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TABLE I 
SCER FOR VARIOUS SCHEMES AND N 

N 8 16 32 64 128 256 512 1024 
(m) (200) (200) (200) (100) (100) (5 0)  (30) (20) 

SM 48.86  44.86  41.22  37.75  34.56  31.42  28.36  25.26 
2 c  (a) 53.81 50.30 46.96 43.83 40.78 37.86 35.08 33.20 
2 c  (0) 53.81 49.93 46.65 43.54 40.53 37.63 34.96 32.13 
2 c s  1c 51.32 47.47 43.99 40.76 37.68 34.53 31.63 28.61 
2CRM (a) 41.54 44.89 42.08 39.96 37.80 35.73 33.62 31.37 
2CRM (0) 47.46 44.58 41.82 39.61 37.48 35.46 33.27 31.27 

Note: m--number of FFT’s averaged, @-coefficient  resolution 12 bits,  @-coefficient  resolution 10 bits. 
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Fig. 3. 2C processing with SM multiplier in  an  FFT  butterfly. 
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Fig. 4. Reduced multiplier  array with rounding off. 

If,  instead of the 2C to SM conversion in Fig. 3, a 2C to 1C 
conversion is made,  this gives a saving in hardware,  though  the 
SCER goes down, as shown in  Table I for  the  scheme 2C 6 IC. 
However, this SCER is still better  than  that  of SM by  about 
3 dB. The SM to 2C conversions can be  coupled  with  the  a/s 
which come  after  the real multipliers, t o  give some reduction 
in hardware [2 ] .  

Simulation  studies were carried out  for  different lengths of 
the coefficient word (real  and imaginary) namely, 10, 1 1 , and  12 
bits. The SCER for  the 12-bit case gave very negligible im- 
provement over the  1 1-bit case. The SCER for 10- and  12-bit 
cases is given in Table I. These  results indicate  that  the coef- 
ficient wordlength need not be greater than 11 for 12-bit 
processing. 

The  (2b - 1)-bit multiplier  output is rounded off t o  b bits. 
Due to this,  the  contribution of the least significant columns 
(kc) of the multiplier  array to  the  output is very negligible. 
Therefore, some of the kc’s can be  simply removed from  the 
multiplier array  as indicated in Fig. 4. Detailed computer 
simulation has shown  that  the removal of as many lsc’s as t o  
constitute 25 percent of the array elements causes a  reduc- 

tion in SCER by at most,  only 0.3 dB. Any further  reduction 
affects SCER severely, as seen from  Table I for  the scheme 
2CRM (2C with reduced multiplier)  with 8 columns  (about 30 
percent array elements) removed  from a 12 X 12-bit SM mul- 
tiplier.  This loss of SCER reduces  with increasing N .  It is felt 
that  this is due to increased  interleaving of errors  for larger N .  

Thus,  the  techniques described here will help the designer of 
the  FFT  hardware in  choosing  various  schemes  considering 
hardware cost  and computational accuracy. 

REFERENCES 
[ I ]  G. C. OLeary, “Non-recursive digital  filtering using cascade FFT 

transformers,” IEEE Trans. Audio Electvoacoust., vol. AU-18, pp. 
177-183,  June  1970. 

[2] J. P. Agrawal and J. Ninan,  “Hardware  considerations in FFT 
processors,” presented  at  the IEEE Int.  Conf. Acoustics,  Speech, 
and Signal Processing, Philadelphia, PA, Apr.  1976. 

131  A. V. Oppenheim  and C. J. Weinstein, “Effects of finite register 
length in digital  fiitering and  the  fast  Fourier transform,” hoc .  

[4] J. P. Agrawal and V. U. Reddy, “Log-sum multiplier,”  presented 
IEEE, pp. 957-976, Aug. 1975. 

at  the  Nat.  Computer Conf., New York, NY, June  1976. 

Improved  Approximation of Bias in Squared  Coherence 
Estimates for Weakly Smooth Spectra 

PETER LOPINBERG 

Abstract-Bias in  squared coherence estimates for normal processes is 
approximated by a function of coherence and  second derivatives divided 
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CORRESPONDENCE 173  

by values of spectral  densities  which  may  vary  slightly  over the window 
width.  The  result  approximates  more  accurately  than a known  formula 
results  from  nonrefuted  literature  concerning  very  smooth  spectra. 

