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a b s t r a c t

The micromechanical and macromechanical behavior of idealized granular assemblies, made by linearly
elastic, frictionless, polydisperse spheres, are studied in a periodic, triaxial box geometry, using the dis-
crete element method. Emphasis is put on the effect of polydispersity under purely isotropic loading and
unloading, deviatoric (volume conserving), and uniaxial compression paths.

We show that scaled pressure, coordination number and fraction of rattlers behave in a very similar
fashion as functions of volume fraction, irrespective of the deformation path applied. Interestingly, they
show a systematic dependence on the deformation mode and polydispersity via the respective jamming
volume fraction. This confirms that the concept of a single jamming point has to be rephrased to a range
of variable jamming points, dependent on microstructure and history of the sample, making the jamming
volume fraction a state-variable.

This behavior is confirmed when a simplified constitutive model involving structural anisotropy is
calibrated using the purely isotropic and deviatoric simulations. The basic model parameters are found

to depend on the polydispersity of the sample through the different jamming volume fractions. The
predictive power of the calibrated model is checked by comparison with an independent test, namely
uniaxial compression. The important features of the uniaxial experiment are captured and a qualitative
prediction for the evolution of stress and fabric is shown involving a “softening” regime in both stress and
fabric – stronger for the latter – that was not prescribed into the model a priori.

© 2013 Nishant Kumar. Published by Elsevier B.V. on behalf of Chinese Society of Particuology and
Institute of Process Engineering, Chinese Academy of Sciences. All rights reserved.
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. Introduction and background

Granular materials are widely used as raw materials in various
ndustrial applications, including pharmaceutical, mining, chemi-
al, agricultural, household products, and food sectors. Processes
nvolving milling, segregation, fragmentation, agglomeration, fil-
ration, and sieving, among others are common and often lead to
he generation of granular systems with large size ratios. The opti-

ization of these systems is exceptionally challenging and often
equires heuristic assumptions to be made. It is known, however,
hat polydispersity influences the micro-mechanical behavior of
ranular systems. For example, the shear strength and packing
raction, which are important quantities in determining the stress

tate and response of granular assemblies, have been shown to be
nfluenced by the size ratio of the packing (Göncü & Luding, 2013;
haebani, Madadi, Luding, & Wolf, 2012).
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On the other hand, the bulk macroscopic behavior of granular
ystems originates from the contact force network between their
onstituent particles. The contact force networks, even for sys-
ems with uniform size distribution, are mostly inhomogeneous
eading to many interesting phenomena (Shaebani et al., 2012).
n recent studies involving the effects of polydispersity, empha-
is has been placed on systems with narrow size distributions –
stensibly to limit the effects of long-range structural order – with
he exception of a few cases where wider distributions have been
eported (Dodds & Weitz, 2002; Ogarko & Luding, 2012, 2013;
oivret, Radjaï, Delenne, & El Youssoufi, 2007, 2009).

Additionally, a micromechanical description, which takes into
ccount the discrete nature of granular systems, is necessary and
ust be linked to the continuum description, which involves

he formulation of constitutive relations for macroscopic fields.
n recent years, several constitutive relations have been pro-

osed in literature (see Goddard, 1998, 2010; Kolymbas, Herle, &
on Wolffersdorff, 1995; Mašín, 2012; Sun & Sundaresan, 2011;
hornton & Zhang, 2010 among others), but only few take into
ccount the anisotropy that develops when granular systems are
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Table 1
Summary of particle parameters used in the DEM simulations.

Parameter Symbol Value Value in SI units

Time unit tu 1 1 �s
Length unit lu 1 1 mm
Mass unit mu 1 1 �g
Number of particles N 9261
Average particle radius 〈r〉 1 1 mm
Polydispersity w = rmax/rmin 1–10
Particle density � 2000 2000 kg/m3

Normal stiffness k 105 108 kg/s2
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ubjected to shear deformation (Luding & Perdahcıoğlu, 2011;
agnanimo & Luding, 2011; Peyneau & Roux, 2008; Tejchman &
u, 2007) and no study, to our knowledge, connects anisotropy

nd polydispersity. When a granular assembly is subjected to
hear deformation, a buildup of shear stress is observed, along
ith an evolution of the structural anisotropy, which describes

he creation and destruction of contacts (Ai, Chen, & Ooi, 2013;
lonso-Marroquin, Luding, Herrmann, & Vardoulakis, 2005; Azéma
Radjaï, 2012; Hareb & Doanh, 2012; Kumar, Imole, Magnanimo, &

uding, 2013; Peyneau & Roux, 2008; Radjaï, Roux, & Moreau, 1999;
chröder-Turk et al., 2010; Walsh & Tordesillas, 2004). In this sense,
nisotropy represents a history-parameter for the granular assem-
ly. For anisotropic samples, scalar quantities are not sufficient to
ully represent the internal direction dependent contact structure;
herefore an extra tensorial quantity has to be introduced, namely
he fabric tensor (Oda, 1972; Satake, 1982). To gain more insight
nto the microstructure of granular materials, numerical studies
n various deformation experiments can be performed (see Hanley,
’Sullivan, Byrne, & Cronin, 2012; Peyneau & Roux, 2008; Thornton,
010; Thornton & Zhang, 2006, 2010 among others).

In this study, we perform parametric studies with the goal of
nderstanding the effects of polydispersity on both microscopic
nd macroscopic behavior of granular assemblies under isotropic,
niaxial and deviatoric deformation conditions. As (scalar and
ensorial) microscopic quantities, we investigate the effects of poly-
ispersity on coordination number, fraction of rattlers and fabric.
he volumetric part of fabric is the measure of the strength of
ontact network, while the deviatoric part gives insight on the
rientation of the contact network. On the macroscopic side, we
onsider the effects of polydispersity on the scaled pressure and the
eviatoric stress. Another goal is to calibrate a constitutive model
sing parameters from deviatoric volume conserving simulations
nd test the predictive power of the calibrated model on an inde-
endent test, namely uniaxial compression test. We propose an
bjective definition for deviatoric stress and deviatoric fabric in a
riaxial box and present findings on their behavior as a function of
eviatoric strain. The parameters obtained from pure isotropic and
eviatoric deformations as functions of polydispersity and volume
raction are finally inserted into the constitutive relations to predict
niaxial deformation.

This paper is organized as follows: The simulation method and
arameters used and the generalized averaging definitions for
calar and tensorial quantities are given in Section 2. The prepara-
ion and test procedures are explained in Section 3. Polydispersity
s introduced in Section 4.1 and its effect on the evolution of the
on-scaled pressure, coordination number and fraction of rattlers

or the different deformation modes is discussed in Section 4.2.
n Section 4.3, the macroscopic quantities (deviatoric stress and
eviatoric fabric) and their evolution are studied as functions of
olydispersity, volume fraction and deviatoric (shear) strain for
he different deformation modes. Finally, these results are used
o obtain/calibrate the macroscopic model parameters. Section 5
s devoted to theory, where we relate the evolution of the fabric
nisotropy to that of stress and strain, as proposed in Luding and
erdahcıoğlu (2011) and Magnanimo and Luding (2011), to display
he predictive quality of the calibrated model.

. Numerical simulation

The discrete element method (DEM) (Cundall & Strack, 1979)
as been used extensively in performing simulations in biaxial and

riaxial geometries (Durán, Kruyt, & Luding, 2010; Kruyt, Agnolin,
uding, & Rothenburg, 2010; Luding, 2005b; Sun & Sundaresan,
011) involving advanced contact models for fine powders
Luding, 2008; Tomas, 2001), or general deformation paths (see

〈
d
(

Normal viscosity � 1000 1 kg/s
Background viscosity �b 100 0.1 kg/s

lonso-Marroquin et al., 2005; Thornton, 2010; Thornton & Zhang,
010 and references therein). In this work, however, we restrict
urselves to the simplest deformation tests – namely isotropic,
niaxial and deviatoric – and to the linear contact model without
riction. Since DEM is a standard method, only the contact model
arameters relevant for our simulation are briefly discussed as well
s the basic system parameters.

The simplest normal contact force model, which takes into
ccount excluded volume and dissipation, linear repulsive and lin-
ar dissipative forces, is given as fn = fnn̂ = (kı + �ı̇) n̂, where k is
he spring stiffness, � is the contact viscosity parameter, ı is the
verlap and ı̇ is the relative velocity in the normal direction n̂. An
rtificial background dissipation force, fb = − �bvi, proportional to
he velocity vi of particle i is added, resembling the damping due to
background medium, as e.g. a fluid. A short summary of the val-
es of the parameters used in DEM simulations is shown in Table 1.
ote that the units are artificial and can be consistently rescaled to
uantitatively match the values obtained from experiments (due
o the simplicity of the contact model used), as shown in (Luding,
008). We want to point out here that the choice of contact model
linear or non-linear) affects the collisional behavior between two
articles as well as the bulk behavior (Ji & Shen, 2006; Shäfer,
ippel, & Wolf, 1996). When linear and hertzian contact models
re compared, a major difference is related to the initial contact
tiffness, where the former presents a finite constant value, while
or the later, the stiffness is a function of the deformation, namely it
s zero at the beginning. However, the difference between the two

odels become smaller when the consolidation pressure becomes
igher, as is the case in this study.

