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On the Solutions of the Rational Covariance Extension
Problem Corresponding to Pseudopolynomials

Having Boundary Zeros

Hendra I. Nurdin and Arunabha Bagchi

Abstract—In this note, we study the rational covariance extension
problem with degree bound when the chosen pseudopolynomial of degree
at most has zeros on the boundary of the unit circle and derive some
new theoretical results for this special case. In particular, a necessary and
sufficient condition for a solution to be bounded (i.e., has no poles on the
unit circle) is established. Our approach is based on convex optimization,
similar in spirit to the recent development of a theory of generalized
interpolation with a complexity constraint. However, the two treatments
do not proceed in the same way and there are important differences
between them which we discuss herein. An implication of our results
is that bounded solutions can be computed via methods that have been
developed for pseudopolynomials which are free of zeros on the boundary,
extending the utility of those methods. Numerical examples are provided
for illustration.

Index Terms—Boundary zeros, bounded solutions, Nevanlinna–Pick in-
terpolation, poles and zeros, rational covariance extension.

I. INTRODUCTION

Recent years have seen significant advances in the theory of ana-
lytic interpolation on the open unit disc of the complex plane. Some
major results are the parametrization of all positive real rational
functions interpolating a certain positive partial covariance sequence
c0; c1; . . . ; cn, in terms of desired “spectral zeros” and the introduc-
tion of a convex optimization based approach to compute the solution
[1]–[5]. However, the convex optimization approach was originally
developed for the case where none of the spectral zeros lie on the unit
circle. The remaining case where there are spectral zeros on the unit
circle is important not only for the sake of completeness, but also due
to the fact that placing or forcing a zero on the unit circle is desirable
in the design of some filters. In this note, we derive some new theo-
retical results for this special case based on convex optimization. An
alternative treatment based on solving nonlinear equations has been
given in [6]. However, there are important new insights gained with
the current approach. For example, we are able to derive a necessary
and sufficient condition for a solution to be bounded (have no poles
on the unit circle). We also assert, and demonstrate by numerical
examples, that bounded solutions can be computed using methods that
have been developed for pseudopolynomials free of zeros on the unit
circle. Hence, those earlier algorithms can be used as complement to
the algorithm of [6]. This could be advantageous in situations where
one knows in advance that the solution is bounded and in view of the
current lack of theoretical convergence results for the latter algorithm.
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More recently in [7], a theory of generalized interpolation with a
complexity constraint has emerged as an extensive generalization of
the convex optimization approach first presented in [3]. The focus of
[7] is on theoretical development (rather than numerical development
as in [6]) and applies to a general, possibly abstract, class of interpo-
lation problems with a complexity constraint (a generalization of the
notion of degree constraint). In particular, it covers the case where the
parametrizing pseudopolynomial has zeros on the unit circle. Our anal-
ysis, which is also based on convex optimization, proceeds in a different
manner from [7]. In Section V, we discuss important differences be-
tween our work and [7].

This note is motivated by the problem of approximation of stochastic
systems with noncoercive, possibly nonrational, spectral densities
which arise in the study of wind gust, turbulence, laser scintillation
[8], and adaptive optics [9]. This is discussed in Section V.

II. NOTATION AND DEFINITIONS

In this section, we introduce the main notations and definitions which
are used throughout the note.

• A and @A denote the closure and boundary of a set A, re-
spectively.

• , , , and denote the set of real numbers, complex num-
bers, the open unit disc = fz 2 : jzj < 1g and the unit
circle, respectively.

• col(a1; . . . ; an) = [a1 . . . an]
>.

• M� denotes the conjugate transpose of a complex matrixM .
• f� denotes the parahermitian conjugate of a complex func-

tion f , defined by f�(z) = f(z��1)�.
• C denotes the Carathèodory class ff 2 H : <ff(z)g �

0 8z 2 g and C+ denotes the subset ff 2 H :
ess inf
z2

<ff(z)g > 0g of C where H denotes the set

of functions holomorphic in .
• H1 denotes the Hardy class of functions in H which are

essentially bounded on .

By a pseudopolynomial we mean a complex function of the form
f(z) = a0 + n

k=1
a�kz

�k + akz
k , where 0 � n < 1, an 6= 0

and (a0; a1; . . . ; an) 2 � n. We say that n is the order of the
pseudopolynomial f (the order is zero if f is a constant function).

