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Abstract A nonlinear stochastic self-exciting threshold autoregressive (SETAR) model and a
chaotic k-nearest neighbour (k-nn) model, for the first time, were compared in one and multi-
step ahead daily flow forecasting for nine rivers with low, medium, and high flows in the
western United States. The embedding dimension and the number of nearest neighbours of the
k-nn model and the parameters of the SETAR model were identified by a trial-and-error
process and a least mean square error estimation method, respectively. Employing the recur-
sive forecasting strategy for the first time in multi-step forecasting of SETAR and k-nn, the
results indicated that SETAR is superior to k-nn by means of performance indices. SETAR
models were found to be more efficient in forecasting flows in one and multi-step forecasting.
SETAR is less sensitive to the propagated error variances than the k-nn model, particularly for
larger lead times (i.e., 5 days). The k-nn model should carefully be used in multi-step ahead
forecasting where peak flow forecasting is important by considering the risk of error
propagation.
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1 Introduction

Streamflow forecasting is one of the most complicated tasks in hydrology owing to nonlinear
dynamics in various physical mechanisms acting at a wide range of temporal and spatial
scales. For several decades, a common belief among hydrologists has been that the tremendous
variability observed in streamflow dynamics (and in other hydrological dynamics) resulted
from a large number of dominant variables (Sivakumar 2003). Consequently, numerous works
have been published regarding the application of stochastic theory in streamflow modelling
and forecasting (Dutta et al. 2012; Latt and Wittenberg 2014; Patel and Ramachandran 2015).
Although a plethora of applications of linear stochastic models is available for hydrologic
modelling, their applications for forecasting of complex nonlinear phenomena are rather
limited since they require the assumption of stationarity of time series which is not appropriate
for operational forecasting and uncertainty assessment of nonlinear and non-stationary
heteroskedastic processes (Komorník et al. 2006). In recent years, advancements in nonlinear
time series modelling have brought us closer to understanding the nonlinear nature of
hydrologic time series.

An example of a stochastic nonlinear model is the self-exciting threshold autoregressive
(SETAR) model. SETAR allows us to model system dynamics by consideration of different
sub-spaces (i.e., regimes) using threshold variables. In the literature, applications of the
SETAR model to streamflow forecasting are rather limited. Its applicability to streamflow
forecasting has to be proven and thoroughly tested, case by case, to deepen our understanding
of nonlinear streamflow dynamics. Recently, Komorník et al. (2006) and Chen et al. (2008)
applied SETAR to forecast streamflows. However, both studies do not investigate the fore-
casting capability of SETAR in daily forecasting of streamflows. While Komorník et al. (2006)
employed SETAR to a monthly data set, Chen et al. (2008) handled 10-day streamflow data set
by moving averaging of daily flows. Thus, utilization of SETAR in forecasting daily
streamflows is an important task and need further investigation.

In recent years, with the advent of chaos theory it has become increasingly realized that
irregular random behaviour could be the outcome of simple interdependent deterministic
systems influenced by a few nonlinear variables. The applications of chaos theory to
streamflow dynamics enhance our understanding towards underlying dynamics of generating
mechanisms of streamflows. It is possible to determine the number of dominant variables if the
underlying dynamics are low dimensional chaos (e.g., Ng et al. 2007; Tongal et al. 2013).
Further, studies have shown that low-dimensional chaotic approaches give relatively accurate
predictions of runoff series (Liu et al. 1998; Porporato and Ridolfi 1997; Sivakumar 2003).
However, there are few studies on the comparison of forecasting performances of stochastic
and chaotic approaches. Among others, Jayawardena and Gurung (2000) predicted three
synthetic data sets and four real data sets with chaotic and stochastic approaches and
concluded that the chaotic model is superior to the stochastic approach. Lisi and Villi (2001)
compared the forecasting performance of chaotic and linear ARIMA models and showed that
the chaotic approach improved the forecasting performances of ARIMA. In the literature, to
the authors’ knowledge, Yu et al. (2004) is the only study that concludes a conventional
chaotic approach is worse than ARMA(1,1) and ARIMA(1,1,1). Furthermore, the authors
claim that a Naïve forecasting method in which the forecast at time t+1 is assumed to be equal
to the forecast at time t, performed better than the chaotic prediction method. These results
gave inspiration to this study. Firstly, from a pragmatic engineering point of view, accurate
forecasting is usually the primary motivation for developing engineering models. Secondly,
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less computationally expensive models are more preferred than expensive ones. From the
above results, one might wonder that (1) if simple ARMA(1,1) and Naïve forecasting methods
give more reliable and generalizable results than the chaotic prediction method, then why will
one prefer to use more complex chaotic prediction methods? (2) Is there any necessity to use a
chaotic prediction method in forecasting streamflows? Finally, (3) while the linear stochastic
models (ARMA, ARIMA) was reported to give better results than a nonlinear chaotic method
(Yu et al. 2004), will rarely used nonlinear SETAR model outperform a chaotic prediction
method in forecasting streamflows?

