
PHYSICAL REVIEW B 90, 035428 (2014)

Nonlocal spin-entangled Andreev reflection, fractional charge, and current-phase relations
in topological bilayer-exciton-condensate junctions
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We study Andreev reflection and Josephson currents in topological bilayer exciton condensates (TECs). These
systems can create 100% spin-entangled nonlocal currents with high amplitudes due to perfect nonlocal Andreev
reflection. This Andreev reflection process can be gate tuned from a regime of purely retro reflection to purely
specular reflection. We have studied the bound states in TEC–topological-insulator–TEC Josephson junctions and
find a gapless dispersion for perpendicular incidence. The presence of a sharp transition in the supercurrent-phase
relationship when the system is in equilibrium is a signature of fractional charge, which can be further revealed
in ac measurements faster than relaxation processes via Landau-Zener processes.
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Fermionic condensates have been intensively studied since
their first experimental discovery in superconducting mercury
more than a century ago [1]. These condensates bear spectacu-
lar effects, such as macroscopic phase coherence and magnetic
flux quantization. A lot of research has been devoted to the
superconducting class of condensates, and with the appearance
of nanotechnology, which has enabled the study of interfaces
at the nanoscale, many new exciting experiments have been
proposed. Strong similarities between superconducting and
exciton condensates, which arise from the Coulomb interaction
between electrons and holes [2,3], were recognized early on,
but with the recent advances in bilayer exciton condensates
it becomes particularly interesting to study superconducting
effects in exciton condensates.

Exciton condensation has been realized in closely spaced
quantum Hall bilayers [4], enabling studies toward Andreev
reflection and Josephson effects [5–7]. Topological exciton
condensation has been predicted in three-dimensional topo-
logical insulators, potentially surviving up to room tempera-
ture [8]. The topological exciton condensate (TEC) arises in
this case from the pairing of carriers mediated by the Coulomb
interaction in closely spaced top and bottom surfaces of a
topological insulator (TI). The strong experimental progress
in tuning the Fermi energy inside the bulk band gap bears
promise for the realization of these systems [9,10]. Motivated
by the similarities between superconducting and excitonic
condensates, we discuss here key superconducting phenomena
and show how these effects manifest themselves in the
topological exciton condensate.

Electron reflection at an interface is an intensively studied
quantum phenomenon. One of the most famous examples
is the electron-hole Andreev reflection occurring at the
superconductor interface. Usually, normal electron scattering
occurs via specular reflection, due to translational invariance
along the interface, whereas Andreev reflection is of retro type,
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due to the sign change in the group velocity. Recently, it has
been predicted that in special cases these processes can be
of the opposite type. Electron retro reflection is predicted at
the interface of a superconductor with bilayer graphene [11].
The Andreev reflection process becomes partially specular
when the material contacting the superconductor has a gapless
dispersion, such as graphene and topological insulators, and
is tuned to the regime where the incoming electron has
energy above the Dirac point and the retro-reflected hole has
energy below the Dirac point [12]. These novel processes have
attracted great attention but are yet to be observed. Here, we
show that Andreev reflection in exciton condensates can be
tuned from completely retro reflection to completely specular
reflection purely by electrical gating.

Superconductors are a natural source of entanglement; the
Cooper pair charge carriers in s-wave superconductors are
in a singlet state. Most proposals using superconductors to
create nonlocal entangled electrons are based on splitting
the Cooper pairs via crossed Andreev reflection [13–18].
However, the current is often only for a small part entangled
due to the competing processes of normal Andreev reflection
and elastic cotunneling [15]. Proposals to optimize crossed
Andreev reflection have focused on the electrodes contacting
the superconductor. The fraction of entangled particles can
be strongly increased by using ferromagnetic electrodes in an
antiparallel magnetization [14] and could even reach 100% in a
p-type semiconductor–superconductor–n-type semiconductor
junction [18]. Still, these proposals rely on very specific con-
figurations and are always limited by the critical temperature
of the superconductor. Here, we show that Andreev reflection
on bilayer exciton condensates is naturally nonlocal. The
Andreev reflection amplitudes are high in the presence of
spin-momentum locking, which is the case in topological
condensates. These results bear promise for the realization
of ideal entanglement sources.

