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On-line information retrieval systems often offer their
users some means to tune the query to match the level
of granularity of the information request. Users can be
offered a far greater range of possibilities, however, if
documents are indexed with coordinated index con-
cepts. Coordinated index concepts are compound index
concepts that express a relation between concepts
that function as simple subject descriptors, as in
cures(headache, aspirin). We show the point by giv-
ing a functional specification of a query engine that can
handle both simple and coordinated index concepts,
Boolean combinations, and superconcept expansion.
The Condorcet Query Engine, a prototype query engine
that can be run over the World Wide Web (WWW), dem-
onstrates the feasibility of these ideas. The combination
of known and novel techniques ensures a smooth mi-
gration path from existing query engines to more ad-
vanced engines that handle coordinated index concepts.

1. Querying at Different Levels of Granularity

On-line information retrieval (IR) systems often offer
their users some means to tune the query to match the level
of granularity of the information request. For instance,
several on-line bibliographic databases, like Elsevier’sEM-
BASE (the on-line version ofExcerpta Medica), offer term
expansion. In term expansion, a term in a query is expanded
to all its narrower terms as defined in the accompanying
thesaurus (EMTREE for EMBASE); the search is performed for
each narrower term; and the union of the sets found is
returned as a result. Term expansion thus widens the set of
selected documents. In a Boolean search, still the most
popular search method by far, the familiar operators AND
and NOT serve to narrow the set of selected documents
while OR serves to widen the set.

A Boolean search is an example of combining index
terms to form larger, meaningful wholes. The traditional

library designation for this practice iscoordination (see
Foskett, 1982, for an elaborate discussion of these matters).
The termpostcoordinationrefers to the user making the
combinations while searching, as in a Boolean search.Pre-
coordination, by contrast, refers to the indexer making the
combinations while indexing the documents. For example,
the bibliographic databaseEngineered Materials Abstracts
(EMA) of Materials Information uses modifiers like “Tem-
perature effects” to obtain index terms such as “Wear rate,
Temperature effects.”

In existing systems, however, precoordination is used
sparingly if at all. This must be called a missed opportunity.
TheUnified Medical Language System(UMLS) of the U.S.
National Library of Medicine (NLM, 1997) defines about
fifty relations that may hold between index terms. Universal
Decimal Classification (UDC), a classification system that
predates on-line IR by several decades, specifies rules for
making very expressive combinations. Why not use these
techniques in IR systems?

The advantage of using relations can be illustrated by a
simple example. In a traditional IR system that employs a
Boolean search, a document about aspirin as a cure for
headache and a document about aspirin as a cause of head-
ache will both be indexed by means of the index terms
aspirin andheadache. A user who searches only one
of the two has no means to discriminate and will therefore
always have to select both in order to find the document
sought. To improve the situation, we can express the rela-
tion between the two index terms by means of what we call
coordinators. In the present example, we will employ the
coordinatorscures and causes. The document about
aspirin as a cure for headache now receives the index
term cures(aspirin, headache); the one about
aspirin as a cause of headache receives the index term
causes(aspirin, headache). Users can limit their
query to find only the documents with the relation they seek.
In other words, precision is enhanced without any apparent
effect on recall (assuming perfect indexing).

The combination of coordinated index terms with a
Boolean search and term expansion makes for a very pow-
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erful search engine. In the course of an IR project called
Condorcet, we have developed the Condorcet Query Engine
(CQE), a search engine that meets these specifications. Since
CQE combines familiar and novel search modes, it offers a
smooth migration path from traditional searching to the
present, more advanced method. TheCQE has been realized
with off-the-shelf technology, drawing on knowledge-based
techniques. It can be run on the examples used in this article
from the Condorcet WWW site at URL:

http://wwwis.cs.utwente.nl:8080/kbs/
condorcet/

We will be concerned mainly with the functional speci-
fication of CQE and the wayCQE is currently implemented.
Although CQE combines coordination with exact search,
there is no principled objection against the combination of
coordination and document ranking. We have not investi-
gated this, however.