In this study, to answer these questions and to gain more insights into forecasting perfor-
mances of a nonlinear stochastic time series model (SETAR) and a chaotic prediction method
(a local k-nn model), nine streamflow time series with different mean flows are modelled at
daily time scales. To the best of our knowledge, this is the first study to apply a SETAR and a
local k-nn model jointly in daily and multi-step forecasting of streamflows with different
hydrological characteristics. Nine streamflow time series in the western United States are
selected from the study of Sivakumar (2003) in which they are categorized as low, medium
and high flows according to the mean flow value.

In this study, by comparing the performances of stochastic (SETAR) and chaotic models (k-
nn), we also try to add a contribution to the following comment of Sivakumar (2003)
‘Consequently, a general assessment regarding whether one approach [i.e., chaotic or stochas-
tic approach] is better than the other or vice-versa is difficult to provide. It must be emphasized,
however, that studies that have employed both approaches have revealed that the chaotic
approach was better than the stochastic approach for the streamflow series analysed…The
author is not aware of any studies that have reported the opposite situation’. However, it must
be noted that the findings of this study are limited to the k-nn and SETAR models. We do not
intend to reach such a conclusion that the stochastic or chaotic approach gives a better
forecasting performance, but rather show the capabilities of both models in forecasting daily
streamflows for one and multi-step ahead forecasting by only using past observed discharges
as inputs.

2 Streamflow Data

The data used in the analyses were obtained from the study of Sivakumar (2003) where the
author categorized the streamflows of 79 gauging stations in the western United States into
three groups as low, medium and high flows according to the value of the mean flow as
follows: (1) low-flow stations with mean streamflow values of less than 2.8 m3s−1, (2) high-
flow stations with mean streamflow values of more than 28.3 m3s−1 and (3) medium-flow
stations with mean streamflow values between the above two values. Nine stations from these
three groups were selected ensuring sufficient variability among drainage basin areas, eleva-
tions and mean flows (Table 1).

Because of different climatic regions and drainage basin characteristics, the magnitude of
streamflows varies greatly among the stations. Most of the drainage basins are medium to
small sized and are located in areas with middle to high elevations (mostly higher than 500 m)
(Sivakumar 2003). The climate is tender from south (desert climate) to north (more rainy
regions) and to represent climate variability, low-medium-high flow stations were chosen from
the south-middle-north regions, respectively. The selected regions are: CA, CO/WY, ID, MT,
NM, NV, OR, UT and WA. The nine stations were randomly selected as one station to be in
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each of these regions. All flow time series span from 01.01.1932 to 31.12.2010. The data were
divided into three subsets for calibration, which includes training and testing data sets, and
validation. The first 70 % of the record is designated for calibration, 80 % of the calibration
data set was assigned as training set and 20 % was assigned as testing set, and the last 30 % of
the data set was assigned for the validation.

3 Methodology

3.1 BDS Test

The BDS test (Brock et al. 1987) is a nonparametric method to test for the existence of
nonlinearity in a time series. It is particularly useful for chaotic and nonlinear stochastic
systems of which effectiveness is shown in various studies (e.g., Lisi and Villi (2001),
Amendola et al. (2006)). A scalar time series {Xt} of length N should be reconstructed into
a m-dimensional space to obtain a new series {Yt}, with Yt= (Xt,Xt − 1,…,Xt − (m − 1)τ), where τ
is a delay time. For each couple of parameters m and r, the correlation integral is used to
examine the dependence of the series that can be computed as follows (Grassberger and
Procaccia 1983):

C m; r;Nð Þ ¼ 2

M M−1ð Þ ∑
M

i¼1
∑
M

j¼1
H r−∥Y i−Y j∥
� �

ð1Þ

where M=N− (m−1)τ is the number of embedded points in a m-dimensional space, H is the
Heaviside step function, with H(u) = 1 for u>0, and H(u) = 0 for u≤0 where u= r− ‖Yi−Yj‖, r
is the radius of a sphere centered on Yi or Yj, and N is the number of data points. The sup-norm
‖ • ‖, can be any of the three usual norms, the maximum norm (maximum absolute difference
between Yi and Yj), the diamond norm (sum of all the absolute differences) or the standard
Euclidean norm. It is then possible to estimate the BDS statistic

BDS ¼
ffiffiffiffiffi
M

p
C m; r;Nð Þ−C 1; r;Nð Þmð Þ=

ffiffiffiffi
V

p
ð2Þ

where V is the variance of C(m, r,N) under the null hypothesis. The analytical expression of V
can be found in Cromwell et al. (1994). Under the null hypothesis of an independent and
identical distribution, the BDS statistic is asymptotically normal with zero mean and unit
variance (Brock et al. 1987; Lisi and Villi 2001).