.1. Microscopic variables

In order to link the macroscopic load carried by the sample with
he active microscopic contact network, all particles that do not
ontribute to the force network are excluded from the computation.
rictionless particles with less than 4 contacts are thus “rattlers”,
ince they cannot be mechanically stable and hence do not con-
ribute to the contact network (Göncü, Duran, & Luding, 2010;
mole, Kumar, Magnanimo, & Luding, 2013a; Madadi, Tsoungui,
atzel, & Luding, 2004). The simple definition of coordination num-
er is C = M/N, where M is the total number of contacts and N = 9261

s the total number of particles. If the overlap at a contact between
wo particles is greater than or equal to zero, i.e., ı ≥ 0, the con-
act contributes to the force network. The corrected coordination
umber is C* = M4/N4, where M4 is the total number of contacts of
he N4 particles with at least 4 contacts, and the rattler fraction is
r = (N − N4)/N. ∑N 3
The total volume of particles is p=1Vp = 4�N〈r 〉/3, where

r3 〉/3 is the third moment of the size distribution discussed in
etail in Section 4.1 and the volume fraction is defined as � =
1/V)

∑N
p=1Vp, where V is the volume of the box. Note that for
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he calculation of the total volume of particles, the volume which
hould be subtracted due to particle overlaps is neglected.

.2. Macroscopic variables

Here, we focus on defining averaged macroscopic tensorial
uantities, including strain, stress and fabric (structure) tensors,
hat reveal interesting bulk features and provide information about
he state of the packing due to its deformation.

For any deformation, we can describe the externally applied
train through the infinitesimal strain tensor E. Its isotropic part
v (Göncü et al., 2010; Imole et al., 2013a) is defined as:

v = ε̇v dt = εxx + εyy + εzz

3
= 1

3
tr(E) = 1

3
tr(Ė) dt, (1)

here ε˛˛ = ε̇˛˛ dt with ˛˛ = xx, yy and zz as the diagonal elements
f E in the Cartesian x, y, z reference system. The trace integral of
εv, denoted as the volumetric strain εv is the true or logarithmic
train, i.e., the volume change of the system relative to the initial
eference volume, V0.

From the DEM simulations, one can determine the stress tensor
s

= 1
V

∑
c ∈ V

lc ⊗ fc, (2)

hich is an average over the contacts in the volume V of the dyadic
roducts between the branch vector lc and the contact force fc,
here the contribution of the kinetic energy has been neglected

Luding, 2005a). The isotropic component of the stress is the pres-
ure P = tr(�)/3.

Besides the stress, we will focus on the fabric tensor in order
o characterize the geometry/structure of the static aggregate,
efined as

= 1
V

∑
P ∈ V

VP
∑
c ∈ P

nc ⊗ nc, (3)

here VP is the volume of particle P, which lies inside the averaging
olume V, and nc is the normal unit branch-vector pointing from
enter of particle P to contact c (Kumar et al., 2013; Luding, 2005a).
he average isotropic fabric is Fv = tr(F) = g3�C, where � and C are,
espectively, the volume fraction and the coordination number,
nd g3 is a function of moments of the size distribution (Göncü
t al., 2010; Shaebani et al., 2012), as explained in detail in Section
.1. We want to highlight here that a different formulation for the
abric tensor considers simply the average orientation of contacts
s follows (Oda, 1972; Satake, 1982):

s = 1
Nc

∑
c ∈ Nc

nc ⊗ nc, (4)

here Nc is the total number of contacts. The relationship between
qs. (3) and (4) is:

s ≈ F
g3�C

= 3F
Fv

, (5)

here the equality holds for the monodisperse case.
In addition to the isotropic components, we use the following

efinition to quantify the magnitude of the deviatoric parts (Kumar

t al., 2013) of tensors Q (stress �, strain E or fabric F):

dev = Fsgn(Q)

√
(Qxx − Qyy)2 + (Qyy − Qzz)2 + (Qzz − Qxx)2 + 6(Q 2

xy + Q 2
yz + Q 2

zx)

2
,

(6)

w
t
l
t
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here Qxx, Qyy, and Qzz are the diagonal components, and Qxy, Qyz,
nd Qzx are the off-diagonal components of the symmetric tensor
. Fsgn(Q) is the sign function with possible values +1, 0, and −1,
hose definition depends on the deformation path (see Section

.3). In the case of stress, Eq. (6) equals the von Mises stress, �dev =
3J2, with J2 as the second deviatoric stress invariant.
When a biaxial or triaxial compression is performed, such that

he strain, stress and fabric stay almost coaxial with principal
xes parallel to the initial reference system, the off-diagonal terms
ecome negligible and the diagonal terms coincide with the eigen-
alues.

. Preparation and test procedure

After the (common) initial isotropic preparation, the packing is
eformed following three different procedures, namely isotropic,
niaxial, and deviatoric paths (a detailed procedure can be found in

mole et al., 2013a). For convenience, the definitions of the different
odes will be based on their respective strain-rate tensors. Also

ote that the deformations applied to systems are always “slow”
nough to maintain the quasi-static regime and hence minimize
he dynamical effects (Hanley et al., 2012; Imole et al., 2013a).

.1. Initial isotropic preparation

Since careful, well-defined sample preparation is essential in
ny physical experiment to obtain reproducible results, the prepa-
ation consists of three parts: (i) randomization, (ii) isotropic
ompression, and (iii) relaxation, all equally important to achieve
he initial configurations for the subsequent analysis. (i) The initial
onfiguration is such that spherical particles are randomly gener-
ted in a 3D box without gravity, with low volume fraction and
ather large random velocities, such that they have sufficient space
nd time to exchange places and to randomize themselves. (ii) This
ranular assembly is then isotropically compressed, in order to
pproach a direction independent initial configuration with tar-
et volume fraction �0 = 0.64, slightly below the jamming volume
raction, i.e. the transition point from fluid-like behavior to solid-
ike behavior (Majmudar, Sperl, Luding, & Behringer, 2007; Makse,
ohnson, & Schwartz, 2000; O’Hern, Langer, Liu, & Nagel, 2002; van
ecke, 2010). (iii) This is followed by a relaxation period at con-

tant volume fraction to allow the particles to fully dissipate their
nergy and to achieve a static configuration in mechanical equilib-
ium, after sufficient relaxation indicated by the drop in kinetic to
otential energy ratio to almost zero.

.2. Isotropic compression mode

Further isotropic compression (negative strain-rate in our con-
ention) can now be used to prepare initial configurations at
ifferent volume fractions, each one with subsequent relaxation,
chieved at different steps during loading and unloading, as dis-
layed in Fig. 1. Furthermore, this path can be considered as the

sotropic element test by itself (Göncü et al., 2010). It is realized by
simultaneous inward movement of all the periodic boundaries of

he system, with diagonal strain rate tensor

˙ = ε̇v

⎛
⎝ −1 0 0

0 −1 0

0 0 −1

⎞
⎠ ,
here ε̇v(> 0) is the rate amplitude applied to the walls until the
arget maximum volume fraction �max = 0.82 is achieved. The simu-
ations are continued with negative ε̇v in the unloading mode, until
he initial �0 is reached. The unloading branch configurations are
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Fig. 1. Evolution of volume fraction as a function of time. Region A represents the
initial isotropic compression below the jamming volume fraction vc. B represents
relaxation of the system to fully dissipate the systems energy and C represents the
subsequent isotropic compression up to �max = 0.820 and then decompression. Cyan
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ots represent some of the initial configurations, at different �i , during the loading
ycle and blue stars during the unloading cycle, at the same �i , which can be chosen
or further study (see Imole et al. (2013a) for more details).

ore reliable since this part of the deformation is much less sen-
itive to the protocol and rate of deformation during preparation
Göncü et al., 2010; Imole et al., 2013a). Consequently, we will use
hose initial states for our analysis.