(n;A) denotes the set of all pseudopolynomials of order at most n
with (a0; a1; . . . ; an) 2 �An where A � . We induce a topology
on this set by the maximum norm: kfk1 = max

z2
jf(z)j.We also define

+(n; A) to be the set of all elements of (n;A) which are strictly
positive (> 0) on .

III. MATHEMATICAL PRELIMINARIES

A. The Rational Covariance Extension Problem

In this section, we will formally define the rational covariance ex-
tension problem (RCEP).

Definition 1: A sequence of complex numbers c0; c1; . . . ; cn (with
c0 2 ) is said to be a partial covariance sequence (PCS) if the Toeplitz
matrix T = [cj�i]

n+1

i;j=1
, with c�jij = c�jij, is positive definite.

Problem 2 (RCEP): Given a PCS c0; c1; . . . ; cn (n � 1), find all
rational functions f 2 C of McMillan degree less than or equal to n
such that the first n + 1 coefficients of the Taylor series expansion of
f about 0 is (1=2)c0; c1; . . . ; cn.

The RCEP basically adds a new requirement of degree bound to the
classical Carathéodory extension problem which is traditionally solved
by Schur’s algorithm [10]. A drawback of Schur’s algorithm is that, in
general, it does not give a convenient parametrization of solutions of a
bounded degree. The Carathéodory extension problem is related to the

classical Nevanlinna–Pick interpolation problem which was solved by
Nevanlinna by an algorithm similar to Schur’s [11], sometimes known
as the Nevanlinna–Schur algorithm.

B. Results on the RCEP

In a series of papers [1], [2], [4], a complete parametrization of all
solutions of the RCEP has been established. We state a pertinent result.
Theorem 3: For a given PCS and any polynomial � 6= 0 of

degree � n with roots in n and normalized by � (0) = 1, there
exists a unique pair of polynomials (�; �) of degree � n such that
�(0) > 0, �+� has all its roots in n , the pair satisfies the relation

��� + ��� = �2��� (1)

for a fixed � > 0, and f = �=� satisfies the requirements of the RCEP.
Remark 4: This theorem is stated slightly differently from [4, Th.

2]. We have added the requirement �(0) > 0 and � fixed so that the
pair (�; �) is unique. In [4], it is implicit that the uniqueness of (�; �)
is in the equivalence class of graph symbols.

One may also equivalently state the parametrization in terms of ele-

ments d 2 + (n; )nf0g, where d = �2���. Based on the theorem,
we can state a more specific problem, the particular rational covariance
extension problem (PRCEP).
Problem 5 (PRCEP): Given a PCS co; c1; . . . ; cn (n � 1) and a

pseudopolynomial 	 2 + (n; )n f0g, find the rational function
f = a=b 2 C of McMillan degree � n such that the first n+1 coeffi-
cients of the Taylor series expansion of f about 0 is (1=2)co; c1; . . . ; cn
and ab� + ba� = 	.

Methods to compute the solution of the PRCEP for any given real
valued PCS c0; c1; . . . ; cn and pseudopolynomial	 2 +(n; ) (i.e.,
	 is free of roots on ) is given in [3], [5], and was adapted to solve the
Nevanlinna–Pick interpolation problem with degree constraint in [12].
However, a specialized aspect of the theory which has received rela-
tively less attention is the case of solving the PRCEP when the pseu-
dopolynomial has zeros on the boundary. In this work, we extend the
method of [3] and [5] to the case where the pseudopolynomial has zeros
on the boundary. It turns out that this leads to interesting new theoret-
ical insights, including a necessary and sufficient condition for a H1

solution, as shown in the next section. An alternative treatment of the
problem was recently given in [6] based on solving nonlinear equa-
tions. There the orientation is toward computation of any real solution
of the RCEP.

IV. MAIN RESULTS

In this section, we derive some properties of the solutions of the
RCEP when the parametrizing pseudopolynomial has zeros on . In
particular we show a necessary and sufficient condition for a solution
to be in H1 and establish sequential continuity of the map from 	 to
the minimizer of a certain functional 	 (to be defined below).

Define the mapping Q : � n ! (n; ) by

Q(q0; q1; q2; . . . ; qn)(z) = q0 +

n

k=1

1

2
(q�kz

�k + qkz
k): (2)

Clearly, Q is a bijection.
Remark 6: For shorthand, we shall write the integral

(1=2�)
�

��
f ei� g ei�

�
d� as hf; gi.