A superconducting Josephson junction is predicted to host
zero energy bound states if the interlayer is made out of topo-
logical insulators [19]. These modes are Majorana modes as
the superconductor provides the right particle-hole symmetry
and the topological insulator makes the quasiparticles spinless.
The search for Majorana zero energy modes is of practical
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relevance as these particles might serve as decoherence
immune qubits with non-Abelian statistics [20] in topological
quantum computation [21]. These Josephson junctions show
an exotic supercurrent-phase relationship and can have a
doubled periodicity. Here, we show that Josephson effects
arise by coupling two TECs. The transparency of the Josephson
junction is angle dependent and the bound states are gapless for
perpendicular incidence. We find that these bound states have
no parity protection due to degeneracy in layers, in contrast to
topological superconductors. The zero energy bound states are
not Majorana modes, due to degeneracy, similar to the valley
degeneracy in graphene. We have calculated the supercurrent
and find a sharp transition when the system is in equilibrium in
the current-phase relationship around φ = π for perpendicular
incidence. This transition is a signature of currents quantized
in fractional charge. Alternating current measurements can
reveal fractional charge and 4π current-phase relationships
due to Landau-Zener processes.

Coulomb interaction can induce exciton condensation when
the two surfaces of a topological insulator material, which
is insulating in the bulk with a finite band gap [22,23], are
sufficiently close [8], shown in Fig. 1. All layers are assumed
to be individually tunable by means of electrical gates. The

FIG. 1. (Color online) (a) TI-TEC heterostructure with individ-
ual gates to tune between n- and p-type surface states. The right
side forms an exciton condensate due to the Coulomb interaction
between n and p layers. Applying a voltage V1 over the top surface
states creates a nonlocal current I2 through the bottom surface states.
(b) Allowed transport processes in the device (the TI is considered
here to be of nn type); the arrows denote the spin normal to the
interface, êx , and the solid red (dotted blue) line indicates the top
(bottom) surface. An incoming top surface electron (in) can be
reflected (r1) and Andreev reflected (r2) as an electron. Transmission
from the TI to the TEC occurs as quasiparticles with electronlike
mass (t1) and holelike mass (t2). Elastic cotunneling has a vanishing
probability due to the large intrinsic TI bulk band gap.

electrical gates attached to the exciton condensate are used to
tune the top (bottom) surface of the topological insulator to be
of n(p) type, resulting in an attractive Coulomb interaction M̂ ,
that drives the system to exciton condensation. Strong coupling
is expected, which may survive up to room temperature [8,24].
The linear energy dispersion of the topological surface states
causes a near perfect nesting between the electronlike states
above the Dirac point and the holelike states below the Dirac
point [8]. This situation is similar to the prediction of exciton
condensation in graphene [25,26], except that graphene has an
additional pseudospin. The two-dimensional (2D) nature of the
surface states reduces screening and maximizes the Coulomb
interaction.

The surface states of a topological insulator can be
described by

Ĥ + μT (B)Î = +(−)vT (B)σ · p̂. (1)

Here, the momentum p̂ = −i�∇ of the topological insulator
is coupled to the spin, and σ = (σx,σy) are the Pauli spin
matrices. The Fermi velocity vT (B) represents the Dirac
velocity in the top (T ) and bottom (B) layer, and the (+)(−)
is due to the different chiralities residing at the two sides. The
Fermi energy μT (B) = μ0 + EpT (B) is given by the intrinsic
chemical potential μ0 and the potential energy Ep, tuned
by the electrical gates. The Hamiltonian after mean-field
approximation is, in the basis (ĉT k↑,ĉT k↓,ĉBk↑,ĉBk↓), given
by [8]

Ĥ + μ0Î =
(

vT σ · p̂ − EpT M̂

M̂∗ −vBσ · p̂ − EpB

)
. (2)

The Coulomb interaction is not directly spin selective, and
the form of M̂ will depend on the actual system. For a
diagonal interaction in spin space, the exciton order parameter
M̂ = M〈ĉ†T ks ĉBks〉 + H.c., where we assume M = M0e

iφ and
s denotes the spin. The TEC condensate phase eiφ will be
important when coupling different exciton condensates.