.3. Uniaxial compression mode

Uniaxial compression is one of the element tests that is initiated
t the end of the “preparation”. The uniaxial compression mode
n the triaxial box is achieved by a prescribed strain path in the
-direction, while the other boundaries x and y are non-mobile.
uring loading (compression) the volume fraction increases, like

or isotropic compression, from �0 = 0.64 to a maximum volume
raction of �max = 0.820 (as shown in region C of Fig. 1), and reverses
ack to the original volume fraction �0 during unloading. Uniaxial
ompression is defined by the strain-rate tensor

˙ = ε̇u

⎛
⎝ 0 0 0

0 0 0

0 0 −1

⎞
⎠ ,

here ε̇u is the strain-rate (compression > 0 and decompres-
ion/tension < 0) amplitude applied. The negative sign (convention)
f Ėzz corresponds to a reduction of length, so that tensile defor-
ation is positive. Even though the strain is imposed only on

he mobile “wall” in the z-direction, which leads to an increase
f compressive stress on this wall during compression, also the
on-mobile walls experience some stress increase due to the
push-back” stress transfer and rearrangement of the particles dur-
ng loading, as discussed in more detail in the following sections.
his is in agreement with theoretical expectations for solid mate-
ials with non-zero Poisson’s ratio. However, the stress on the
assive walls is typically smaller than that of the mobile, active

all, as consistent with findings from laboratory element tests
sing the biaxial tester (Morgeneyer & Schwedes, 2003; Zetzener
Schwedes, 1998) or the so-called �-meter (Kwade, Schulze, &

chwedes, 1994a,b).
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.4. Deviatoric deformation mode

The preparation procedure, as described in Section 3.1, provides
ifferent configurations with volume fractions �i. Starting from the
alues �i in the unloading branch of the isotropic path as shown in
ig. 1, we perform volume conserving deviatoric deformations with
train-rate tensor

˙ = ε̇D2

⎛
⎝ 1 0 0

0 0 0

0 0 −1

⎞
⎠ ,

here ε̇D2 is the strain-rate (compression > 0) amplitude applied to
he wall with normal in z-direction. The chosen deviatoric path is on
he one hand similar to the pure-shear situation, and on the other
and allows for simulation of the biaxial experiment (with two
alls static, while four walls are moving (Morgeneyer & Schwedes,

003; Zetzener & Schwedes, 1998)), in contrast to the more dif-
cult isotropic compression, where all the six walls are moving.
Pure shear is here used to identify constant volume deviatoric
oading with principal strain axis keeping the same orientation as
he geometry (cubical) of the system for the whole experiment.
n this case, there is no rotation (vorticity) of the strain principal
xis and no distortion/rotation of the sample due to deformation.)
ifferent types of volume conserving deviatoric deformations can
e applied to shear the system, but very similar behavior has been
bserved (Imole et al., 2013a).

. Polydispersity

Most granular materials are highly polydisperse in nature. It is
nown that size polydispersity affects the mechanical behavior of
ranular systems (e.g., shear strength) as well as their space-filling
roperties (e.g., packing fraction) (Göncü & Luding, 2013; Ogarko &
uding, 2012, 2013), which are crucial in many engineering appli-
ations like road construction or soils liquefaction problems (see
Anderson, 1996; Belkhatir, Arab, Della, & Schanz, 2012; Belkhatir,
rab, Schanz, Missoum, & Della, 2011) and references therein). Nev-
rtheless the attention has been restricted so far to monodisperse
r binary mixtures or narrow size distribution. Here we use sam-
les with different degrees of polydispersity to study the effect
f increasing polydispersity on the evolution of microscopic and
acroscopic parameters during various deformation modes.

.1. Polydispersity of the granular assemblies studied

We define polydispersity in terms of the width w = rmax/rmin,
here rmax and rmin represent the radii of the largest and smallest
articles in the overall ensemble of a distribution uniform in size
Göncü et al., 2010; Göncü & Luding, 2013):

(r) = w + 1
2(w − 1)〈r〉	

(
2w〈r〉
w + 1

− r
)

	
(

r − 2〈r〉
w + 1

)
, (7)

ith step function 	(x ≥ 0) = 1 and 	(x < 0) = 0. From the distribu-
ion of radii, one can calculate the parameter g3 that describes the
olydispersity of a 3D spherical system (Göncü et al., 2010) as:

3 ≈ 1 − B2 + C2 + (B2 − 2C2)(〈r4〉/〈r〉〈r3〉) + C2(〈r5〉/〈r〉2〈r3〉)
1 + C2[〈r2〉/〈r〉2 − 1]

, (8)

here the constants B2 = 1.077 and C2 = 0.2629 are described in

öncü et al. (2010) and 〈rn〉 is the nth moment of r up to the 5th
egree. Only for the monodisperse case, the simplification g3 = 1
olds. Otherwise, g3 increases with polydispersity w and saturates
t high values about 1.627.
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F (iii) 5, respectively, with the same volume fraction � = 0.82. The color code indicates the
c ontacts. (For interpretation of the references to color in this figure legend, the reader is
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Fig. 3. Variations of non-dimensional pressure p with volume fraction � for the
isotropic (�, red), uniaxial (�, green), and deviatoric (�, blue) deformation modes,
as shown in the legend. Small symbols represent w = 1.5 and big symbols represent
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ig. 2. Snapshots of three systems with polydispersity w equal to (i) 1.5, (ii) 2, and
ontacts of the particles, with red representing big contacts, blue representing no c
eferred to the web version of the article.)

In order to study the effects of polydispersity on micro–macro
ehavior of a granular assembly, we prepare different packings
ith polydispersity ranging from w = 1 to 10. These packings are
eformed following the paths described in Section 3. As an exam-
le, we show in Fig. 2 isotropic samples with w = 1.5, 2, and 5 for
onstant volume fraction � = 0.82. Note that for the same volume
raction �, the volume of the box is higher for higher polydispersity,
ince 〈r3〉 increases with w for fixed 〈r 〉 =1. For higher polydispersity,
articles of smaller size fill more efficiently the pore space between

arger particles. However, lower polydispersity in packings of gran-
lar materials is associated with alterations in the structural order
Ogarko & Luding, 2012; Voivret et al., 2007). (Note that here results
or a uniform radius distribution are presented. The trend will be
ifferent if the type of distribution is different e.g., uniform surface
r uniform volume distribution.)

.2. Effect of polydispersity on isotropic quantities

In the following, we will study the influence of polydispersity
n scaled pressure, coordination number and fraction of rattlers,
uring the three deformation paths described in Section 3.

.2.1. Confining pressure
Starting from Eq. (2), we define the non-dimensional pressure

Göncü et al., 2010; Imole et al., 2013a) as

= 2〈r〉
3k

tr(�), (9)

ith 〈r〉 the first radius moment (average radius) and k the spring
tiffness defined in Section 2, while the scaled pressure is:

∗ = pvc

vC
= p0(−εv)[1 − �p(−εv)], (10)

here p0, �p, and the critical volume fraction �c are fit parameters,
εv is the volumetric strain. When comparing the two expressions
f non-dimensional and scaled pressure, we notice that in Eq. (10),
he pressure is normalized by “�C”, that is, the contribution of the
ensity of contacts is canceled. Hence, p* is only proportional to the
verage deformation (overlap) of the particles at a given volume
raction and to the distance from jamming point through −εv.

In Fig. 3, we plot the variation of the non-dimensional pressure
with volume fraction � during isotropic, uniaxial, and deviatoric
eformation for polydispersities w = 1.5 and 5. Note that p increases

ith �, starting from �c, with slight differences related to different
odes, as discussed in Imole et al. (2013a). For a given volume

raction, we observe a decrease in the pressure with increasing
olydispersity w. Better insights into this feature are gained by

i
t
o
a

= 5. Inset is the zoomed-in area near the jamming volume fraction �c. (For inter-
retation of the references to color in this figure legend, the reader is referred to the
eb version of the article.)

ooking at the distribution of overlaps ı(r)/〈 r 〉 as a function of
he scaled particle radius rsc = (r − rmin)/(rmax − rmin), as shown in
ig. 4(a) and (b) for two volume fractions, � = 0.686 and � = 0.82.
he particle radii are scaled such that rsc = 0 and rsc = 1 represent
he smallest and largest particle in the configuration, respectively.
first observation is the unsurprising increase in the average over-

ap for all modes and polydispersities with increasing compression
rom � = 0.686 in Fig. 4(a) to � = 0.82 in Fig. 4(b), in agreement with
ig. 3. Based on this, we can claim that 2〈 r 〉 P/k ∝ ı(r)/〈 r 〉, at least
or small deformations and for the linear contact model. In addi-
ion, for both volume fractions shown, the overlap increases with
ncreasing particle radii.

Focusing on the deformation mode trend, for both polydisper-
ities, the deviatoric deformation leads to the highest pressure,
ollowed by the uniaxial and isotropic modes, respectively. This
rend is clearly visible at lower volume fractions, as shown in the

nset of Fig. 3, while for increasing volume fraction, the effect of
he deformation mode reduces, as evidently shown by the collapse
f data in Fig. 4(b). The agreement is confirmed by observing the
verage overlap 〈ı〉 in Fig. 4(a) and (b), with the data from uniaxial
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Fig. 4. Average overlap ı per particle for a radius range scaled by average radius 〈r〉, plotted against a scaled radius axis rsc = (r − rmin)/(rmax − rmin) for the isotropic (�, red),
u resent w = 1.5 and big symbols represent w = 5. Volume fractions are (a) � = 0.686 and (b)
� the system for the three modes for w = 1.5 and w = 5, respectively. Note that the y-axis
r is figure legend, the reader is referred to the web version of the article.)
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Table 2
Summary of parameters �0

c and �∞
c in Eq. (11) that fit the vc vs. w simulation data

shown in Fig. 7, for the isotropic, uniaxial, and deviatoric deformation modes.

