
tion of the uniaxial test suggests promising perspectives for future
research. The basic qualitative features are captured by the model,
even though it is used in a very idealized and short form, e.g. with
a single anisotropy modulus. In the future, the coupled equations
have to be solved and additional formulations/terms that relate
anisotropy (possibly a second anisotropy modulus) with the devia-
toric fabric will also be added. Moreover, it would be interesting
to look deeper into different distributions of polydispersity like
constant volume fraction, or log-normal distributions.
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Appendix A.

Dependence of the model parameters for pressure, coordina-
tion number and fraction of rattlers on the width w of the size
distribution.

Table A1
Summary of parameters used in Egs. (10) and (12) with Cy =6, o = 0.60 for the three
modes, and Eq. (13) as function of polydispersity w.

w Ve Po Yp G ¢c oy

IS0

1.0 0.6478 0.0430  0.2131 9.0622 0.0171 46.7722
13 0.6491 0.0432  0.2010 9.0053 0.0220  40.5552
15 0.6514 0.0430  0.1698 8.9759 0.0309  35.2452
2.0 0.6577 0.0428  0.1299 8.8795 0.0650 28.6337
2.5 0.6624 0.0421  0.0499 8.7233 0.1010  20.2312
3.0 0.6648 0.0419  0.0720 8.5585 0.1559 17.6338
35 0.6668 0.0419  0.1481 8.4082 0.1818 13.4036
4.0 0.6674 0.0425  0.1882 8.2977 0.2049 10.5633
45 0.6675 0.0424  0.2409 8.1672 02417  9.8332
5.0 0.6680 0.0428  0.2825 8.1636 02513  8.0380
10.0 0.6696 0.0444  0.3992 8.1674 03210  4.6514
UNI

1.0 0.6423 0.0398  0.0776 8.7464 0.0212  39.8092
13 0.6440 0.0399  0.0808 8.6618 0.0254 35.2456
15 0.6463 0.0393 -0.0025 8.6241 0.0309 32.7265
2.0 0.6525 0.0387 -0.0840 8.5253 0.0734 26.0018
2.5 0.6576 0.0383 -0.1974 8.3847 0.1148 20.3461
3.0 0.6605 0.0376 -0.1962 8.2066 0.1640 16.0260
3.5 0.6625 0.0384 -0.0793 8.1357 02018 13.2581
4.0 0.6634 0.0388  0.0086 7.9881 0.2359  10.8769
45 0.6644 0.0390  0.0081 7.9333 02531  9.2102
5.0 0.6647 0.0386 -0.0527 7.8750 02622  7.9085
10.0 0.6662 0.0416  0.2482 7.9177 03342  4.4610
DEV

1.0 0.6389 0.0363 -0.0954 8.6689 0.0281 46.0916
13 0.6427 0.0405  0.1771 8.6137 0.0249 42.2059
15 0.6444 0.0399  0.1223 8.5451 0.0476  39.7536
2.0 0.6500 0.0387 -0.0215 8.4097 0.0744 27.1618
25 0.6557 0.0396  0.0594 83101 0.1028 19.4110
3.0 0.6587 0.0396  0.0924 8.1634 0.1453  15.2955
3.5 0.6599 0.0386  0.0382 7.9801 0.1881 12.3952
4.0 0.6609 0.0388  0.0744 7.8672 02131  9.8732
45 0.6614 0.0393  0.1539 7.7965 02336  8.5445
5.0 0.6620 0.0396  0.1793 7.4895 02492  7.3233
10.0 0.6634 0.0419 03617 7.7373 03114  3.8805
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