The way coordinated terms are assigned to documents is
not at issue here. For the query engine it does not matter
how the terms were assigned. The Condorcet project inves-
tigates semiautomatic assignment of coordinated index
terms to documents but the realization of practical systems
based on this technology is not foreseen for the near future.
Currently, controlled terms are assigned by means of man-
ual indexing (for instance at Chemical Abstracts Services).
Indexers may assign coordinated terms in a way not very
different from that in which they now assign uncoordinated
terms.

The organization of the article is as follows. We first
discuss the Condorcet project (Section 2), to provide the
context within which the present work was done, followed
by a discussion of related work (Section 3). In Section 4 we
turn to the semantics and syntax of simple and coordinated
index concepts as used for indexing and for querying. Sec-
tion 5 discusses the functional specification ofCQE and
illustrates the ideas by means of a simple example. Section
6 outlines the current implementation. Section 7 closes with
a few concluding remarks.

2. The Condorcet Project

The setting of the present research is the Condorcet
project carried out at the Knowledge-Based Systems Group
of the University of Twente. We will only briefly outline the
project; more information can be found elsewhere in the
literature (van Bakel, Boon, Mars, Nijhuis, Oltmans, & van
der Vet, 1996; van der Vet & Mars, 1996) and at the
project’s WWW pages, of which the URL has been given
above.

Condorcet takes a controlled-term approach to indexing.
Although uncontrolled-term approaches currently dominate
IR research, the shortcomings of uncontrolled terms have
been identified more than ten years ago by Blair and Maron
(1985). Experiences at recent Text Retrieval Conferences
(TREC) conferences show their doubts are justified. At

TREC-3 (Harman, 1995), the best-performing systems typ-
ically reached a recall of about 30% at a precision of about
55%. This is impressive given the task and sufficient for
many applications, but not sufficient for demanding appli-
cations like the one described by Blair and Maron. It ap-
pears that sizable improvements are only possible by
switching to other, more resource-intensive strategies. The
uncontrolled-term approach is also very sensitive to the
length of the queries: TREC-4 (Harman, 1996) showed that
short queries influence performance negatively.

These results can be understood in terms of what we call
the prediction game,played by indexers and users of IR
systems. Indexers attempt to predict which terms a user will
employ when searching for a particular document. In for-
mulating a query, a user attempts to predict which terms
occur in the representation of the document he/she seeks.
The various IR approaches can all be formulated as strate-
gies to enhance predictability in both directions. Uncon-
trolled-term approaches hamper predictions by the user be-
cause natural language is simply too rich. Controlled terms
abstract from the language in which a document happens to
be written and thus reduce ambiguity. For the same reason,
they allow retrieval of documents using the same terms
irrespective of media (text, images, video, sound, or any
combination).

Condorcet’s strategy in the prediction game employs
controlled indexconceptsrather than terms, and proposes to
partially automate the indexing process to combat the tra-
ditionally high costs of indexing. The distinction between
terms and concepts is important, as anyone who has entered
keyboard input for a computer program will realize. Sup-
pose the program can handle text and perform arithmetical
calculations. When entering the string “115.95” it makes
quite a difference whether it is intended to be: (1) A number,
or (2) a piece of text that happens to consist of digits and a
period. This difference corresponds to the different under-
lying concepts. Numbers are arithmetical concepts, text
constituents are not. Numbers can be added, subtracted, and
multiplied, but text constituents cannot. Conversely, there is
no unique correct way to write a number as a text constit-
uent: The number given above might just as well have been
written as “1.15953 100” and in countless other ways
without changing the meaning of the arithmetical concept.

Condorcet exploits recent results in computer science,
and in knowledge-based systems research in particular.
Workers in these fields have developed logical languages
that allow a rich set of relations with formal semantics and
computer programs able to process expressions in such
languages (see Russell & Norvig, 1994, for a modern text-
book). Coordinated index concepts are easily handled by
these languages. Index concepts are taken from a predefined
concept system orontology,the technical term now com-
monly used (Hayes, 1985; Gruber, 1993, 1995; Mars,
1995). From an IR perspective, an ontology is like a clas-
sification system in that its concepts are subject to stringent
syntactic rules and like a thesaurus in that it is specialized
for a particular domain. Unlike classification systems and
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thesauri, however, ontologies are designed and built for
computer manipulation from the start. By making available
concepts rather than terms, ontologies help combat natural-
language ambiguities that remain even in thesauri. Ontolo-
gies also obviate the use of adjacency operators familiar
from Boolean searching: A phrase like “upper respiratory
tract” leads to asingle concept in the document represen-
tation if it leads to a concept at all.