The eigenvalues corresponding to this system are given by

Ekαη = −μ + 1

2
(Ep,T + Ep,B)

+α

√[
v|k| + 1

2
η(Ep,B − Ep,T )

]2

+ M2
0 . (3)

Here, α,η = ±1. We will focus on the regime 1
2 (Ep,2 −

Ep,1) − μ → 0, where the condensation energy is maximized.
We attach the TEC to normal topological insulator electrodes,
described by Eq. (1). This setup is shown in Fig. 1. All layers
can be tuned individually by means of electrical gates. As
Seradjeh et al. [8] pointed out, the exciton condensation
energy M0 will vanish for a small Fermi energy difference
Ep,T − Ep,B and a large mean Fermi energy potential μ +
1
2 (Ep,T + Ep,B ). Consequently, we can neglect the Coulomb
interaction in the nn configuration. We also neglect the
Coulomb interaction for the TI in the pn configuration when
using low carrier densities and large density mismatches. In
the rigid boundary approximation this results in the following

035428-2



NONLOCAL SPIN-ENTANGLED ANDREEV REFLECTION, . . . PHYSICAL REVIEW B 90, 035428 (2014)

ansatz:

�C = t1

⎛
⎜⎜⎜⎝

ueiφ

ueiφ+iθCT

ve−iφ

−ve−iφ−iθCT

⎞
⎟⎟⎟⎠eikCT r + t2

⎛
⎜⎜⎜⎝

veiφ

−veiφ−iθCB

ue−iφ

ue−iφ+iθCB

⎞
⎟⎟⎟⎠e−ikCB r,

�T =

⎛
⎜⎜⎝

1
eiθT

0
0

⎞
⎟⎟⎠eikT r + r1

⎛
⎜⎜⎝

1
−e−iθT

0
0

⎞
⎟⎟⎠e−ikT r, (4)

�B = r2

⎛
⎜⎜⎝

0
0
1

−eiβθB

⎞
⎟⎟⎠e−iβkB r.

Here, �̂T (B) is the wave function in the top (bottom) surface, θ
is the trajectory angle (see Fig. 2), k is the momentum, r and t

are the probability coefficients, and �̂C refers to the bilayer
exciton condensate. For general parameters, u and v are found
through the Hamiltonian, Eq. (2), together with demanding∑

i |�̂i |2 = 1. For equal Dirac velocities and carrier densities
in the exciton layer, the coherence factors u and v are given

by u =
√

1
2 + 1

2

√
E2−M2

0

E
and v = √

1 − u2. A particle in the

TI layer impinging on the TEC can have several elastic scatter
trajectories, with the angle θj of a scatter trajectory j , defined
with respect to the interface, related to the incoming angle θin

via Snell’s law sin(θj ) = rk sin(θin) with rk = kin
kj

because of the
conservation of momentum parallel to the interface. A particle
can backscatter in the TI, with probability r1, while changing
its spin accordingly. It can also undergo Andreev reflection (r2)
by scattering to the other TI layer. It will have opposite (same)
perpendicular momentum, when the TI electrodes are of nn

type or pn type, respectively. Therefore, Andreev reflection is
specular (retro) when both electrodes are of similar (opposite)
type, in contrast to normal metal superconductor contacts.
Parallel momentum is conserved, resulting in β = +(−)1 [see
Eq. (4)] for (specular) retro reflection due to the different
chirality between the p and n configuration. Therefore, the
spin of the Andreev reflected electron is dependent on whether
the reflection is retro or specular. In the exciton system,
tuning from specular to retro can be achieved by tuning the
gate voltages, while in normal metal-superconductor contacts
specular Andreev reflection is predicted only for very specific
cases [12]. A particle in the TI layer can also scatter as a
quasiparticle into the TEC. This transmission from the TI into
the TEC is possible via scattering into the electron branch (t1)
or hole branch (t2) but is absent for excitation energies smaller
than the exciton gap M0. Direct tunneling of particles between
the top and bottom layers of both the TI and TEC is not
taken explicitly in the model, as direct tunneling decays very
rapidly with increasing layer separation distance d. The bulk
band gap 
TI >100 meV and the decay scales as e−kd , with
k ∝ 
TI. A regime where the dominant process is nonlocal
Andreev reflection is therefore easily obtained, whereas this
optimization in superconducting systems is a major hurdle.