3.2 Self-Exciting Threshold Autoregressive Models

First proposed by Tong (1978), the threshold autoregressive (TAR) model describes a given
stochastic process by a class of linear auto-regressions, where the output of linear auto-
regression at any instant depends upon the value taken by a threshold variable (Clements
and Krolzig 1998). TAR is considered as SETAR when the threshold variable is taken as a
lagged value of the considered time series. Let yt be a discharge time series that follows a l -
regimes threshold autoregressive process with threshold variable yt − d:

yt ¼ ϕ jð Þ
0 þ

Xp
i¼1

ϕ jð Þ
i yt−p þ ε jð Þ

t if r j−1≤yt−d < r j ð3Þ

SETAR and k-nn models in daily and multi-step forecasting of discharges 1519



where, p is the degree of autoregressive, l and d are positive integers, j=1, 2, 3,.., l, ri are real
numbers that satisfy the following condition:

−∞ ¼ r0 < r1 < … < rl−1 < rl ¼ ∞ ð4Þ
the superscript (j) is used to identify the regime, {εt

(j)} are independent identical distributed
sequences with zero mean and variance σj

2 and are mutually independent for different j. The
parameter d is the delay parameter, rj are thresholds and ϕi are autoregressive coefficients.
Equation (3) indicates that a SETAR model is a piecewise linear AR model in the threshold
space. Details of determining the structural parameters {ϕ, r,d} can be found in Pinson et al.
(2008).

3.3 K-nearest Neighbour Model

The k-nearest neighbour model (k-nn) is a local approximation method which uses nearby
states to make nonlinear predictions (Sharifazari and Araghinejad 2015). Let ymt ¼
yt;…; yt−mþ1

� �
be a feature vector of past discharge records that summarises the whole history

in a way that it is supposed to contain most of the information related to the forecast. It is
assumed that the probability distribution of the observed variable conditioned on the entire past
is the same for the observed variable conditioned on only the past observations. In other words,
the probability distribution of (yt + 1|yt, yt − 1,…) is the same as the probability distribution of

ytþ1 ymt
��� �

. Even if the ymt does not satisfy the above mentioned condition, as Karlsson and

Yakowitz (1987) proved, the k-nn forecaster will be asymptotically optimal among all the
forecasters defined on ymt (Toth et al. 2000).

The expectation of the forecasted value can be written as conditioned on the feature vector
as:

ŷtþ1 ¼ E ytþ1 y
m

t

���h i
ð5Þ

To estimate ŷt + 1, the k-nn model employs a metric (‖ ⋅ ‖) defined on the feature vector to
find the set of k observed nearest neighbours of ymt , i.e., the k-dimensional vectors of past
observations as ymt j which minimizes:

y
m

t −y
m

t j

��� ��� ð6Þ

where j=1, 2,…, k. One of the most employed metrics to identify the number of nearest
neighbours is the Euclidean norm. If Rm represents a vector of coordinates ξ1, ξ2,…, ξm, the
differences between the current feature vector and past data, the Euclidean distance, is defined as:

Rk k ¼
Xm
i¼1

ξ2i

 !1=2

ð7Þ

For one-step ahead forecasting, the estimation of ŷt + 1 can then be taken as the average of
the temporal evolution (i.e., the successive values) of the most resembling k-past values as:

ŷtþ1 ¼
1

k

Xk
j¼1

yt jþ1 ð8Þ
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Intuitively speaking, the forecast ŷt + 1 by the k-nn model is the sample average of the
succeeding values of the k nearest neighbours in the data set. For more detailed information the
reader can refer to Toth et al. (2000).

To select appropriate models from their classes and to evaluate forecasting perfor-
mances following performance indices were used: the Akaike Information Criterion
AIC p1; p2ð Þ ¼ lnσ2 þ 2 p1 þ p2ð Þ=N , the Nash-Sutcliffe efficiency coefficient

NSE ¼ 1−∑N
i¼1 Qi−Qið Þ2=∑N

i¼1 Qi−Q
� �2

, a modified form of this NSEm ¼ 1−∑N
i¼1 Qi−Qij j

=∑N
i¼1 Qi−Q
�� ��, the percent bias PBIAS %ð Þ ¼ 100� ∑N

i¼1Qi−Qi=∑
N
i¼1Qi, the index of

agreement d ¼ 1−∑N
i¼1 Qi−Q̂i

� �2
=∑N

i¼1 Q̂i−Q
�� ��þ Qi−Q

�� ��� �2
and the root mean square error

RMSE ¼ N−1∑N
i¼1 Qi−Q̂i

� �	
2g 0:5 where N is the number of data points, p1 and p2 are

the appropriate model orders for two different regimes, σ̂2 is the variance of residuals, Qi,

Q̂i and Q are the observed, forecasted and the mean of the observed discharge values,
respectively. Detailed information about these indices can be found in Legates and
McCabe (1999), Krause et al. (2005), and Ajmal et al. (2015).

4 Results and Discussion

4.1 Autocorrelations, Mutual Information Functions and BDS Test

Data characteristics were firstly analysed through the autocorrelogram and the standardized
mutual information function as depicted in Fig. 1. The faster decay of the autocorrelation
function compared to the mutual information function is an indication of the nonlinear
information is more persistent than the linear information in the daily time series.

To confirm that nonlinear mechanisms are more prevalent than linear mechanisms, we applied
the BDS test to the streamflow time series. Before applying the test, since the daily streamflow data
exhibit strong interdependency (Fig. 1), linear dependencies were reduced within the data by pre-
processing as suggested by Wang et al. (2006). All logarithmized streamflow time series were
standardized and then pre-whitened with autoregressive (AR) models of which degrees were
determined according to minimum AIC values (Table 2). Then, the BDS test was applied to the
obtained residuals from thesemodels (Table 2). Generally, the BDS statistic is calculated for a set of
parameters (m, r). In this study, these parameters were chosen as m = 2, 3, 4 and
r=0.1σ, 0.3σ, 0.5σ, 0.75σ, 1.25σ, 1.5σ similarly to Lisi and Villi (2001). The results of the
BDS test showed that the asymptotically normal statistic varied between 48.9 and 64.7 which is
larger than standard normal statistics (i.e., zcritical=1.96) and therefore the hypothesis of indepen-
dence (all p <0.05) are strongly rejected, indicating all daily streamflow time series are nonlinear.