Mode �0
c �∞

c

ISO 0.6453 0.6710
UNI 0.6394 0.6675
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niaxial (�, green), and deviatoric (�, blue) deformation modes. Small symbols rep
= 0.82. Solid and dashed horizontal lines are the average scaled overlap 〈ı〉/〈 r 〉 in

ange is different in the two plots. (For interpretation of the references to color in th

ompression lying between the isotropic and deviatoric datasets.
he trend observed in the variation of the scaled pressure and dis-
ribution of the average overlaps are consistent with the fact that
he isotropic and deviatoric modes are pure modes, while the uni-
xial mode is a superposition of isotropic and deviatoric modes
Luding & Perdahcıoğlu, 2011).

Fig. 5(a)–(c) shows the effects of varying polydispersity on the
caled pressure in Eq. (10), where p* is plotted against volumet-
ic strain −εv for isotropic, uniaxial, and deviatoric deformations.
or a single deviatoric deformation the volume fraction is constant
long the path and hence the pressure remains practically constant.
n this work the data describing deviatoric mode will always refer
o the values in the critical state, after large deformation (see Imole
t al. (2013a) for more details), unless stated otherwise. In the small
train region, for all deformation modes, the datasets collapse on
ach other. Only with increasing −εv, a small deviation of the sim-
lation data is observed for the isotropic and deviatoric modes, due
o the non-linear correction that shows up at large strain in Eq. (10).
he analytical expression of the scaled pressure in Eq. (10) fits the
imulation data well for all three deformation modes and polydis-
ersity, in agreement with findings in Göncü et al. (2010), Göncü
nd Luding (2013), and Imole et al. (2013a).

The comparison of Figs. 3 and 4 puts in evidence a very interest-
ng feature in the behavior of pressure. When the contact density
C is scaled out in p*, the curves collapse irrespective of poly-
ispersity leading to the conclusion that this factor affects the
ontact network while the deformation mode (and the distance
rom jamming) influences the evolution of average overlap. The fit-
ed parameters for p* in Eq. (10) are given in Fig. 6 and Table A1. The
arameter p0 is fairly constant with increasing polydispersity, with
0 values higher for the isotropic case and uniaxial and deviatoric p0
eing very close. This is in agreement with expectations, as in both
niaxial and deviatoric deformations, anisotropy develops along
he path, and the value of the non-dimensional pressure increases
or the (pure) isotropic case. The non-linear contribution from �p,
uctuates for smaller polydispersity and becomes significant for
igher w.
By fitting Eq. (10) for pressure, we can extract the dependence
f the jamming volume fraction �c on the polydispersity w and
he deformation mode, as shown in Fig. 7. The jamming volume
raction increases with increasing polydispersity, showing highest

t
r
d
u

DEV 0.6381 0.6647
Ogarko and Luding (2012) 0.6500 0.6828

alues of �c for the isotropic case, with �c values for the “mixed” uni-
xial mode falling in between the isotropic and deviatoric datasets.
his is consistent with findings in Imole et al. (2013a), where
ISO
c > �UNI

c > �DEV
c . In this case a similar argument holds as men-

ioned for p0, related to the development of anisotropy during the
ver-compression, that explains the trend of the jamming volume
raction between isotropic, deviatoric and uniaxial. This confirms
hat the jamming volume fraction is not an independent (single)
alue, i.e. it is not a material parameter, but depends on the defor-
ation history of the packing.
A theoretical prediction for the variation in �c under isotropic

ompression of polydisperse hard spheres was presented by
garko and Luding (2012), as follows:

c(w) = �∞
c − (�∞

c − �0
c )(3w−2 − 2w−3), (11)

here �0
c and �∞

c are the jamming volume fractions for w = 1 and
→ ∞, respectively. We apply Eq. (11) to the three deformation
odes, and in Fig. 7 we show the prediction for hard spheres

ogether with the �c simulation data for the three modes, and the
tting curves, where the parameters �0

c and �∞
c are presented in

able 2. Despite the quantitative disagreement due to the differ-
nce between hard and soft spheres, both systems show a very
imilar trend, the predictions working well for all the three modes.
he simulations in Ogarko and Luding (2012), leading to Eq. (11),
ere carried out by very slow isotropic compression from the low
ensity collisional regime, where the fluctuation velocities were
ot relaxed as done in this study. The strong kinetic energy fluc-

uations represent a type of “tapping” that allows the system to
elax toward a better packed configurations with larger �c. The
ata in Fig. 7 from Ogarko and Luding (2012) thus represents an
pper limit of optimal compaction, which is not reached by e.g.
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Fig. 5. Effect of polydispersity w on scaled pressure p*, coordination number C*, and fraction of rattlers �r for the three deformation modes, namely isotropic compression
(left column), uniaxial compression (middle column), and deviatoric deformation (right column). The solid lines are the fits to the corresponding macroscopic properties
using Eqs. (10) and (12) with C0 = 6, ˛ = 0.60 for the three modes, and Eq. (13). The arrows indicate the increasing polydispersity. The solid black line in the p* plot is based
on Eq. (10) without the non-linear term. All the fit parameters are presented in Table A1.

Fig. 6. Comparison of the fitted parameters (a) p0 and (b) �p as a function of polydispersity w with the analytical equations of scaled pressure p*, i.e., Eq. (10) for the isotropic
(�, red), uniaxial (�, green), and deviatoric (�, blue) deformation modes. The fitted parameters are presented in Table A1. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)
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Fig. 7. Variations of jamming volume fraction �c with polydispersity w for the defor-
mation modes considered. Corresponding solid lines are the theoretical predictions
for different modes using Eq. (11). Note that the fit is applied only to w > 1.2, since
local crystallization (Ogarko and Luding, 2012; Schröder-Turk et al., 2010) might
happen at lower polydispersity causing � values much higher than the disordered,
r

s
v
m
i
t
r

4

t
b

C

w
a
a
v
m

v
t

d
i
o
t
b
t
h
E
A
p
t
b
b
u
w
l
(
b

n
f
t
v
a
i
t
b
t
b
s
p
r
e
r
v
m
t
f
ment proposed in Section 4.2.1 for p*. The average values 〈C* (r) 〉

F
r
p
t

c

andom prediction.

low over-compression to �max = 0.82. Eq. (11) can then capture the
ariation of �c with polydispersity, irrespective of the deformation
odes, when the fit parameters are properly defined. This interest-

ng feature shows that �c acts as a state variable, able to describe
he configuration of the assembly and represent its history, as also
eflected by the overlaps in Fig. 4.

.2.2. Coordination number
It has been shown in Göncü et al. (2010) and Imole et al. (2013a)

hat under isotropic deformation, the corrected coordination num-
er, C* follows the power law:

∗(�) = C0 + C1

(
�

�c
− 1

)˛

, (12)

here C0 = 6 is the isostatic value in the frictionless case. ˛ and C1
re fit parameters, while we use � from p* extrapolation analysis
c

s input value, leading to one less fit parameter for C*. We observe a
ery small variation (3%) of ˛ with polydispersity and deformation
odes (Imole et al., 2013a) but for simplicity we set it to a fixed

f
“
e

ig. 8. Comparison of the fit parameters for the analytical equations of coordination n
espectively, for the isotropic (�, red), uniaxial (�, green), and deviatoric (�, blue) defo
arameter, C1, and (b) and (c) effect of polydispersity w on rattler fraction �r fit paramet
he references to color in this figure legend, the reader is referred to the web version of th
gy 12 (2014) 64–79 71

alue of 0.60 in this work (Peyneau & Roux, 2008). Only C1 is then
he residual free fit parameter.

In Fig. 5(d)–(f), we compare the variation of the corrected coor-
ination number C* as a function of volume fraction � during

sotropic, uniaxial and deviatoric loadings and show its dependence
n polydispersity. The behavior is qualitatively similar for all the
hree deformation paths: contacts close and the coordination num-
er increases with increasing volume fraction. Moreover, for the
hree modes, configurations with lower polydispersity result in a
igher number of contacts per particle. The data are well fitted by
q. (12) with the fit parameter C1 as function of w shown in Fig. 8(a).
systematic decrease in C1 is observed with increasing polydis-

ersity w. The C1 values of the “mixed” uniaxial mode lie between
he isotropic and deviatoric datasets. Increase in the polydispersity
eyond w = 4.5 did not lead to a further change of C1, better clarified
y the collapse of the C* lines (cf. Fig. 5(d)–(f)). This suggests that
niform size polydispersity influences the micromechanics only
ithin a certain limit. For highly polydisperse packings (w > 5), the

imit is approached because the critical volume fraction �c saturates
see Fig. 7). For other size distribution functions, this behavior can
e different.