In obtaining the scatter possibilities, we assume �̂ to be
continuous across the interface. We integrate the probability

distribution over angles θin from 0 to π , considering a steplike
interface along the direction êx normal to the interface. Figure 2
shows the angle averaged scatter probabilities for κ = μTI

μTEC
=

0.1 with the electrodes in the nn and pn configuration, which
is representative of the general result for a large chemical
potential mismatch, since θt1,t2 → 0 for κ → 0. When the
TI electrodes are in the nn configuration, Andreev reflection
is specular and peaks at zero energy, similar to what is
predicted for graphene [12]. Backscattering is forbidden on
the edge of a 2D topological insulator, but scattering at
other angles apart from π is possible on the 2D surface of
a three-dimensional topological insulator, leaving a nonzero
electron reflection. Still, the obtained Andreev reflection r2

is significant and will increase for smaller chemical potential
mismatches. Effectively, the interface has a high transparency
for all mismatches.

The current density in the electrodes in the êx direction,
perpendicular to the interface, is obtained from Jx,T (B) =
1
A

∑
k Jq,T (B)(k)êxfT (B)(k). Here, A is the effective width, and

the nonequilibrium distribution fT (B) = f0[E − eVT (VB)] −
f0(E − eVex,T (B)), with f0(E) the Fermi distribution function.
Only trajectories below the critical angle θc(E) = arcsin r−1

k

contribute to the current. The charge current is defined by
Jq,T (B) = evT (B)[�(�̂↑�̂∗

↓)êx + �(�̂↑�̂∗
↓)êy]. Bias voltages in

the range |eV | < M0 result in vanishing quasiparticle current
in the TEC, and direct tunneling is negligible in this system.
Therefore, in this regime, perfect entangled currents flow
through both surfaces in opposite directions (see the lower
panels of Fig. 2). The currents are entangled in energy,
momentum, and spin and form a promising source for solid-
state Bell experiments, quantum computation, and quantum
teleportation. The spin-momentum locking provides further-
more an additional path to probe the entanglement [27].

We consider two TECs connected by a topological insulator
with width W as an analog to a superconductor Josephson
junction [see Fig. 3(a)]. As for a single interface (see Fig. 1),
a current can be applied and measured across one layer
(e.g., the top layer) or measured nonlocally via the other
layer. In the topological insulator electrodes there are no
pairing interactions, but the Andreev reflected particle remains
coherent with the incoming particle over a length ξ = �vT vB

C1+C2
.

The factor C1 = (vT + vB)E is the consequence of condensa-
tion of particles with energy E above and below the chemical
potential. The additional factor C2 = (vT − vB)μ0 + (vB +
vT

EpB

EpT
)EpT is due to possible differences in Fermi velocity and

energy between the two layers. In the case when both layers
have equal electron densities and velocities, the characteristic
phase coherence length is maximized and can be written as
ξ = �vD/M0 (similar to the superconducting coherence length
by substituting M0 with the superconducting gap 
). When the
width of the TI interlayer W ≈ ξ , an exciton supercurrent can
flow between the two TECs.

To find the exciton bound states, we use the ansatz:
�̂ = a�̂+

T + b�̂+
B + c�̂−

T + d�̂−
B , where superscript ±

denotes forward and backward traveling waves. The bound
states for this system are solved by assuming �̂ to be
continuous across both the left (L) and right (R) interfaces.
There are several ways to calculate the bound states; we
follow the approach of Kulik [28]. The modes are calculated

035428-3



M. VELDHORST et al. PHYSICAL REVIEW B 90, 035428 (2014)

0 1 2 3 4 5
E/M

0

r
1

t
1

t
2

r
2

0 1 2 3 4 5

Local current
Nonlocal current

eV / M
0

(a)