INTRODUCTION 
The squared coherence  at a certain  frequency is defined as 

with  the spectra: cross spectral density Gxy with complex  con- 
jugate Gyx and  power  spectral densities G,, and Gyy of sta- 
tionary real random processes x and y .  

Spectra can be estimated  under ergodicity assumption  from 
a  realization of x and y over time T.  An efficient  procedure 
consists of dividing this interval into N equally  long  segments, 
forming  products  per segment of FFT’s and  their  complex 
conjugates, multiplication of inverse FFT’s by  a lag window, 
and averaging over FF,T’s  of all N results. Substiiution of esti- 
mates G,,  G,, , and G, into ( 1) gives estimate C. 

For  optimal  Findow  sele9ion  and bias correction  it  is desir- 
able thzt bias [ C ]  and var [ C ]  are known  for  arbitrary spectra. 
Bias [ C] was approximated’ in [ 11 with weak restrictions  on 
spectral variations over the window  width, defined as the 
width of the range of frequencies f for which the  Fourier 
transform W ( f )  of the lag window has significant values. 
Stronger  restrictions were made  in  an  exact  derivation [ 21 and 
apparently white  processes were use,d in  experiments [ 31 , [ 41 . 
References [ 21 -[4]  showed bias [C]  to be a decreasing func- 
tion of C reaching 0 for C = 1.  ABut  according to [ 11 ’ , for 
these  stronger  restrictions bias [C] would be independent  of 
C. S O  use of [ 11 ’ might  cause  serious errors. A 

Therefore,  an  improved expression for bias [C]  is required 
which indicates  effects of spectral variations over the window 
width.  Extension of the  exact derivation to weaker restrictions 
causes mathematical  problems, whereas repetition of experi- 
ments  for a sufficient  number of combinations of spectra  is 
hardly  feasible.  A more  accurate  approximation  for even 
stronger spectral variations  than [ 11 ’ is possible ?:everifor 
in [ 1  ] only a first-order  Taylor  approximation of C(GXy, G,,) 
at  point Gxy , G was used. It is only slightly more difficult 
to approximate C as a function of all spectral  esgmates by a 
second-order  Taylor series. This  expresses bias [C]  into  first 
and  second  moments of spectral  estimates,  for which expres- 
sions  are known. These momentszere already used maximally 
inA [ 11 to approximate2 var [C]. Therefore,  only bias 
[ C] will be approximated  here  such as to make maximal  use of 
these moments. 

A h .  

YK 

APPROXIMATE BIAS OF SQUARED COHERENCE ESTIMATE 
For  notational simplicity, define  for  estimztes of arbiirary 

quantitiea X, and Y tge n%rmalizations B[X]  = bias [X/X] 
and3  V[X,  Y] = cov [X/X, YIY]. 

The?, by second-order  Taylor  expansion of C(G,,,  G,,, 
A h  A 

A 

G,,,  G,,) at  point  Gxy,  Gyx,  Gxx, Gyy follows 

B[E] N B[exy1   +B[eyx l  - BIGxxl - BIGyyl  
A h 

+ B [ e x y l B [ e y x l  + u ~ , , ,  e,,] 
- B [ e x y l  B[2,,,1 - T.‘[G,y, GXXI 

- B [ e x y l B [ e y y l  - ~ [ G x y > G y y l  

A h  

A h  

‘Formula (9.3.25) in [ 11. 
2Formula (9.2.19) in [ 11. 
3Here, contrary to [ 11 , the definition of covariance for complex  ran- 

dom  variables is used. 