4.2 Self-Exciting Threshold Autoregressive Model

Various studies have shown that SETAR models having one threshold variable and thus two
regimes (i.e., low and high dynamics that are below and above a threshold) are quite efficient in
modelling nonlinear hydrological time series (e.g., Amendola et al. 2006; Chen et al. 2008;
Komorník et al. 2006). To reduce complexity originating from transition between the regimes,
the model parameterization and computing time, the number of regimes was fixed to two. The
maximum allowed model degrees in each regime were determined with the partial autocorrelation
function (PACF).

SETAR and k-nn models in daily and multi-step forecasting of discharges 1521



St.01 St.02

St.03 St.04

St.05 St.06

St.07 St.08

St.09
Fig. 1 Autocorrelation and standardized mutual information functions of nine daily streamflows
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The empirical procedure described by Tong (1983) led to models that minimize the AIC
(Table 2) for the delay parameter, d=1. Additionally, likelihood ratio test for threshold
nonlinearity (see Chan 1991; Chan and Tong 1986; Moeanaddin and Tong 1988) was applied
to evaluate the appropriateness of the SETAR model for the streamflows, with the null
hypothesis of being a normal autoregressive process and the alternative hypothesis of being
a threshold autoregressive process. The obtained likelihood ratio statistic (the results are not
shown here) varies from 49.08 to 415.47 and all corresponding p-values are statistically
significant (i.e., lower than 0.05) which indicates the necessity of SETAR for streamflows
time series.

For daily time series (Fig. 2), all SETAR models showed good forecasting performances
except for St.01, caused by the model parameters of the upper regime. As can be seen in
Fig. 2., the forecasted values above the threshold (i.e., 0.23 m3s−1) are constantly below the
observed values for St.01. When examining the high and low flows, all SETAR models
successfully forecasted peak flows except St.01, and successfully captured the low flow
dynamics.

The adequacy of the SETAR model in forecasting streamflow dynamics can be confirmed
in Table 3. NSE, d and RMSE indices are more sensitive to peak flows due to their squared
forms. All these indices showed that SETAR models are efficient in high flow forecasting.
There is not any effect of stations being in a low, medium or high flow region on performance
indices except RMSE.

The RMSE index is highly dependent on the magnitude of the flow and it is not appropriate
to compare this index between stations, but only for the same station. PBIAS values indicate
the over or underestimation of the forecasts. Since the PBIAS values of daily time series are
lower than ±25 % (Makungo et al. 2010), it can be concluded that all SETAR models are
acceptable in daily forecasting. The NSEm index is an overall sensitivity measure for the
quality of the model results. As a more global measure, the NSEm index stands in the middle
between the squared forms and the relative forms of performance indices (Krause et al. 2005).
The NSEm index is between around 0.70 and 0.95 for all stations. It should be noted that it is
rather difficult to obtain higher values for the NSEm than the original form. Therefore, overall it
can be said that the SETAR models are quite efficient in daily streamflow forecasting in terms
of considered performance indices.

Table 2 Degree of AR models constructed for streamflow time series, BDS test results and SETAR models with
threshold values

Station AR
degree

m = 2 m = 3 m = 4 SETAR
models

Threshold
(m3s−1)

Statistic p-value Statistic p-value Statistic p-value

St.01 43 53.6 0 53.3 0 51.2 0 SETAR (2,3,2) 0.23

St.02 42 53.7 0 60.9 0 64.0 0 SETAR (4,3,2) 5.15

St.03 37 54.6 0 57.3 0 57.7 0 SETAR (2,3,2) 6.32

St.04 42 48.9 0 56.8 0 60.3 0 SETAR (4,5,2) 31.15

St.05 42 54.8 0 59.3 0 61.2 0 SETAR (5,5,2) 31.15

St.06 43 60.0 0 62.7 0 62.2 0 SETAR (4,4,2) 68.24

St.07 43 64.4 0 64.7 0 62.3 0 SETAR (2,5,2) 104.20

St.08 43 56.3 0 59.9 0 60.2 0 SETAR (2,3,2) 141.90

St.09 42 55.3 0 61.6 0 64.2 0 SETAR (3,4,2) 461.60

SETAR and k-nn models in daily and multi-step forecasting of discharges 1523



4.3 K-nearest Neighbour Model

The necessary parameters for building up a phase-space forecasting or k-nearest neighbour
model are usually found by chaotic approaches such as the correlation dimension method and
the false nearest neighbour method. However, since we aim to compare the forecasting
performances of SETAR and k-nn rather than investigating chaotic dynamics in streamflow,
the necessary parameters m and k were determined by a trial-error process employed for the
training set that minimizes the RMSE calculated in the testing set.