In order to further investigate the behavior of the coordination
umber C* we study the distribution of contacts per particle radius

raction. In Fig. 9(a) and (b), we plot the average number of con-
acts (excluding the rattlers) for a radius range, defined as C*(r),
ersus the scaled radius rsc = (r − rmin)/(rmax − rmin) for � = 0.686
nd � = 0.82 for the three deformation modes. C*(r) increases with
ncreasing rsc for all the three modes, that is the number of con-
acts is larger for bigger particles. This is expected because the
igger particles have larger surface area and thus can be in con-
act with more particles. A similar argument explains the relation
etween the particle coordination number C*(r) and polydisper-
ity: smaller w leads to higher number of contacts for the smallest
articles and to a weaker variation of C*(r) with rsc. The crossover
sc value shifts toward the left for higher volume fractions. As
xpected, for higher volume fractions, C*(r) increases faster with
sc, as shown in Fig. 9(b), since more contacts are formed as the
olume of the box becomes smaller. Comparing the deformation
odes, only very small differences appear, at low volume frac-

ion, � = 0.686, as shown in Fig. 9(a) and negligible for high volume
raction, � = 0.82, as seen in Fig. 9(b), in agreement with the argu-
or isotropic deformation are smaller, larger for deviatoric, and the
mixed” uniaxial deformation mode lies in between the two (Imole
t al., 2013a).

umber C* and rattler fraction �r using Eq. (12) with C0 = 6, ˛ = 0.60, and Eq. (13),
rmation modes: (a) effect of polydispersity w on the coordination number C* fit
ers, �c and �v . The fit parameters are presented in Table A1. (For interpretation of
e article.)
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Fig. 9. Average contacts per particle excluding the rattlers C*(r) for a radius range, plotted against a scaled radius rsc = (r − rmin)/(rmax − rmin) for the isotropic (�, red), uniaxial
(�, green), and deviatoric (�, blue) deformation modes. Small symbols represent w = 1.5 and big symbols represent w = 5. Volume fractions are (a) � = 0.686 and (b) � = 0.82.
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mode is in between the two, as shown in the inset of Fig. 10. This
variation disappears for large volume fractions. However, the dif-
ferences between the three modes for Fv are smaller compared to

Fig. 10. Variations of isotropic fabric Fv with volume fraction � for the isotropic (�,
olid and dashed horizontal lines are the average coordination numbers 〈C*(r)〉 = C*
epresent the average values of the respective C*(r) plots. The y-axis range is differe
eader is referred to the web version of the article.)

.2.3. Fraction of rattlers
The analytical expression for the fraction of rattlers is proposed

Göncü et al., 2010; Imole et al., 2013a) as

r(�) = �c exp
[
−�v

(
�

�c
− 1

)]
, (13)

here �c and �v are fit parameters, and �c is the jamming volume
raction inferred from Eq. (10) for the different deformation modes.

e show the effect of polydispersity on the fraction of rattlers
nder isotropic, uniaxial and deviatoric deformation in Fig. 5(g)–(i),
espectively, and the variation of fit parameters with w in Fig. 8(b)
nd (c) (numerical values are reported in Table A1). A first obser-
ation is that the fraction of rattlers decreases exponentially with
ncreasing volume fraction (Imole et al., 2013a) in agreement with
q. (13). Furthermore, the increase of polydispersity leads to an
ncrease of the fraction of rattlers in the system. This is not surpris-
ng, as the volume occupied by finer/smaller particles is smaller in
ighly polydisperse systems. Contacts of these smaller particles are
ransient since they have more freedom to move within the system
for this size distribution – not in general). In some cases, they may
ecome “caged” between larger particles without having sufficient
four or more) contacts with their neighbors. This leads to a drop
n the coordination number and a (related) increase in the fraction
f rattlers.

Also interesting is the variation of the parameters of Eq. (13),
c and �v which represent the initial point and the slope, respec-

ively. A systematic increase in �c with increasing polydispersity is
bserved in Fig. 8(b), whereas the slope �v decreases with increas-
ng polydispersity as shown in Fig. 8(c). This indicates that even
hough the fraction of rattlers in highly polydisperse systems is
igher, the rate at which rattlers are lost in these systems dur-

ng compression decreases with w. This is again related with the
cage” argument, as very small particles are caged by big particles
nd need a high compression degree to gain new contacts as com-
ared to medium sized particles (see Fig. 9(a) and (b)). Interestingly,

oth parameters �c and �v, as presented in Fig. 8, are seemingly
naffected by the deformation mode, stating that the history of the
ample can be fully represented by �c, when the fraction of rattlers
s analyzed.

r
t
i
r
t

system for the three modes, for w = 1.5 and w = 5 respectively. The horizontal lines
he two plots. (For interpretation of the references to color in this figure legend, the

Finally, we plot in Fig. 10 the variation of the isotropic fabric
v = g3�C versus volume fraction during isotropic compression. Fv

ncreases with volume fraction � and polydispersity w and shows
trend with respect to w opposite to that of the corrected coor-
ination number C* shown in Fig. 5(d)–(f). This can be explained
y observing the rattlers: when particles with less than four con-
acts are included in the calculation of C, the value of Fv grows
ith increasing w and �. For both polydispersities shown, near the

amming volume fraction, deviatoric deformation has the highest
v, isotropic deformation has the lowest and the “mixed” uniaxial
ed), uniaxial (�, green), and deviatoric (�, blue) deformation modes. As shown in
he legend, small symbols represent w = 1.5 and big symbols represent w = 5. Inset
s the zoomed-in area near the jamming volume fractions. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
he article.)
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Fig. 11. (a) Deviatoric stress ratio sdev = �dev/P plotted against deviatoric strain from the deviatoric (volume conserving) mode for three polydispersities w = 1.5, 2, and 5 as
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hown in the legend for volume fraction � = 0.75; (b) deviatoric fabric Fdev plotted ag
hile the solid lines through them are fits to the data using Eq. (16) for (a) and Eq.

sotropic fabric Fv for different w.

he isotropic part of stress p, as it is related to small differences in
he average contact number per particle (Fig. 9(a) and (b)).

.3. Effect of polydispersity on deviatoric quantities

In this section, we present the effects of polydispersity on the
volution of deviatoric stress and deviatoric fabric along uniaxial
nd deviatoric deformation paths. The deviatoric stress is a macro-
copic property which quantifies the stress anisotropy (Imole et al.,
013a), while the deviatoric fabric is a microscopic property related
o the orientation of the contact network. Here, we focus on the sim-
lation results for the uniaxial and deviatoric deformation modes
ince the deviatoric quantities only fluctuate around zero for the
sotropic mode. Later in Section 5, we will use the information
btained from the above mentioned quantities to calibrate a con-
titutive model. As a result, we will test the predictive ability of the
odel on an independent uniaxial compression test.

.3.1. Deviatoric stress
In Fig. 11(a), we plot the deviatoric stress ratio (sdev = �dev/P)

s a function of deviatoric strain εdev during deviatoric deforma-
ion for packings with three different polydispersities. The volume
raction � is 0.751 in all cases, and stays constant during the numer-
cal experiments. The deviatoric stress grows initially with rate ˇs

rom random initial values (a small random initial anisotropy is
resent in each sample) until an asymptote, smax

dev at steady state is
eached, where it remains fairly constant (Cui & O’Sullivan, 2006;
mole et al., 2013a; Kumar et al., 2013; Krijgsman & Luding, 2013;
uding, 2004). The steady state value increases with polydispersity
ith highly fluctuating values varying in the range of 0.11 ± 0.02,

.12 ± 0.03 and 0.15 ± 0.035 for w = 1.5, 2, and 5, respectively. Sur-
risingly, while the deviatoric stress �dev is practically unaffected
y w, the pressure P decreases with increasing polydispersity (see
ig. 3), leading to the dependence of the ratio �dev/P on w as
bserved. On the other hand, the slope ˇs, proportional to the shear
tiffness (scaled by pressure) of the initial isotropic configurations,

s a function of the isotropic fabric Fv, as shown in the inset of
ig. 11(a). The relation between isotropic fabric and polydisper-
ity, extensively discussed in Göncü et al. (2010) and reported in
ig. 10, makes ˇs a decreasing function of w.