A h  

- B[eyxl   B[exxl  - V[Gyx,  Gxxl 

- BIGyxl  B[eyyl - V i e y x ,  eyyl 
A 

+B2[exxl + v~exx,exxl +B%,,I 

+ V[eyy ,eyy l   +B[ex , lB[eyy l  

+ ne,,, e,,]. (2) 

Bias  of spectral  estimates may be derived similarly to [ 51. 
This requires small variation of the  spectra over fr;quen:y 
width ,?IT and of second derivatives to frequency G,,, Gxx, 
and Gyy over the window width.  Then 

B[exy l  = SG:’y/G,y (3) 

and  analogous  expressions for G,, and Gyy with  systematic 
error  constant 

A h 

S is obtainable  for usual  windows  b substitution of the values 
of “D” from [ 51 into S = “D”/(2,) . 

Covariance of spectral  estimates also has been  derived [ 11 ? 
For  that it is required  that G,, and Gbd of arbitrary  normal 
processes a ,  b ,  c, and d vary little over the window width. 
Then 

7 

with random  error  constant 

R is obtainable  for usual  windows  by substitution of the values 
of “I”  from [ 51 into R = “I”/T. If no  window  is applied 
[ 21 -[ 41 , R = 1/N. 

Substitution of (3), (4) into  (2) yields 

B [ C] E SG~,lGxy + SG;,/Gy, - SG;,/G,, - SG~,/G,, 
A 

+ S2G~,G~, /GxyG,~ + R / C  

- S2G~,G~,/G,,G,, - R - SzG~yG~y/G,yGyy- R 

- S2G~xG~x/GyxGxx - R - S2G~xG;y/GyxGyy- R 

+ S2G;i/Gi, + R + S2G;$/G$, + R 
+ S2G~xG~y/GxxGyy + RC. (5) 

Substitution  into (5) of the result f r o m i l )  G,, = d- 
eiArg(Gxy) where j = fi expresses B [ C ]  into  independent 
variables. This was partly used for [ 11 .’ 

Equation (5) shows  that relative, spectral  second  and  not 
first derivatives influence bias. As expected, bias is decreased 
by decreasing S or R. However, for  fixed T and window type 
decrease of either increases the  other. So for  each T ,  an  opti- 
mal  window for minimal coherence bias might be derived from 
(5) with  appkopriate spectral informatio?; By also taking  into 
account var[ C]  , the mean-square error  in C might be minimized 
instead. 

COMPARISON WITH LITERATURE FOR VERY SMOOTH 
SPECTRA 

Several simplifications are  needed  for  comparison of (5) and 
[ 11 ’ to [ 21 -[4].  For [ 11 G,, was required to be smooth, 
that  is SIG;,/Gx, I << 1. Then  the  fifth  term  in (5) can be 

4Formula (A.9.1.28) in [ 11, 
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omitted.  Furthermore, by the rough approximation,  only  the 
first,  second,  and  sixth  terms in (5) were considered for [ 11 .’ 

References [2]-[4]  concern v e y  s,mooth spectra,  that is 
SlG~,/Gx,,l << R and G l x  and G,, slmllar. Then all system- 
atic  error  terms  containing S and second derivatives may be 
omitted,  and  only  the  random  error  terms in ( 5 )  remain. So 
according to (5) 

A A 

bias [Clvery smooth = c B [ c l v e r y  smooth =R(1  -CI2 = F ( C ) .  

(6) 
The version of [ 11 for very smooth  spectra is 

h 

bias [cl very smooth R . (7) 
Approximation F ( C )  in (6) is R f,or C = 0 and 0 for C =  1. 

This agrees with theoretical bias [ C ]  , [ 21 , with simulation 
results Lor  R = t, [ 4 ] ,  and even with degenerate  procedure 
effect  C = 1 for R = 1. But for 0 < C < l , F ( C )  is lower  than 
bias according to all of these. These lower values must be due 
to  approximation (2) 2nd possibly (4). Nevertheless, F ( C )  
differs less from bias [ C] according to [ 21 , [ 41 than  approxi- 
mation  R in (7) does for  any  R and C > 0. 