In order to avoid biases caused by the domain chosen,
Condorcet works with two corpora of bibliographic descrip-
tions. The first is taken fromEMBASE, the other fromEngi-
neered Materials Abstracts. The index concepts for the
former corpus are taken from the UMLS (NLM, 1997); the
coordinators are a subset of the UMLS relations. The on-
tology we propose for the latter corpus lays down a precise
semantics and a formal syntax for index concepts. It is
structured in two orthogonal ways. First, it is possible to
build up concepts out of other concepts. Such concepts are
called composite. We have discussed composite concepts
elsewhere (van der Vet & Mars, 1993, 1994, 1998; van der
Vet, Speel, & Mars, 1995). Second, as for theEMBASE

corpus, index concepts can be coordinated by means of
so-called coordinators. This time, however, the coordinators
are defined by us.

This article concentrates on the functional specification
of a query engine that can handle coordinated concepts, in
addition to superconcepts and Boolean combinations. For
purposes of exposition, we will employ simplistic examples
involving concepts that we will write asaspirin,
paracetamol, headache, and a few relations, thus
hiding their actual (and possibly composite) shape from
view.

3. Related Work

The idea of using precoordination to raise precision arose
in the context of an earlier project called Sapiens (Speel,
Mars, & van der Vet, 1991) but could not be realized there
because of constraints imposed by the funding body. The
present proposal combines this idea with our work on on-
tologies. Other workers have proposed similar ideas, in
particular in the context of so-calledKL-ONE-like knowledge
representation languages (Brachman, 1977; Brachman &
Schmolze, 1985). The idea to use aKL-ONE-like language for
defining index concepts is straightforward (Brachman,
McGuiness, Patel-Schneider, Alperin Resnick, & Borgida,
1991) and elaborations have been reported in the literature.
The idea has been put to practice in theMIRTL system
(Meghini, Sebastiani, Straccia, & Thanos, 1993; Sebastiani,
1994) where, however, the issue of semantics is not treated
satisfactorily. Our approach offers a smooth migration path
from traditional Boolean searching to more advanced meth-
ods, because only the concepts are richer. By contrast, a
KL-ONE-like approach represents a break with tradition so
that its introduction in organizations will be more difficult.

A KL-ONE-like approach is particularly suited for building
and maintaining a concept hierarchy, relations included. We

are not convinced of the superiority ofKL-ONE-like systems
when it comes to actual use. For one thing, recent empirical
work on implementedKL-ONE-like systems has shown that
their performance quickly deteriorates as the hierarchy gets
larger (Speel, 1995; Speel, van Raalte, van der Vet, & Mars,
1995). This effect is less pronounced for systems whose
reasoning is incomplete, but using such a system for IR
purposes would mean that we trade increased precision for
lower recall. The observations by Speel are corroborated by
recent research within our Condorcet project. One of the
project collaborators, Jeroen Nijhuis, has implemented a
concept hierarchy in theKL-ONE-like knowledge representa-
tion language BACK (Hoppe, Kindermann, Quantz,
Schmiedel, & Fischer, 1993; Peltason, 1991).BACK certainly
makes for very convenient maintenance, but its perfor-
mance on large concept hierarchies turned out to be insuf-
ficient for deployment in real-life IR systems.

4. Coordinated Index Concepts

4.1. Semantics

There are two perspectives on the semantics of index
concepts. The easy perspective is that of the query engine.
This perspective is adopted by many workers in IR, and we
will take it, too, when discussing the query engine below.
The query engine perspective interprets any index conceptc
as the setS(c) of those documents which havec in their
representation (the “S” stands for “semantics”). In particu-
lar, for Boolean operators we have the familiar relations:

S~ci OR cj! 5 S~ci! ø S~cj!

S~ci AND cj! 5 S~ci! ù S~cj!

S~ci NOT cj! 5 S~ci! 2 S~cj!

where ‘–’ stands for asymmetric set difference.
The query engine perspective can be turned into a formal

model–theoretic semantics if wanted, but we will not do that
here. The ease of the query engine perspective comes at a
price. It assumes perfect knowledge about the representa-
tions of the documents in the collection. For obvious rea-
sons, neither indexers nor searchers have this knowledge.