The embedding dimensions were varied from m=2 to m=10 and k was varied from 1 to
100. A lower bound of two was selected since at least one delay coordinate is needed in the
state vector. Also, it is not meaningful to search for a higher embedding dimension than 10,
because only low to moderate dimensional chaos is amenable to short-term prediction (Phoon
et al. 2002). All the minimal RMSE values were obtained for m=2.

We would expect to obtain a higher number of nearest neighbours (Table 3) that have
higher dynamics (i.e., high BDS statistic) and vice versa, but the number of nearest neighbours
was found to be independent from having higher or lower dynamics. In one aspect, it is

0 5 10 15 20 25 30 35

Observation (m3s-1)

0

5

10

15

20

25

30

35
F

or
ec

as
t(

m
3 s

-1
)

St.01
R2=0.665

0 10 20 30 40 50

Observation (m3s-1)

0

10

20

30

40

50

F
or

ec
as

t(
m

3 s
-1

)

St.02
R2=0.960

0 10 20 30 40 50 60

Observation (m3s-1)

0

10

20

30

40

50

60

Fo
re

ca
st

(m
3 s

- 1
)

St.03
R2=0.971

0 30 60 90 120 150

Observation (m3s-1)

0

30

60

90

120

150

Fo
re

ca
st

(m
3 s

-1
)

St.04
R2=0.981

0 40 80 120 160 200

Observation (m3s-1)

0

40

80

120

160

200
Fo

re
ca

st
(m

3 s
-1
)

St.05
R2=0.991

0 60 120 180 240 300

Observation (m3s-1)

0

60

120

180

240

300

Fo
re

ca
st

( m
3 s

- 1
)

St.06
R2=0.982

0 120 240 360 480 600

Observation (m3s-1)

0

120

240

360

480

600

Fo
re

ca
st

(m
3 s

-1
)

St.07
R2=0.926

0 180 360 540 720 900

Observation (m3s-1)

0

180

360

540

720

900

Fo
re

ca
st

(m
3 s

-1
)

St.08
R2=0.952

0 460 920 1380 1840 2300

Observation (m3s-1)

0

460

920

1380

1840

2300

Fo
re

ca
st

( m
3 s

-1
)

St.09
R2=0.987

Fig. 2 Scatter diagrams of daily observed and forecasted streamflow values for the self-exciting threshold
autoregressive (SETAR) model
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reasonable that the performance of the employed k-nn model is independent from the system
dynamics. It only depends on the k-familiar observations of the considered value of which
succeeding values need to be forecasted.

The k-nn model performance largely depends on the selection of the number of nearest
neighbours and the similarity between calibration and validation series. For the daily forecasts
(Fig. 3), the k-nn model failed to capture peak values since these peak values were not observed
in the calibration set and/or the forecasted peak values are lower than the observed ones because
of the Baveraging effect^ which can be explained as follows. For instance, if theoretically, in
St.06 there are four observed equal values to the forecasted value and the number of nearest
neighbours is 24, then the remaining 20 observed values will decrease the forecasted value.

A good overall match between the daily observed and forecasted values can be seen.
Especially, the low streamflows were well forecasted due to the frequent occurrences of low
streamflows that allowing the trained model to have a better generalization of these values.

For the validation period, the NSE index indicates a Bvery good^ forecasting performance
except for St.01 (Table 3) for which we obtained a poor forecasting performance. The d and
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Fig. 3 Scatter diagrams of daily observed and forecasted streamflow values for the validation set for the k-
nearest neighbour (k-nn) model
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NSE indices are sensitive to peak flows and therefore relatively lower values were obtained for
St.01. The PBIAS index indicates Bvery good^ forecasting performances except for St.01. For
this station, PBIAS indicates a Bgood^ forecasting performance. Although it is rather difficult to
obtain higher values for NSEm, we obtained values above 0.80 for all stations except for St.01.

To understand whether climate change led such a poor forecasting performance in St.01, we
applied Mann-Kendall trend analysis to the monthly discharges of stations (not shown here)
and any statistically meaningful increasing or decreasing trend, except St.02, St.04 and St.05
where models were well-performed, was not found. Thus, the poor forecasting performance
for St.01 could be partially explained by its distinct hydrological and geological characteristics
as follows. The climate of San Bernardino region, where St.01 is located, is broadly charac-
terized as Mediterranean but form of precipitation changes significantly with elevation
(Hawley and Bledsoe 2011). Distinct from the other stations, winter frontal storms which
can be intense, lead to flashy regime with short-lived instantaneous peak flows in St.01
coupled with steep topography and narrow mountain valleys (Modrick and Georgakakos
2014). Additionally, in the mountainous regions of the western United States, streamflow
derived from snow is very sensitive to changes in temperature in compare to elsewhere in the
United States (Safeeq et al. 2013). The characteristics of mean annual hydrograph of the
stations can be informative about the basin characteristics and annual variations in temperature,
precipitation and snowpack (Kunkel and Pierce 2010). Only annual hydrograph of St.01 (not
shown here) shows complex-hydrograph features with fluctuations over short periods in both
the climbing and the falling limbs (Kunkel and Pierce 2010) among the other stations.
Additionally, the highest coefficient of variation (CV) value (defined as the standard deviation
divided by the mean) that shows variability of a time series was obtained for this station
(Table 1). It is obvious that; being small catchment that is more non-linear than larger ones
with the highest CV, showing complex-hydrograph features, and flash flood occurrences
coupled with sensitiveness to snow-melting led poor forecasting performances in St.01.
Thus, k-nn and SETAR models could be less useful for modelling such a high-complex
dynamics.