Reference [ 31 2esulted  in empirical estimates of bias [ C ]  
with fit’ R ( 1 - C ). For very low C these  reT1ts are  slightly 
lower,  and  for high C < 1, higher than bias [C] according to 
[ 21 , [4] and (6). These deviations  increase  with R .  They 
m p  at  least  partly be due to  the  estimGion in [3] of g a s  
[ C ]  by,, the inverse Z-l of the bias in Z(Cj  = $ln{(l + d C ) /  
(1 ,dC)}. This pLocedure implies use of the  approximation 
E [ C 1 2-’ {E  [Z(C j ]  }. The resulting approximationzrrcsr i,n 
bias [C] incrzases  with the  second derivative of Z ( C )  to C 
and with var[C] , which is proportional  to R [ 11 ,’ These ex- 
pected increases agree with the  indicated  ones of the  actual 
deviations. Therefore, [ 31 will not be used for comparison. 

A 

CONCLUSION 
A 

Equation (5)  approximates bias [ C ]  of normal processes 
for values and second derivatives of spectra varying slightly 
over the window width.  The derivation  uses a  more extensive 
and higher order  Taylor  approximation  than [ 11.  Therefore, 
result (5) is expected  to be more  accurate  than [ 11 .’ This 
might be supported by very smooth  spectral version (6) of 
(5) agreeing closer with [ 21, [4]  than corresponding version 
(7) of [ 11 ’ does.  A reason for  the deviation of [3]  from 
[ 21 , [4] , and (6) has been indicated. 
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’Incorrectly cited  in [4] as Bz = R (1 - C). 

Abstract-A distinction is made  between the minimum  mean-square 
error estimate derived for the h e w  case of maximum a posteriori 
restoration  and the C Q ~ I X I Q ~  Wiener estimate. The linear M A P  filter 
is shown to produce good results with less a priori knowledge than is 
required for the Wiener filter. 

Minimum mean-square error filters can be derived from  both 
a priori and a posteriori  knowledge. The minimum  mean- 
square  error  filter derived from a priori knowledge is usually 
referred to as a Wiener filter [ 11. This filter is a  standard 
against which most  other image restoration/enhancement 
filters are compared.  The minimum  mean-square error  filter 
derived from a posteriori  knowledge is  the same as the  filter 
which  maximizes the a posteriori  probability  for  a linear 
imaging system. Because of its relation to  the maximum 
a posteriori  (MAP) estimation  method, we will refer to this 
filter as the linear MAP filter. This  correspondence shows 
that  restorations of quality  comparable to Wiener restorations 
can be obtained by using the linear MAP filter. In  actual 
implementation,  the linear MAP restoration uses less a priori 
knowledge than  the Wiener restoration;  furthermore,  it is 
less sensitive to  perturbations of that a priori knowledge. 

Hunt [ 21 derived the  maximum a posteriori  (MAP) equation 
for  nonlinear image restoration.  For  the linear case ( I ) ,  using 
lexicographic notation [ 3 ] , the imaging system is described by 

g = H f + n  (1)  

where 

f is the origi-nal image drawn  from  a Gaussian ensemble 
with  meanf  and covariance R f ;  

H is the point-spread function  matrix; 
n is zero-mean Gaussian noise with  variance/covariance R n  ; 
g is the recorded image. 

The  linear MAP estimate is then given  by 

?MAP = (R 7’ i- f f T R  i lH)-’ (HTRL1g 3- R 7’7). (2) 

The Wiener estimate with  ensemble  mean 7 included can be 
shown [see [ 11 and  model ( l ) ]  to be 

fw = ( R f H T  +77THT)(HRfpiT +H7FTHT + R n ) - ’ g .  (3) 

7= Ok as is usually assumed in Wiener estimation,  then 
SMAP =fw. 

The  difference  between  the linear MAP filter_and  the usual 
form of the Wiener filter is the  nonzero  meanf.  The model 
used for  the derivation of the Wiener filter assumes a zero- 
mean (or  a  constant-mean which can be subtracted). This 
implies that all spatial  variation of the image ensemble is 
accounted  for by the covariance matrix Rf Since the mean 
f has  been assumed to have an  extremely simple structure,  the 
covariance must necessarily have a great  deal of structure. 

The  model used for-deriving the linear MAP filter assumes a 
nonstatiknary mean f. For  computation  it is assumed that 
fo = f - f is a  stationary process. Since some of the ensemble 
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