F
fl
c
e

deviatoric strain for the same cases as in (a). The data points are simulation results
r (b). The corresponding insets show the behavior of growth rates ˇs and ˇF with

Furthermore, in Fig. 12(a) we plot the deviatoric stress as a
unction of deviatoric strain during uniaxial compression, for pack-
ngs with different polydispersity w = 1.5, 2, and 5. The uniaxial
est starts from initial volume fraction �i = 0.72 (the same value
sed for the previous deviatoric simulations), and reaches the
aximum volume fraction �max = 0.82. As for the deviatoric sim-

lations, higher polydispersity also leads to higher smax
dev at steady

tate for the uniaxial deformations. The same argument about
he dependence of pressure on polydispersity holds and explains
he behavior in Fig. 12(a). We observe larger fluctuations for the
niaxial deformation mode as compared to the deviatoric defor-
ation, with averages and errors smax

dev ≈ 0.10 ± 0.025, 0.11 ± 0.035
nd 0.15 ± 0.04 for w = 1.5, 2, and 5, respectively. We relate the
ncreasing fluctuations to the non-conserved volume (Imole et al.,
013a) and more “violent” rearrangements. Note that different sign
onventions are used in Eq. (6) to calculate the deviatoric stress for
eviatoric and uniaxial simulations, since the definition of the sign
unction Fsgn depends on the deformation mode, as discussed in
ection 2, i.e. the strain eigen-system. The sign function for uniaxial
ompression (negative strain components versus positive stress
nd fabric) is

sgn(Q) = sgn(Qzz − 0.5(Qxx + Qyy)),

here the z-wall is moving and the x- and y-walls are not. For
eviatoric deformation

sgn(Q) = sgn(Qyy − Qxx),

ith x-wall expanding, y-wall compressing and a non-mobile z-
all. The sign convention explains the different initial values

ssociated to the same initial packings in Figs. 11(a) and 12(a).

.3.2. Effect on deviatoric fabric
The variation of the deviatoric fabric Fdev as a function of the

eviatoric strain εdev is shown in Fig. 11(b) for the same devia-
oric simulations as above. Fdev builds up from different random
small) initial values with rate ˇF to different saturation values

max
dev . Interestingly, the slope ˇF seems to be constant (besides large
uctuations), irrespective of different polydispersity of the initial
onfigurations. This is surprising, as the initial samples have differ-
nt contact network densities Fv, due to polydispersity, and leads
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Fig. 12. (a) Deviatoric stress ratio sdev = �dev/P plotted against deviatoric strain from the uniaxial mode for three polydispersities w = 1.5, 2, and 5 as shown in the legend; (b)
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eviatoric fabric Fdev plotted against deviatoric strain for the same cases as in (a).
prediction to the data using Eq. (16) for (a) and Eq. (17) for (b). The starting vo

olydispersity.

o the interesting conclusion that the incremental response of devi-
toric fabric only depends on Fdev and volume fraction as state
ariables, while the role of the isotropic contact network is neg-
igible. The critical value Fmax

dev shows a different trend from ˇF, but
imilar to smax

dev as it increases with polydispersity w. This is reason-
ble, when we think of the kinematics at small scale, i.e. particles
ith a large difference in size have more freedom to rearrange and
odify the contact network during compression. The behavior of

max
dev is consistent with the decrease of C* in Fig. 5(e)–(f), as a lower
oordination number is usually associated with a higher anisotropy
La Ragione & Magnanimo, 2012).

In order to further investigate the anisotropic behavior of the
aterial, we study the deviatoric fabric Fdev (r) per particle radius

or the volume conserving deviatoric tests focusing on the large
hear strain configurations, i.e. εdev = 0.40. We focus only on the
ontact orientation and cancel the influence of the particle radius,
y slightly modifying Eq. (3) such that this quantity stays bin inde-
endent. For each radius r, we calculate

(r) = 1
V

∑
VP∑
Vr

∑
P ∈ Vr

VP
∑
c ∈ P

nc ⊗ nc, (14)

here the value of fabric is scaled by the ratio
∑

VP/
∑

Vr between
he total volume of the particles having radius r and the total vol-
me of the particles. Please notice that Eq. (14) coincides with
q. (3) when all the radii are considered and

∑
Vr =

∑
VP. In

ig. 13(a) and (b), we plot the deviatoric part of fabric, Fdev(r)
ersus the scaled radius rsc = (r − rmin)/(rmax − rmin) for � = 0.686
nd � = 0.82. Fdev(r) increases with increasing rsc, meaning that
he bigger particles form a sub-network, whose orientation fol-
ows the applied shear strain. These are the particles that belong
o the force chains (Radjaï et al., 1999) and carry the majority of
he applied load. On the other hand, Fdev(r) is small for small rsc,
s the small particles arrange randomly, i.e. isotropically and are
caged” in the voids among the bigger particles, as already men-
ioned in Section 4.2.2. Large fluctuations do not allow to clearly
ead how the behavior of Fdev(r) vs rsc depends on polydispersity

.

The variation of the deviatoric fabric under uniaxial deforma-
ion is presented in Fig. 12(b) for different polydispersities. In a
imilar fashion to the deviatoric stress ratio, Fdev builds up from

2
2
a
m

ta points are the simulation results while the solid lines through them represent
fraction �i = 0.72 and the maximum volume fraction � = 0.82 for all the cases of

ifferent (random, but small) initial values and reaches different
axima for different polydispersities, with w = 5 showing the high-

st peak, while the slope ˇF stays unaffected by w. For larger strain,
he structural anisotropy decreases rapidly toward zero (data not
hown). This indicates that more new contacts are created in the
xial direction compared to the perpendicular isotropic plane at the
eginning of the loading path while at higher deviatoric strain, the
abric behaves in an opposite fashion as new contacts are created in
he horizontal direction rather then in the vertical one, where most
vailable neighbors already have come into contact. The “softening”
n deviatoric fabric does not correspond to any decrease in devi-
toric stress that grows monotonically until saturation is reached
see Fig. 12(a)). The origin of this interesting feature associated with
niaxial simulation, where stress and fabric show non-colinearity,
nd the strain eigen-system is prescribed by the wall motion, will
e presented elsewhere (Imole, Wojtkowski, Kumar, Magnanimo,
Luding, 2013b).

. Calibration of the continuum model and prediction

In this section, we will present the microscopic simulation
esults with a short review of an anisotropy continuum model as
ntroduced in Luding and Perdahcıoğlu (2011). We will calibrate
he free parameters in the model as function of polydispersity w
nd volume fraction �, using the isotropic and purely deviatoric
eformation experiments. Finally, using the model, a prediction of
n independent test, i.e. the uniaxial deformation mode, will be
resented.

.1. Reduced theoretical model

Most standard constitutive models with wide application fields,
ike elasticity, elasto-plasticity, or fluid/gas flow models of various
inds, were applied also to granular flows, sometimes with success
ut typically only in a very limited range of parameters and flow
onditions (for overviews see Bauer, Huang, & Wu, 2004; Einav,
012; Göncü & Luding, 2013; Imole et al., 2013b; Jiang & Liu,

007; Luding & Perdahcıoğlu, 2011; MiDi, 2004; Tejchman & Wu,
007 and references therein). While most of these theories can be
nd some have been extended to accommodate anisotropy of the
icrostructure, only very few models account for an independent
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ig. 13. Deviatoric fabric per particle radius fraction Fdev(r), plotted against a scaled
train εdev = 0.40 = 0.40. Small (blue) symbols represent w = 1.5 and big (green) symb
f the references to color in this figure legend, the reader is referred to the web ver

volution of the microstructure (e.g. Goddard, 2006; Luding &
erdahcıoğlu, 2011; Sun & Sundaresan, 2011).

We use the constitutive model, as proposed in Luding and
erdahcıoğlu (2011), generalized for a D-dimensional system:

ıP = DBıεv + ASıεdev,

ı�dev = DAıεv + GoctSıεdev,

ıA = ˇAsign(ıεdev)(Amax − A)ıεdev.