4.4 Multi-Step Forecasting

We applied Recursive Forecasting Strategy which has been widely used in multi-step fore-
casting of hydrological time series (e.g., Aqil et al. (2007), Chen et al. (2013)). In this method,
observed sample points of the time series are gradually replaced by previously predicted time
series at each forecasting step.

The SETAR models yielded better results than the k-nn models for up to five-day ahead
streamflow forecasting (Table 4). Since the forecasted outputs were fed back into the models to
forecast further values, the forecast error variances also increased as the forecast horizon
increased, as expected. The obtained multi-step forecasts (i.e., 2-day, 3-day, 4-day and 5-day)
of streamflows for one low, one medium and one high flow station where both models show
acceptable performances (i.e., St.03, St.05 and St.09), can be seen in Fig. 4.

The SETAR models better responded to most of the fluctuations within the data in addition
to the peak flows. In multi-step forecasting, the SETAR models are less sensitive to the
propagated error variances than the k-nn models and the SETAR model is still superior over
the k-nn model. This can be best observed for the peak flow forecasts. The propagated errors
led to a decrement in the peaks as the forecast horizon increases, especially for St.09. In
addition, the forecasts of the SETAR models are less scattered around the 45° fit, which
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describes the degree collinearity between observed and forecasted data, in contrast to the k-nn
models.

5 Conclusions

The purpose of this study is to compare two nonlinear models, SETAR and k-nn, that belong to
two different modelling approaches (stochastic and chaotic) for nine rivers in the western
United States with low, medium and high flows. To the authors’ knowledge, SETAR and k-nn
models have so far not been tested and compared for forecasting streamflows, jointly. The
autocorrelation, mutual information functions and nonlinear BDS test indicated that nonlinear
mechanisms are prevailing over linear ones in streamflows. Since the number of nearest
neighbours of the k-nn model was found to be independent from river flow dynamics, the
SETAR model has an advantage in analysing basin dynamics resulting from the model

Table 4 Performance indices of multi-step ahead daily forecasts obtained by SETAR and k-nn models

Models Performance Indices Setar k-nn

2-day 3-day 4-day 5-day 2-day 3-day 4-day 5-day

St.01 NSEm (−) 0.606 0.554 0.485 0.436 0.505 0.414 0.364 0.322

d (−) 0.729 0.655 0.601 0.483 0.659 0.479 0.384 0.336

RMSE (m3s−1) 0.581 0.623 0.644 0.696 0.646 0.716 0.743 0.755

St.02 NSEm (−) 0.849 0.824 0.797 0.777 0.789 0.744 0.711 0.683

d (−) 0.984 0.980 0.974 0.966 0.976 0.966 0.957 0.949

RMSE (m3s−1) 0.691 0.757 0.858 0.990 0.843 0.991 1.107 1.198

St.03 NSEm (−) 0.864 0.833 0.804 0.775 0.802 0.746 0.704 0.665

d (−) 0.985 0.982 0.971 0.961 0.975 0.961 0.948 0.936

RMSE (m3s−1) 1.051 1.131 1.429 1.651 1.318 1.631 1.874 2.066

St.04 NSEm (−) 0.873 0.830 0.799 0.770 0.783 0.717 0.675 0.642

d (−) 0.988 0.979 0.971 0.964 0.969 0.946 0.931 0.917

RMSE (m3s−1) 3.108 4.182 4.832 5.285 5.071 6.558 7.333 7.952

St.05 NSEm (−) 0.926 0.902 0.881 0.862 0.863 0.815 0.774 0.738

d (−) 0.995 0.992 0.988 0.985 0.988 0.977 0.967 0.956

RMSE (m3s−1) 2.461 3.177 3.862 4.252 3.881 5.272 6.335 7.243

St.06 NSEm (−) 0.904 0.878 0.849 0.820 0.843 0.791 0.751 0.714

d (−) 0.990 0.986 0.978 0.973 0.981 0.968 0.957 0.946

RMSE (m3s−1) 5.590 6.681 8.270 9.212 7.626 9.794 11.310 12.629

St.07 NSEm (−) 0.822 0.787 0.748 0.705 0.748 0.683 0.642 0.608

d (−) 0.966 0.961 0.948 0.929 0.949 0.926 0.910 0.896

RMSE (m3s−1) 15.524 16.697 18.858 22.138 18.844 22.234 24.236 25.798

St.08 NSEm (−) 0.843 0.805 0.765 0.733 0.774 0.710 0.665 0.626

d (−) 0.974 0.964 0.953 0.944 0.955 0.931 0.912 0.895

RMSE (m3s−1) 22.169 25.701 29.039 31.716 28.621 35.063 39.126 42.244

St.09 NSEm (−) 0.889 0.860 0.827 0.797 0.820 0.767 0.731 0.698

d (−) 0.992 0.988 0.980 0.973 0.980 0.967 0.957 0.946

RMSE (m3s−1) 39.941 48.561 62.050 71.203 61.599 77.941 88.438 98.075
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Fig. 4 Scatter plots of observed and multi-time-step forecasted discharges of St.03, St.05 and St.09 by the
SETAR and k-nn models
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structure. The one-day and the recursive multi-step ahead forecasting results showed a clear
superiority of the SETAR model over the k-nn model. The multi-step ahead forecasting results
also showed that the SETAR model is less sensitive to the propagated error variances
compared to the k-nn model which can be best observed for peak flow forecasts for higher
forecast horizons (e.g., 5-day ahead forecasts). The k-nn model should be carefully used in
multi-step ahead forecasting when peak flow forecasting is important.