0 1 2 3 4 5
0

1

2

3

4

5
Local current
Nonlocal current

eI
R
N
/|m
|

eV / M
0

n-type

p-type

n-type

p-type
TI TEC

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

r
1

t
1

t
2

Pr
ob
ab
ili
tie
s

E / M
0

r
2

n-type

n-type

n-type

p-type
TI TEC

Specular Andreev reflection Retro Andreev reflection

y

x

z

x

(b)

(c)

(d)

θT

FIG. 2. (Color online) Exciton Andreev reflection. On the left we show the limit of specular Andreev reflection and on the right we show
the limit of retro Andreev reflection. (a) Electrode configuration to obtain the specific configurations. The TI leads are of similar (opposite)
type for specular (retro) reflection. (b) Conservation of parallel momentum, together with a group velocity pointing away from the interface,
which results in specular reflection when the top and bottom leads are of the same charge type and retro reflection when the leads have opposite
charge type. (c) Angle averaged tunneling coefficients and (d) IV characteristics. Electrons with energy |E| < M0 can only enter the exciton
condensate by the exciton analog of Andreev reflection. For energies |E| > M0, also a quasiparticle current appears. The blue dashed line is
the current through the same interface where the voltage is applied; the red solid line is the resulting nonlocal current at the other interface. At
|eV | < M0 the current is perfectly entangled in both scenarios.

for energies E < M0. The system is solved by connecting the
left and right moving currents:

c�̂−
T (W,E) = r

T ,R
1 (E)a�̂+

T (W,E) + r
B,R
2 (E)d�̂−

B (W,E),

b�̂+
B (W,E) = r

T ,R
2 (E)a�̂+

T (W,E) + r
B,R
1 (E)d�̂−

B (W,E),
(5)

a�̂+
T (0,E) = r

T ,L
1 (E)c�̂−

T (0,E) + r
B,L
2 (E)b�̂+

B (0,E),

d�̂−
B (0,E) = r

T ,L
2 (E)c�̂−

T (0,E) + r
B,L
1 (E)b�̂+

B (0,E).

The coefficients r are determined by considering scattering
at a single interface using the ansatz, Eq. (4). Figure 3(b)
displays the bound states for different incident angles θT .
Scattering present at finite angles results in the opening of a
gap. For equal electron densities and perpendicular incidence,

the absence of backscattering results in a zero energy state
for any finite length W . Unequal electron densities in the
top and bottom layer remove the particle-hole symmetry
and shift the gap from zero energy, resulting in a zero
energy bound state for all angles [see Fig. 3(c)]. The zero
energy state appears at different φ for different incidence
angles, but the current-phase relationship is always 2π

periodic.
The Andreev bound states in topological superconducting

systems are protected by parity, resulting in a 4π periodic
current-phase relation for perpendicular incidence [29]. This
doubling of the period is the consequence of a switch
from Cooper pairs to single electrons of the transferred
charge [30]. The supercurrent in these topological exciton
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FIG. 3. (Color online) (a) Bilayer-exciton-condensate analogy of
the Josephson junction. The arrows indicate the direction of the group
velocity. The group velocity is in the same (opposite) direction as the
momentum in the n(p)-type branches. A possible exciton bound state
is shown. (b) The bound state for perpendicular incidence (solid line),
which is 4π periodic. A nonzero incidence angle results in the opening
of a gap at finite length ( W

ξ
= 0.1 here) and momentum mismatch

(rk = 0.1), as shown for θT = 0.1, 0.2, 0.3, 0.4, and 0.5π in dashed
lines. (c) The top and bottom TI layers with unequal Fermi densities,
and thus the gap shifts from zero energy, here Ep,B = 2.6Ep,T , W =
0.1, θT = 0.2π , and rk = 0.1.

systems is carried by single electrons in the top and bottom
layers, such that a doubling in period would be a switch to
transferring fractional charges across the individual layers,
where the system has to be advanced with 4π in φ to
return to its original state (and an electron transfer across
the interface). However, in the considered exciton junction,
there is degeneracy in layer, and this lifts parity protection.
This becomes evident when we consider the two bound states
at perpendicular incidence: ±ε(φ) = ± cos(φ/2). If we take
the inner product of the corresponding two eigenstates �±, we
get the effective low-energy Hamiltonian H0 = ε(φ)[�†

+�+ −
�
†
−�−]. In topological superconducting systems it is possible

to get �
†
+ = �− due to particle-hole symmetry. However, here

�
†
+ �= �− as the eigenstates correspond to different surfaces.