The other perspective is constituted by the prediction
game. It is the proper perspective for indexers and search-
ers. Unfortunately, it involves many unclarities. Both index-
ers and searchers are said to be guided by the notion of
relevance. Relevance, however, is a subjective notion that
defies easy formalization. A process that automatically as-
signs index concepts to documents can be regarded as a
formalization of “relevance.” But in Condorcet, the process
will be semi-automatic rather than fully automatic, and even
in case of a fully automatic process, the searcher receives
only modest assistance from a process specification.
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4.2. Syntax of the Document Representation

When a documentd is indexed with the conceptc, we
will write this as the first-order assertion:

about(d, c)

meaning, roughly, “documentd is aboutc.” A document
representation can contain several conceptsc1, c2, . . ., cn.
We write such a document representation as a conjunction
of about-statements:

about(d, c1) ` about(d, c2) ` · · · `

about(d, cn)

Any index concept can be eithersimpleor coordinated.
Simple concepts are obvious:Aspirin and headache
are two examples. A coordinated concept is constructed by
relating two or more concepts by means of a so-called
coordinator.A paradigm example is:

cures(aspirin, headache)

wherecures is the coordinator. See Table 1 for a BNF-
specification of index concepts.

The conceptcures(aspirin, headache) might
end up in a document representation if the document is
about aspirin as a cure for headache. For this to happen, it
is unimportant whether the cure is called effective or worth-
less. Therefore, a coordinated index concept isnot an as-
sertion (but theabout-statement in which it occurs is).
Formally, a coordinator is a function with nominal range
and domain. The functioncures takes two index concepts
as arguments and then returns a new index concept.

4.3. Hierarchies

The ontology from which our index concepts are taken
incorporates a number of subconcept–superconcept hierar-
chies. For instance, all concepts that refer to medicines are
subconcepts of the conceptmedicine. The concept hier-
archy governs superconcept expansion by the query engine,
see Section 5.3. It is also used to enforce strong typing of
the arguments of coordinators. Thus, the coordinator
cures takes a first argument that is a subconcept ofmed-

icine and a second argument that is a subconcept of
disease. The expression:

cures(headache, aspirin)

then is ill-formed.
Here, we will mimic the concept hierarchy by a set of

assertions of the form:

subconcept(aspirin, medicine)

with an obvious interpretation. Sincemedicine is a con-
cept like any other, it can be assigned to a document (say,
when it discusses medicines in general). The concept hier-
archy can be used to increase searching facilities in a way
that will be described below.

There are limits to the strength with which typing can be
enforced. A typing scheme may come to depend on the state
of medical knowledge, so that it has to be revised each time
something new is discovered. For a somewhat contrived
example, suppose that for the coordinatorcauses we only
allow concepts of typemedicine as first argument and
concepts of typedisease as second argument. The notion
of secondary infections, diseases caused by diseases, then
necessitates a revision either of the typing scheme or of the
ontology (to introduce a new coordinator).

5. Functional Specification of the Query Engine

5.1. Syntax of Queries

In contrast to index concepts, queries may include Bool-
ean combinations and superconcepts that have to be ex-
panded. The full range of queries is specified in Table 2. We
will distinguish throughout betweenindex concepts(as de-
fined in Table 1) andsearch concepts.A search concept can
only occur in a query. It can be syntactically identical to a
simple or coordinated index concept, but it can also contain
one or more superconcepts that have to be expanded. A
search concept on its own can be a query. Search concepts
can also be combined by means of Boolean operators,
possibly nested, to form a query. Theoretically, there is no
limit to the number of nesting levels (but practically, of
course, there is).

In this section, we will discuss every kind of query and
specify what the query engine has to do. We will employ a

TABLE 1. BNF-specification of index concepts.

index_concept : :5 simple_concept u
coordinated_concept

coordinated_concept : :5 coordinator “(” simple_concepts “)”
simple_concepts : :5 simple_concept u

simple_concept “,” simple_concepts

The symbols simple_concept and coordinator are preterminals. In a concrete application, they are expanded by means of the
ontology. The ontology specifies which concepts are valid simple concepts and which are coordinators.
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small example, involving a database of document represen-
tations and a small concept hierarchy, to illustrate the query
engine’s behavior. We thus provide a functional specifica-
tion of the query engine.