In conclusion, the analyses showed that both SETAR and k-nn models have the potential to
forecast streamflows for one-day and multi-days ahead, but that the SETAR model is superior
to the k-nn model for various forecast horizons up to 5 days. However, in a pluralistic
modelling culture, each modelling strategy reveals some aspects of the data and hydrological
processes that other models may overlook and an important aim of modelling is to gain insight
into the underlying contributory factors. ‘In the pluralistic culture, models are not regarded as
expressions of truth but constructs to explain the data’ (Khatibi et al. 2014). Therefore, it is
important to determine whether the differences in forecasting performances of the models in
different hydrological time series are statistically significant in a further study.

Acknowledgments The authors would like to thank the U.S. Geological Survey for providing data used in this
study.

References

Amendola A, Niglio M, Vitale C (2006) Multi-step SETARMA predictors in the analysis of hydrological time
series. Phys Chem Earth A/B/C 31:1118–1126

Ajmal M, Waseem M, Ahn J-H, Kim T-W (2015) Improved runoff estimation using event-based rainfall-runoff
models. Water Resour Manag 29:1995–2010. doi:10.1007/s11269-015-0924-z

Aqil M, Kita I, Yano A, Nishiyama S (2007) Neural networks for real time catchment flow modeling and
prediction. Water Resour Manag 21:1781–1796. doi:10.1007/s11269-006-9127-y

Brock W, Dechert WD, Scheinkman J (1987) A test for independence based on the correlation dimension.
Working paper, University of Wisconsin

Chan KS (1991) Percentage points of likelihood ratio tests for threshold autoregression. J R Stat Soc Ser B
Methodol 53:691–696. doi:10.2307/2345598

Chan KS, Tong H (1986) On estimating thresholds in autoregressive models. J Time Ser Anal 7:179–190
Chen Y, Chang L, Huang C, Chu H (2013) Applying genetic algorithm and neural network to the conjunctive use

of surface and subsurface. Water Res Manag 27:4731–4757. doi:10.1007/s11269-013-0418-9
Chen C-S, Liu C-H, Su H-C (2008) A nonlinear time series analysis using two-stage genetic algorithms for

streamflow forecasting. Hydrol Process 22:3697–3711. doi:10.1002/hyp.6973
Clements MP, Krolzig H-M (1998) A comparison of the forecast performance of markov-switching and threshold

autoregressive models of US GNP. Econ J 1:47–75. doi:10.1111/1368-423X.11004
Cromwell JB, LabysWC, Terraza M (1994) Univariate tests for time series models. Sage Publications, Thousand

Oaks
Dutta D, Welsh W, Vaze J, Kim SH, Nicholls D (2012) A comparative evaluation of short-term streamflow

forecasting using time series analysis and rainfall-runoff models in ewater source. Water Resour Manag 26:
4397–4415. doi:10.1007/s11269-012-0151-9

Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189–208
Hawley RJ, Bledsoe BP (2011) How do flow peaks and durations change in suburbanizing semi-arid watersheds?

a southern California case study. J Hydrol 405:69–82
Jayawardena AW, Gurung AB (2000) Noise reduction and prediction of hydrometeorological time series:

dynamical systems approach vs. stochastic approach. J Hydrol 228:242–264. doi:10.1016/S0022-1694(00)
00142-6

Karlsson M, Yakowitz S (1987) Rainfall-runoff forecasting of methods, old and new. Stoch Hydrol Hydraul 1:
303–318

1530 H. Tongal, M.J. Booij

http://dx.doi.org/10.1007/s11269-015-0924-z
http://dx.doi.org/10.1007/s11269-006-9127-y
http://dx.doi.org/10.2307/2345598
http://dx.doi.org/10.1007/s11269-013-0418-9
http://dx.doi.org/10.1002/hyp.6973
http://dx.doi.org/10.1111/1368-423X.11004
http://dx.doi.org/10.1007/s11269-012-0151-9
http://dx.doi.org/10.1016/S0022-1694(00)00142-6
http://dx.doi.org/10.1016/S0022-1694(00)00142-6


Khatibi R, Ghorbani MA, Naghipour L, Jothiprakash V, Fathima TA, Fazelifard MH (2014) Inter-comparison of
time series models of lake levels predicted by several modeling strategies. J Hydrol 511:530–545. doi:10.
1016/j.jhydrol.2014.01.009

Komorník J, Komornikova M, Mesiar R, Szökeova D, Szolgay J (2006) Comparison of forecasting performance
of nonlinear models of hydrological time series. Phys Chem Earth 31:1127–1145

Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assess-
ment. Adv Geosci 5:89–97