(15)

The model involves three moduli, namely, the classical bulk
odulus B (Göncü et al., 2010), the octahedral shear modulus

oct, and the “anisotropy modulus” A. Due to the modulus A, the
odel provides a cross coupling between the two types of stress

nd strain in the model, namely the hydrostatic and the shear
deviatoric) stresses react to both isotropic and deviatoric strains.
= (1 − sdev/smax

dev ) is an abbreviation for the stress isotropy with
he stress ratio sdev already introduced in Section 4.3. The param-
ter smax

dev resembles the macroscopic friction (depending on our
efinition, sdev = 3q = 3 sin ϕ, where q is the shear stress ratio and ϕ is
he internal friction angle as in Azéma, Radjaï, and Saussine (2009)
nd others, while ˇs is the growth rate of sdev. The parameter Amax

n the evolution equation of A represents the maximum anisotropy
hat can be reached at saturation, and ˇA = ˇF determines how fast
he asymptote is reached (growth rate) when a material is sub-
ected to deviatoric strain εdev (Imole et al., 2013a). Both Amax

nd ˇA are model parameters and can be extracted by fitting the
acroscopic simulation results. In a nutshell, the anisotropy model

s based on the basic postulate that an independent evolution of
tress and structure is possible and the macroscopic modulus A
ccounts for the deviatoric deformation history, being proportional
o the microscopic rank-two deviatoric fabric Fdev. More detailed
xplanations about the constitutive model and its parameters can
e found (in Imole et al., 2013a; Luding & Perdahcıoğlu, 2011;
agnanimo & Luding, 2011; Krijgsman & Luding, 2013).
The reduced model, with some simplifying assumptions as

ntroduced in Imole et al. (2013a) and Luding (2004, 2005b),
educes to only two independent evolution equations for the devi-

toric stress ratio sdev, and the deviatoric fabric Fdev, where the
ormer is given by:

dev = smax
dev − (smax

dev − s0
dev)e−ˇsεdev , (16)

o
v
W
t

s rsc = (r − rmin)/(rmax − rmin) for the deviatoric deformation mode, after large shear
present w = 5. Volume fractions are (a) � = 0.686 and (b) � = 0.82. (For interpretation
f the article.)

here s0
dev and smax

dev represent the initial and maximum values of
dev and ˇs is its growth rate. Similarly, the deviatoric fabric is
pproximated by:

dev = Fmax
dev − (Fmax

dev − F0
dev)e−ˇFεdev , (17)

here F0
dev and Fmax

dev represent the initial and maximum (satura-
ion) values of the deviatoric fabric, and ˇF is its rate of change.

.2. Calibration for polydisperse samples

In the following, we use these two equations as empirical fit
unctions, since they are special cases of the complete constitu-
ive model with anisotropy, to deduce the model parameters as
unctions of volume fraction � from various volume-conserving
eviatoric simulations (Imole et al., 2013a). In particular, the influ-
nce of polydispersity w on the fitting parameters is studied. As
n example, the deviatoric data for w = 1.5, 2, and 5 are fitted using
qs. (16) and (17) and the four parameters smax

dev , ˇs, Fmax
dev , and ˇF are

xtracted. The procedure is applied to the full set of polydisperse
ackings with many different � (not shown).

Fig. 14(a) and (b) shows respectively the variation of smax
dev and

max
dev with �, for different w. Both smax

dev and Fmax
dev decrease with

ncreasing volume fraction � and approach a finite limit for large
olume fractions. This is because for higher volume fractions, the
otion of spheres is more constrained by more contacts and hence

he anisotropy developed during the deformation becomes smaller.
oreover, with increasing polydispersity, the asymptotic values of

max
dev and Fmax

dev increase, as explained in detail in Section 4.3.
Fig. 15(a) and (b) shows respectively the variations of ˇs

nd ˇF with � relative to the jamming volume fraction, i.e. the
caled volume fraction �/�c − 1, for different w from the same
eviatoric simulations as above. A decreasing trend is seen for ˇs

ersus �/�c − 1, with larger scattering as compared to smax
dev . With

ncreasing polydispersity, the variation of ˇs with polydispersity w
educes (this can be seen by looking at the inset in Fig. 11(a) since
v in that dataset depends only on polydispersity), so we neglect
his variation in this work. A similar decreasing trend in ˇF with
/�c − 1 is seen, while, besides fluctuations, ˇF is less dependent

n w (see inset in Fig. 11(b)). In Figs. 14 and 15, we also report the
alues of the four parameters for the monodisperse packing, w = 1.
e note that when ˇs and ˇF are plotted in Fig. 15(a) and (b),

he data for w = 1 show anomalously large values. This is probably
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ig. 14. Comparison of variations of parameters for normalized deviatoric stress sd

a) the maximum normalized deviatoric stress smax
dev plotted against volume fractio

rrow indicates the increasing w. The corresponding dashed lines are the fit using E

ue to partial, local crystallization (Schröder-Turk et al., 2010 and
eferences therein) present in the monodisperse case.

A clear difference between the fit parameters of deviatoric

tress and deviatoric fabric, namely the steady values smax

dev , Fmax
dev

Fig. 14(a) and (b)), and the growth rates ˇs and ˇF (Fig. 15(a)
nd (b)) can be seen. This confirms that stress and fabric indeed

p
f

ig. 15. The growth rates (a) ˇs of sdev and (b) ˇF of Fdev plotted against scaled volume f
able 3) plotted against scaled volume fraction, (�/�c − 1). The corresponding solid lines a
deviatoric fabric Fdev with polydispersity w for the deviatoric deformation mode:
d (b) the maximum deviatoric fabric Fmax

dev plotted against volume fraction �. The
).

volve independently with deviatoric strain (Imole et al., 2013a;
a Ragione & Magnanimo, 2012), as is the basic postulate for the
nisotropy constitutive model.
We propose a generalized analytical relation to fit the stress
arameters smax

dev , ˇs and the fabric parameters Fmax
dev , ˇF, obtained

rom different volume-conserving deviatoric simulations. Their

raction, (�/�c − 1). Scaled (c) smax
dev

and (d) Fmax
dev

with components Qmax and Qv (see
re the scaled parameters using Eq. (18) with data taken from Table 3.
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Table 3
Fitted coefficients for the fitting parameters in Eqs. (16) and (17), using Eq. (18)) with �c (w) extracted from Table A1, by fitting the results obtained from various volume-
conserving deviatoric deformation simulations with different w.

w �c smax
dev Fmax

dev ˇs ˇF

Qmax Qv ˛ Qv ˛ Qmax Qv ˛ Qv ˛

1.0 0.6389 0.0888

0.11 12

0.1308

4.8 31 116 22 72 6

1.3 0.6427 0.0935 0.1386
1.5 0.6444 0.0976 0.1491
2.0 0.6500 0.1106 0.1684
2.5 0.6557 0.1164 0.1741
3.0 0.6587 0.1226 0.1789
3.5 0.6599 0.1303 0.1830
4.0 0.6609 0.1292 0.1810
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4.5 0.6614 0.1278 0.177
5.0 0.6620 0.1279 0.178

10.0 0.6634 0.1273 0.175

ependence on volume fraction � (see Imole et al. (2013a), for
= 3), is well described by the general relation:

= Qmax(w) + Qv(w) exp
(

−˛(w)
(

�

�c(w)
− 1

))
, (18)

here Qmax(w), Qv(w) and ˛(w) are the fitting parameters depend-
ng on polydispersity w, with the values presented in Table 3, � is
he volume fraction and �c(w) is the jamming volume fraction for
he deviatoric deformation mode depending on w (see Fig. 7). For all
our model parameters, Qmax(w) is the limit value for large volume
raction, Qc = Qmax(w) + Qv(w) represents the limit at � → �c(w), and
(w) is the rate of variation (decay) with the volume fraction.

Here we study and discuss the four cases separately. For smax
dev ,

rom Fig. 14(a), we observe a systematic variation of Qmax with w
nd the curves are parallel. Hence Qv and ˛ can be considered inde-
endent of w. Scaling the curves in smax

dev by (smax
dev − Qmax(w))/Qv,

eads to a collapse of the data, as shown in Fig. 15(c). For ˇs, in this
ork, we neglect its weak variation with w and assume constant

alues for the fitting parameters Qmax, Qv and ˛. When looking at
he structural anisotropy, since both Fmax

dev and ˇF tend to 0 as the
olume fraction increases, we assume, for consistency in the sim-
lation data, that Qmax = 0 in their fitting functions. We observe in
ig. 14(b) that the variation of Qv with w is systematic for Fmax

dev .
hen Fmax

dev is scaled by (Fmax
dev − Qv)/Qv, the data collapse as shown

n Fig. 15(d). Since the curves have the same trend ˛ is set constant,
ndependent of w. As shown in the inset of Fig. 11(b), ˇF is inde-
endent of the initial configuration, that is w, and we set constant
v and ˛ in this case.

Interestingly, we can reduce Eq. (18) in a very compact form by
xpressing the two w-dependent parameters Qmax(w) for smax

dev , and
v(w) for Fmax

dev as functions only of �c = �c(w):

smax
dev (�, w) = Qmax(�c) + Qv exp(−˛(�/�c − 1))

ˇs(�, w) = Qmax + Qv exp(−˛(�/�c − 1))

Fmax
dev (�, w) = Qv(�c) exp(−˛(�/�c − 1))

ˇF(�, w) = Qv exp(−˛(�/�c − 1))

(19)

ith Qmax = −1 + 1.7�c for smax
dev and Qv = −0.9 + 1.6�c for Fmax

dev . Using
hese two equations, every term in Eq. (19) can be expressed as
ither constant, or as function of �c, that becomes a unique state
ariable able to describe the history of the material due to its defor-
ation mode. Using these equations, together with �c data from
able 2, and constant parameters from Table 3, we can represent
he variations of the model parameters smax

dev , ˇs, Fmax
dev and ˇF with

olume fraction � and polydispersity w, and use them to predict
he behavior during uniaxial deformation.

t
t
i
r

.3. Prediction of uniaxial deformation for polydisperse samples

Fig. 12(a) shows the deviatoric stress ratio sdev against deviatoric
train εdev for uniaxial deformations, compared with the predic-
ions of Eq. (16) with coefficients smax

dev (�, w) and ˇs(�, w) taken from
q. (19). The proposed model, although in its simplified version,
aptures the behavior of the material qualitatively, sdev increasing
xponentially to a maximum value and then decreasing due to the
olume fraction and polydispersity dependence of the parameters.