5.2. Basics

The query engine first and foremost has to handle queries
of the form:

1. aspirin
2. cures(aspirin, headache)

(Queries will be numbered consecutively throughout the
present section for the purpose of cross-reference.) On
query No. 1, the query engine has to return all documents
that have the uncoordinated conceptaspirin in their
representation plus documents that haveaspirin as ar-
gument in a coordinated concept. After all, if a document is
about, say, aspirin as a cure for headache, then certainly it
is about aspirin. Query No. 2, on the other hand, only
retrieves documents that have the coordinated concept as
such in their representation. In fact, the query engine returns
sets of keys of documents, to be calledresult setshere,
rather than documents themselves. This is evident to IR
researchers and we will often use the less precise terminol-
ogy here.

A small example database is specified in Table 3. It
refers to documents by means of their unique keys. For this
database, the result sets returned by the query engine are as
follows:

1. aspirin returns 112 through 115 inclusive, 117, and
118

2. cures(aspirin, headache) returns 114 and 115

5.3. Superconcept Expansion

The concept hierarchy allows queries that involve super-
concept expansion. In traditional settings, a simple query
like medicine is ambiguous. The user may seek only
documents about medicines in general, or those plus docu-

ments about particular medicines. The distinction is made in
Condorcet by means of a special syntax. Consider the two
queries:

3. medicine
4. any(medicine)

Query No. 3 is like query No. 1 and retrieves only docu-
ments whose representation includes the conceptmedi-
cine as such. Query No. 4 is different. It instructs the
query engine to expandmedicine to the set that consists
of all of its subconcepts plus the conceptmedicine itself,
to treat each concept thus found in the manner of query No.
1, and to return the union of all sets found as the result set.

Whether a concept is a superconcept or not is entirely
determined by the concept hierarchy: If a concept occurs as
the second argument in asubconcept-statement in the
hierarchy, it is a superconcept of at least one other concept.
The search concept of query No. 3 is a superconcept in this
sense. To make the special status evident of search concepts
like the one in query No. 4, we will call such concepts
expandable superconcepts.

We have specified a small concept hierarchy in Table 4.
Combined with the example database of Table 3, the result
sets returned by the query engine are:

3. medicine returns only 108
4. any(medicine) returns all documents from the data-

base except 109

TABLE 2. BNF-specification of queries.

query : :5 search_concept u boolean_combination
boolean_combination : :5 “(” query boolean_operator query “)”
boolean_operator : :5 “AND” u “OR” u “NOT”
search_concept : :5 c_search_concept u s_search_concept
c_search_concept : :5 search_coordinator “(” s_search_concepts “)”
search_coordinator : :5 coordinator u “any(” coordinator “)”
s_search_concepts : :5 s_search_concept u

s_search_concept “,” s_search_concepts
s_search_concept : :5 simple_concept u “any(” simple_concept “)”

A query is either a search concept or a Boolean combination of search concepts. Search concepts come in two sorts: Simple search concepts (called
s_search_concept in the table) and coordinated search concepts (calledc_search_concept in the table). Simple and coordinated search concepts
are like simple and coordinated index concepts (see Table 1), except that search concepts may contain superconcepts (including super-coordinators) that
have to be expanded to all their subconcepts in searching. The preterminalssimple_concept andcoordinator are defined as in Table 1.

TABLE 3. Example database of document representations.

about(108, medicine).
about(109, headache).
about(110, paracetamol).
about(112, aspirin).
about(113, aspirin).
about(114, cures(aspirin, headache)).
about(114, causes(paracetamol, nephritis)).
about(115, cures(aspirin, headache)).
about(116, cures(paracetamol, headache)).
about(117, causes(aspirin, headache)).
about(118, cures(aspirin, carditis)).
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5.4. Combining Coordination and Superconcept
Expansion

As explained in Section 1, superconcept expansion as
specified above is already put to practice in existing systems
such asEMBASE. In our design, however, coordination can be
combined with superconcept expansion to allow searching
within a large range of granularity. Every constituent of a
coordinated search concept, including the coordinator itself,
can be an expandable superconcept. See Table 4, where the
coordinatorcoordinator is a superconcept that has the
by now familiar coordinatorscures andcauses as sub-
concepts. In a coordinated search concept with expandable
superconcepts, each occurrence of an expandable supercon-
cept is combinatorially expanded to yield all subconcepts.