Kunkel ML, Pierce JL (2010) Reconstructing snowmelt in Idaho’s watershed using historic streamflow records.
Clim Chang 98:155–176

Latt Z, Wittenberg H (2014) Improving flood forecasting in a developing country: a comparative study of
stepwise multiple linear regression and artificial neural network. Water Resour Manag 28:2109–2128. doi:
10.1007/s11269-014-0600-8

Legates DR, McCabe GJ (1999) Evaluating the use of Bgoodness-of-fit^ measures in hydrologic and
hydroclimatic model validation. Water Resour Res 35:233–241. doi:10.1029/1998wr900018

Lisi F, Villi V (2001) Chaotic forecasting of discharge time series: a case study. J Am Water Resour Assoc 37:
271–279

Liu Q, Islam S, Rodriguez-Iturbe I, Le Y (1998) Phase-space analysis of daily streamflow: characterization and
prediction. Adv Water Resour 21:463–475

Makungo R, Odiyo JO, Ndiritu JG, Mwaka B (2010) Rainfall–runoff modelling approach for ungauged
catchments: a case study of nzhelele river sub-quaternary catchment. Phys Chem Earth A/B/C 35:596–
607. doi:10.1016/j.pce.2010.08.001

Modrick TM, Georgakakos KP (2014) Regional bankfull geometry relationships for southern California
mountain streams and hydrologic applications. Geomorphology 221:242–260

Moeanaddin R, Tong H (1988) A comparison of likelihood ratio test and cusum test for threshold autoregression.
J R Stat Soc Ser D 37:213–225

Ng WW, Panu US, Lennox WC (2007) Chaos based analytical techniques for daily extreme hydrological
observations. J Hydrol 342:17–41

Patel S, Ramachandran P (2015) A comparison of machine learning techniques for modeling river flow time
series: the case of upper Cauvery river basin. Water Resour Manag 29:589–602. doi:10.1007/s11269-014-
0705-0

Phoon K, Islam M, Liaw C, Liong S (2002) Practical inverse approach for forecasting nonlinear hydrological
time series. J Hydrol Eng 7:116–128

Pinson P, Christensen LEA, Madsen H, Sorensen PE, Donovan MH, Jensen LE (2008) Regime-switching
modelling of the fluctuations of offshore wind generation. J Wind Eng Ind Aerodyn 96:2327–2347

Porporato A, Ridolfi L (1997) Nonlinear analysis of river flow time sequences. Water Resour Res 33:1353–1367
Safeeq M, Grant GE, Lewis SL, Tague C (2013) Coupling snowpack and groundwater dynamics to interpret

historical streamflow trends in the western United States. Hydrol Process 27:655–668
Sharifazari S, Araghinejad S (2015) Development of a nonparametric model for multivariate hydrological

monthly series simulation considering climate change impacts. Water Resour Manag 29:5309–5322. doi:
10.1007/s11269-015-1119-3

Sivakumar B (2003) Forecasting monthly streamflow dynamics in the western United States: a nonlinear
dynamical approach. Environ Model Softw 18:721–728

Tong H (1978) On a threshold model. In: Chen CH (ed) Pattern recognition and signal processing. Sijhoff and
Noordoff, Amsterdam, pp 101–141

Tong H (1983) Threshold models in non-linear time series analysis. Springer, New York
Tongal H, Demirel MC, Booij MJ (2013) Seasonality of low flows and dominant processes in the Rhine river.

Stoch Env Res Risk A 27:489–503. doi:10.1007/s00477-012-0594-9
Toth E, Brath A, Montanari A (2000) Comparison of short-term rainfall prediction models for real-time flood

forecasting. J Hydrol 239:132–147. doi:10.1016/S0022-1694(00)00344-9
Wang W, Vrijling JK, Van Gelder PHAJM, Ma J (2006) Testing for nonlinearity of streamflow processes at

different timescales. J Hydrol 322:247–268
Yu XY, Liong SY, Babovic V (2004) EC-SVM approach for real-time hydrologic forecasting. J Hydroinf 6:209–

233

SETAR and k-nn models in daily and multi-step forecasting of discharges 1531

http://dx.doi.org/10.1016/j.jhydrol.2014.01.009
http://dx.doi.org/10.1016/j.jhydrol.2014.01.009
http://dx.doi.org/10.1007/s11269-014-0600-8
http://dx.doi.org/10.1029/1998wr900018
http://dx.doi.org/10.1016/j.pce.2010.08.001
http://dx.doi.org/10.1007/s11269-014-0705-0
http://dx.doi.org/10.1007/s11269-014-0705-0
http://dx.doi.org/10.1007/s11269-015-1119-3
http://dx.doi.org/10.1007/s00477-012-0594-9
http://dx.doi.org/10.1016/S0022-1694(00)00344-9

	A...
	Abstract
	Introduction
	Streamflow Data
	Methodology
	BDS Test
	Self-Exciting Threshold Autoregressive Models
	K-nearest Neighbour Model

	Results and Discussion
	Autocorrelations, Mutual Information Functions and BDS Test
	Self-Exciting Threshold Autoregressive Model
	K-nearest Neighbour Model
	Multi-Step Forecasting

	Conclusions
	References