Fig. 12(b) shows the evolution of deviatoric fabric, Fdev, with
eviatoric strain, εdev, for uniaxial deformations – as above –
ogether with the predictions of Eq. (17), with parameters taken
rom Eq. (19). The model is still able to qualitatively describe
he behavior of the deviatoric fabric, but with order of 30% over-
rediction for large strain. Note that the softening present in some
f the deviatoric DEM data, is on purpose not plugged into the
odel as a constraint, which renders the weak softening present

n some of the uniaxial data as a valuable prediction of the model.
or better understanding, the complete coupled model needs to be
sed and possibly improved, as will be presented elsewhere.

. Summary and outlook

We use the discrete element method to investigate the behavior
f three-dimensional frictionless granular assemblies charac-
erized by different polydispersities and subjected to various
eformation paths. In particular, isotropic loading/unloading, devi-
toric (pure) shear, and uniaxial compression are studied.

The main goal is to analyze and understand the reciprocal influ-
nce of polydispersity and deformation history on the response
f the material, where the structural/bulk effects are highlighted
y using the simplest linear visco-elastic contact model. The
volution of the scaled pressure as a function of volumetric strain
relative to the jamming volume fraction �c) is well described by
n analytical (linear, to very good approximation) scaling equation,
ee Eq. (10). This shows that the isotropic fabric is proportional to
he isotropic stress provided proper parameters, slightly depend-
ng on the deformation mode, are included. Notably, only the
amming volume fraction, among the fit parameters for the pres-
ure, describes the role of both polydispersity and deformation
istory on the material behavior. As reported earlier in Imole
t al. (2013a), the isotropic jamming volume fraction �c is not a
onstant value for a particular material and system configuration
ut is strongly dependent on the deformation mode and history of

he packing. Moreover, �c increases with polydispersity, following
he behavior described in Ogarko and Luding (2012), with the
sotropic and deviatoric tests giving the highest and lowest values,
espectively, while the uniaxial dataset lies in between. On the
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ontrary, the shear jamming volume fraction, slightly below the
sotropic jamming volume fraction, has been confirmed as a lower
imit value in recent studies, independent of the deformation
ath (Bi, Zhang, Chakraborty, & Behringer, 2011). The detailed
imulations by Ogarko and Luding (2012), using hard instead of
oft spheres, represent lower or upper bounds to �c if they are
arried out extremely fast or slow, respectively. However, the
elation between these distinct results has to be further studied.

The behavior of polydisperse systems has been predicted by
garko and Luding (2012), to depend on the moments of their size
istribution, provided the rattlers are excluded. For larger w, the
oments (scaled by 〈r〉) do not change much above w ≈ 3–4, which

xplains the saturation of many quantities – for the uniform size
istribution used in this work.

When the micromechanics is analyzed, the coordination num-
er decreases with polydispersity, while the fraction of rattlers
isplays an opposite trend, increasing with w. In these cases, the
volution of the state variables can be predicted using the evolution
quations from Göncü et al. (2010), with parameters depending on
he polydispersity of the packing, while the laws for the critical
olume fraction �c(w) as extrapolated from the pressure behavior
re used. Interestingly, the free fit parameters are not affected by
he deformation modes in the case of the micromechanical quanti-
ies, that is, they are fully described by the evolution of the critical
olume fraction, acting as history variable for the sample.

During deviatoric and uniaxial deformations, both deviatoric
tress ratio and deviatoric fabric evolve with the deviatoric strain,
eaching saturation values that increase with polydispersity. The
nitial growth rate of stress, ˇs, depends on polydispersity due to
he relation between the shear stiffness of isotropic samples and
he volumetric fabric Fv(w). On the other hand the growth rate of
eviatoric fabric ˇF is fairly independent of polydispersity (besides
uctuations), suggesting that the incremental response of the gran-
lar deviatoric fabric is not directly related to its isotropic state Fv.

The DEM data of isotropic compression (Göncü et al., 2010) and
olume-conserving deviatoric tests are used to calibrate a sim-
le constitutive model that involves anisotropy as proposed in 2D
y Luding and Perdahcıoğlu (2011) and Magnanimo and Luding
2011). The four parameters that characterize the model, smax

dev ,
s, Fmax

dev , and ˇF are expressed as functions of volume fraction
nd polydispersity. They show a very similar behavior, decreasing
xponentially from a maximum value at the jamming volume frac-
ion to a saturation minimum. Also in this case, where only two
arameters are dependent on w and thus �c(w), the dependence
n polydispersity can be fully described through the established
ariation of the jamming volume fraction �c(w) with w.

As final step, the constitutive model calibrated on isotropic and
eviatoric data is used to predict both stress and fabric evolution
nder uniaxial deformation, with very good qualitative success
nd within 70–80% quantitative agreement. The successful predic-
ion of the uniaxial test suggests promising perspectives for future
esearch. The basic qualitative features are captured by the model,
ven though it is used in a very idealized and short form, e.g. with
single anisotropy modulus. In the future, the coupled equations
ave to be solved and additional formulations/terms that relate
nisotropy (possibly a second anisotropy modulus) with the devia-
oric fabric will also be added. Moreover, it would be interesting
o look deeper into different distributions of polydispersity like
onstant volume fraction, or log-normal distributions.
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ppendix A.

Dependence of the model parameters for pressure, coordina-
ion number and fraction of rattlers on the width w of the size
istribution.

able A1
ummary of parameters used in Eqs. (10) and (12) with C0 = 6, ˛ = 0.60 for the three
odes, and Eq. (13) as function of polydispersity w.

w �c p0 �p C1 �c �v

ISO
1.0 0.6478 0.0430 0.2131 9.0622 0.0171 46.7722
1.3 0.6491 0.0432 0.2010 9.0053 0.0220 40.5552
1.5 0.6514 0.0430 0.1698 8.9759 0.0309 35.2452
2.0 0.6577 0.0428 0.1299 8.8795 0.0650 28.6337
2.5 0.6624 0.0421 0.0499 8.7233 0.1010 20.2312
3.0 0.6648 0.0419 0.0720 8.5585 0.1559 17.6338
3.5 0.6668 0.0419 0.1481 8.4082 0.1818 13.4036
4.0 0.6674 0.0425 0.1882 8.2977 0.2049 10.5633
4.5 0.6675 0.0424 0.2409 8.1672 0.2417 9.8332
5.0 0.6680 0.0428 0.2825 8.1636 0.2513 8.0380
10.0 0.6696 0.0444 0.3992 8.1674 0.3210 4.6514

UNI
1.0 0.6423 0.0398 0.0776 8.7464 0.0212 39.8092
1.3 0.6440 0.0399 0.0808 8.6618 0.0254 35.2456
1.5 0.6463 0.0393 –0.0025 8.6241 0.0309 32.7265
2.0 0.6525 0.0387 –0.0840 8.5253 0.0734 26.0018
2.5 0.6576 0.0383 –0.1974 8.3847 0.1148 20.3461
3.0 0.6605 0.0376 –0.1962 8.2066 0.1640 16.0260
3.5 0.6625 0.0384 –0.0793 8.1357 0.2018 13.2581
4.0 0.6634 0.0388 0.0086 7.9881 0.2359 10.8769
4.5 0.6644 0.0390 0.0081 7.9333 0.2531 9.2102
5.0 0.6647 0.0386 –0.0527 7.8750 0.2622 7.9085
10.0 0.6662 0.0416 0.2482 7.9177 0.3342 4.4610

DEV
1.0 0.6389 0.0363 –0.0954 8.6689 0.0281 46.0916
1.3 0.6427 0.0405 0.1771 8.6137 0.0249 42.2059
1.5 0.6444 0.0399 0.1223 8.5451 0.0476 39.7536
2.0 0.6500 0.0387 –0.0215 8.4097 0.0744 27.1618
2.5 0.6557 0.0396 0.0594 8.3101 0.1028 19.4110
3.0 0.6587 0.0396 0.0924 8.1634 0.1453 15.2955
3.5 0.6599 0.0386 0.0382 7.9801 0.1881 12.3952
4.0 0.6609 0.0388 0.0744 7.8672 0.2131 9.8732
4.5 0.6614 0.0393 0.1539 7.7965 0.2336 8.5445
5.0 0.6620 0.0396 0.1793 7.4895 0.2492 7.3233
10.0 0.6634 0.0419 0.3617 7.7373 0.3114 3.8805
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