We illustrate the idea by means of five queries, where the
result sets are included:

5. cures(any(medicine), headache) returns 114,
115, and 116

6. cures(any(medicine), any(disease)) returns
114, 115, 116, and 118

7. any(coordinator) (aspirin, headache) re-
turns 114, 115, and 117. For the present example, the
subconcepts found by superconcept expansion are
cures-(aspirin, headache) andcauses (as-
pirin, headache).

8. any(coordinator) (any(medicine), head-
ache) returns 114 through 117 inclusive

9. any(coordinator) (any(medicine),
any(disease)), finally, returns 114 through 118 in-
clusive

Search expressions are seen to depend on the order in which
the arguments occur in document representations. Suppose,
for an example, that there is also a coordinator called
strange. This new coordinator takes a first argument that
is a subconcept ofdisease and a second argument that is
a subconcept ofmedicine. Then, if there is a document
that hasstrange(headache, aspirin) in its repre-
sentation, query No. 7 will not find it. The problem, if it is
one, can be avoided by choosing coordinators in a consistent
way or by employing a logic that abstracts from argument
order, like a feature logic.

5.5. Boolean Search

To round off, we require that the query engine be able to
handle expressions involving Boolean operators in the usual

manner (compare Section 4.2). In this respect, our query
engine is just like any other Boolean query engine except
that, in our engine, the concepts can be any of those like in
queries 1 through 9 above. Since the idea is sufficiently
clear, we round off with a single query:

10. aspirin NOT any(coordinator) (aspirin,
any(disease)) returns 112 and 113

6. Implementation

6.1. Outline

The functional specification of the query engine leans
heavily on a Prolog-like query handler, so it comes as no
surprise that the implementation of the prototype in Prolog
turned out to be remarkably easy. See Sterling & Shapiro
(1994) for an excellent textbook on Prolog. The result,CQE,
can be inspected and run at Condorcet’s WWW site speci-
fied above.

The WWW interface contains a dialog box in which a
user can specify a search expression of the form exemplified
by queries 1 through 10 in the previous section. The search
expression is evaluated by the underlying Prolog programs
in the form of the Prolog query:

search(Query, Results).

whereQuery is a query as specified in Table 2.Results
is a variable that is unified with the result set (in Prolog
jargon: The list of keys that correspond toQuery).

The CQE consists of three modules: Aparser, a search
concept handler,and asuperconcept expander.Access to
the engine is provided by the parser, which calls the search
concept handler at appropriate places. The search concept
handler, in turn, calls the superconcept expander if it en-
counters an expandable superconcept.
Query is first handed over to theCQE parser. Employing

a Definite Clause Grammar, it analysesQuery until it
arrives at the level of what Table 2 calls search concepts,
i.e., concepts that lack Boolean operators; examples are
queries 1 through 9 of Section 5. At that point, the search
concept handler is called to retrieve the list of keys that
correspond to the search concept. The parser recognizes
Boolean combinations by means of a simple grammar of
queries that closely resembles Table 2. Nested Boolean
combinations are recognized. Currently, the order of eval-
uation is determined by parentheses. In its nodes, the parser
assembles lists of keys of documents. If a Boolean combi-
nation is recognized by a grammar rule, the definite clause
that accompanies the grammar rule performs the appropriate
set-theoretical operation (union, intersection, and asymmet-
ric set difference; compare Section 4.1.). In this way, the
parser assemblesResult, the list of keys that correspond
to Query, in the top node. In the simplest case, ifQuery
consists of a single search concept, all the parser does is
handing over the search concept to the search concept

TABLE 4. Example concept hierarchy.

subconcept(aspirin, medicine).
subconcept(paracetamol, medicine).
subconcept(headache, disease).
subconcept(carditis, disease).
subconcept(nephritis, disease).
subconcept(cures, coordinator).
subconcept(causes, coordinator).
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handler and storing the list of keys returned by the search
concept handler directly in its top node. Like any other
parser, theCQE parser fails if the query is syntactically
incorrect.