Consequently, the dispersive bound states, ±ε(φ), both corre-
spond to odd occupied states and there is therefore no parity
protection.

The resulting dc Josephson supercurrent will likely be in
the equilibrium regime, as there is no parity protection that
forbids any matrix element to couple to the two branches. We
therefore calculate the supercurrent by taking the derivative
with respect to the Free energy, JT,B = ±∂φT ln

∑
i e

−Ei /T ,
where i denotes the branch. For temperatures T � Ei , the
supercurrent will be carried by the ground state only. In Fig. 4
we show the supercurrent for perpendicular incidence and for
the limit of parallel incidence. The supercurrent for parallel
incidence is normalized for clarity. As the angle of incidence
decreases, the gap in the bound states decreases, and the
maximum supercurrent shifts toward φ = π , accompanied by

FIG. 4. Exciton Josephson supercurrent-phase relationship in
equilibrium. The limit of parallel incidence (normalized) results in
a 2π periodicity due to the presence of a gap in the bound states
(Fig. 3). However, a gapless dispersion for perpendicular incidence
moves the maximum supercurrent to φ = π and is the onset of a
doubled periodicity and fractional charge. Relaxation causes a sharp
transition around φ = π , where the current switches between the two
branches.

a sudden transition where the supercurrent switches between
the two branches. This transition is the result of the absence
of parity protection, but it is, together with the shift of
maximum supercurrent toward φ = π , the onset of a doubled
current-phase relation (from 2π to 4π ) and the transfer of
fractional charge across each layer (e/2).

Although there is no strong protection for relaxation be-
tween the two low-energy bound states, the doubling in period
can be studied further in an ac measurement, performed faster
than the relaxation processes. Via Landau-Zener transitions,
in a nonequilibrium measurement, the current can remain in
the same branch as φ is advanced. The exciton ac Josephson
effect follows from δtφ = q∗V , where q = e on a single layer.
In a microwave irradiation experiment, Shapiro steps form
as a function of the applied voltage and are quantized in
V = 2h

e
fRF .

Recently, fluxoid quantization is predicted in bilayer exci-
ton systems [31], quantized in �∗

0 = h
e
γ , with γ the diamag-

netic susceptibility. The doubled current-phase relationship
would double the quantization, resulting in �∗

0 = 2 h
e
γ , which

could be observed in superconducting quantum interference
devices (SQUIDs) [32]. We note that even in the presence
of relaxation these altered current-phase relationships can be
measured in SQUIDs [33].

In conclusion, we have studied the coupling between
topological exciton condensates and topological insulators.
A single interface opens the possibility to create 100%
spin-entangled and spatially separated particles via nonlo-
cal Andreev reflection, where the spin-momentum locking
introduces new means to read out the entanglement. This
novel Andreev reflection can be tuned from retro reflection
to a regime of specular reflection purely by electrical gating.
Sandwiching a topological insulator between topological
exciton condensates in a Josephson junction arrangement
results in a Josephson supercurrent with a gapless dispersion
for perpendicular incidence. Degeneracy in layer lifts the
parity protection, and the supercurrent has a strong transition
around φ = π in equilibrium and is the onset of fractional
charges. In ac measurements faster than the relaxation, the
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current-phase relationship can attain a doubled periodicity
(from 2π to 4π in the phase φ), which gives rise to Shapiro
steps with height V = 2h

e
fRF , four times larger than in a

standard superconducting Josephson junction where charge
is carried by Cooper pairs with charge 2e. The strong activity
to realize topological insulators with an insulating bulk and
the demonstration of few layer thin-film topological insulators
make this proposal particularly timely.
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