The search concept handler makes a distinction between
search concepts that are syntactically identical to index
concepts and search concepts that contain expandable su-
perconcepts. Concepts of the former kind occur as such in
document representations. Examples of queries that consist
of this kind of concepts only are queries 1, 2, and 3 in
Section 5. An inverted file directly maps such concepts onto
lists of keys. The search concept handler consults the in-
verted file to obtain a list of keys, returns the list to the
parser, and is done. Expandable superconcepts like in que-
ries 4 through 9, by contrast, are handed over to the super-
concept expander. The superconcept expander combinato-
rially constructs all search concepts that are subconcepts of
the original search concept and returns the list to the search
concept handler. The search concept handler now consults
the inverted file for each search concept in the list, deter-
mines the union of the results, and returns this to the parser.

6.2. Discussion

The CQE is intended as a prototype for demonstration
purposes only. We are confident that it can be implemented
to match the runtime performance of state-of-the-art query
engines that employ inverted files. This also holds for su-
perconcept expansion, even though this process may take a
lot of time. The time needed for superconcept expansion is
a problem. Most users of IR systems refine their queries
interactively, and small response times greatly facilitate
smooth interaction.

Unfortunately, superconcept expansion is an inherently
costly process no matter which query engine is at issue. It
involves finding all subconcepts of a given superconcept,
followed by determining the union of a possibly large
number of sets. One way to ease the problem is to trade
storage efficiency for runtime efficiency (after all, static
storage is becoming cheaper by the week). The idea is to run
the search concept handler and superconcept expander in
compile time to determine the result sets of every possible
search concept that contains expandable superconcepts. The
outcome is used to simply include all such search concepts
in the inverted file, too. This results in a very large inverted
file, which negatively affects response times, but not too
much. This method works for simple hierarchies like the
one of Table 4, but not for the very intricate hierarchies
spanned in ontologies with composite concepts (van der Vet
& Mars, 1998). Another way to ease the problem is to
implement the concept hierarchy in an imperative language
like C or Pascal, using pointer structures. This undoubtedly
gives optimal (but still possibly large) response times, but it
runs counter to established rules of good practice in soft-
ware engineering. The reason is that such data structures are
very hard to maintain. Changes in the concept hierarchy can
easily lead to errors or even inconsistencies. Within the

knowledge-based systems community, a major research ef-
fort is devoted to the development of systems that support
careful maintenance of concept hierarchies. A prime exam-
ple is formed by the class of systems based onKL-ONE-like
languages. As we have explained in Section 3, however,
they have other drawbacks.

The other drawback ofCQE is its user interface. It is
unfriendly. It also lacks a conformance checker that imme-
diately rejects a query like:

cures(headache, aspirin)

on the ground that it is ill-formed. (TheCQE instead simply
returns an empty list of keys.) One way to improve the
interface is to offer the user menus of concepts which can be
coordinated by clicking on coordinators in a menu. This
would also obviate the need for a conformance checker,
because the underlying program can be designed such that it
constructs only well-formed queries. On the other hand, and
apparently contrary to the received view (as expressed by,
for instance, Sparck Jones, 1991), we think that in particular
searchers with a scientific background will have little trou-
ble with, and may well prefer, queries written in a logical
language. Conformance checking is easy and can be added.

Another extension that has to be realized in the near
future is an interface that communicates with the outside
world according to the Z39.50 protocol.

7. Concluding Remarks

We have argued that the sparing use of precoordination
constitutes a missed opportunity. Coordinated index con-
cepts and queries allow for searching at many levels of
granularity, so that the searcher can fine-tune the search
expression to a far larger degree than hitherto perceived.
The possibilities span a range from queries more fine-
grained than simple Boolean expressions through the use of
coordinators to queries that are more coarse-grained through
the use of superconcepts which may be expanded or not at
the searcher’s discretion. Better tuning of the query will lead
to higher precision under equal circumstances.

The accompanying implementationCQE demonstrates
that the improvement can be realized now. Further steps are
taken in the Condorcet project, which has set itself the aim
of developing a system able to semiautomatically assign
coordinated index concepts to documents.
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