For any 	 2 +(n; )n f0g we consider the functional 	 :

Q�1 +(n; ) ! [ f1g defined by

	 (q) = < c�q � h	; logQ (q)i : (3)
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Note that 	 can be viewed as an extension to Q�1( +(n; )) of
the functional ' that was defined in [5, eq. (4.1)] for the special case
where	 2 +(n; ) and c0; c1; . . . ; cn is real-valued. It then follows
by close inspection of the proofs that most results in [5] can be easily
extended to the current setting where c0; c1; . . . ; cn is complex-valued

and 	 2 +(n; )nf0g. In particular, we state the analogues of [5,
Lemma 4.2, Lemma 4.3, Prop. 4.6] in the following theorem.

Theorem 7: 	 has the following properties for any 	 2

+(n; )nf0g.

• 	 is finite and continuous at any q 2 Q�1 +(n; ) ,
except at zero. The functional is infinite, but continuous, at
q = 0. Moreover, 	((1 � t)q0 + tq1) is a C1 function

w.r.t. t for any q0; q1 2 Q�1 +(n; ) .
• 	 is strictly convex on the closed, convex domain

Q�1 +(n; ) .
• For all r 2 , �1

	 (�1; r] is compact. Thus 	 is proper
(i.e., �1

	 (A) is compact whenever A is compact) and
bounded from below.

• The functional 	 has a unique minimum on

Q�1 +(n; ) .

We now state the first result on a solution of the RCEP corresponding
to a pseudopolynomial having zeros on .

Theorem 8: If qmin 2 Q�1 +(n; ) is a minimum for 	 then

the solution of the PRCEP is: f = a=b where bb� = Q (qmin) and
ab� + ba� = 	. Conversely, suppose that f = a=b is the solution
to the PRCEP with b being an antistable polynomial (i.e., having roots
strictly in

c
) and ab�+ba� = 	. Then qmin = Q�1 (bb�) is a unique

minimum for 	.
Proof: By inspection of the proofs of [5, Th. 4.7 and 4.8] and

using the directional derivative to replace the ordinary derivative, it
follows those proofs remain valid if the polynomial� = zn+�1z

n�1+

� � �+�n�1z+�n of degree n defined in [5, eq. (2.18)] is complex and
not Schur (i.e., having roots in ), but merely stable (i.e., having roots
in � ). Also note that ��� can be a pseudopolynomial of degree less
than n if 9m satisfying 1 � m � n, such that �k = 0 for all k � m.
The main idea is that the minimizer of 	 may be an interior point even
when 	 = ��� 2 @ + (n; ) n f0g.

The minimizer of 	 may then be found by a Newton descent type
algorithm which has been outlined in [3], [5], and [12]. We illustrate
this in the following example.

Example 9: Let the given partial covariance sequence be
f0:2115; 0:0728;�0:0396g. We choose the pseudopolynomial
	(z) = z + 2 + z�1 which has two zeros on the unit circle,
i.e., both at z = �1, and seek a solution of the RCEP of de-
gree 2. By using a Newton gradient descent algorithm we obtain
qmin = col (8:6250;3:5000;2:0000). It can be checked that qmin is

in the interior of Q�1 + (n; ) , and the solution of the PRCEP is

f(z) = (0:09877 + 0:1111z + 0:01234z2)=(8 + 2z � z2).
An interesting question now is: What could happen if the minimum

of 	 lies on the boundary of Q�1 +(n; ) ? We first look at an
insightful example.

Example 10: Consider the Carathèodory function

f(z) =
1

2

1 + z

2

1� z

2

: (4)

The associated PCS is 1; 1=2; 1=4; . . .. We choose the pseu-
dopolynomial 	(z) = z + 2 + z�1 having a double
root at z = �1. By Newton gradient descent we find

qmin � col(2; 0:66749;�1:3324). The roots of Q (qmin) are
f2:0013;�1:0061;�0:99396; 0:49967g and the approximate solu-
tion is f̂ = (0:3326+0:4978z+0:1652z2)=(2:0135+0:9952z�z2).
Note how two roots of Q(qmin) are close to z = �1. Assuming
that were it not for numerical discrepancies that both roots would
be exactly �1 and cancel the two corresponding roots of 	,
we find:	(z)=Q (qmin) (z) = 1:5001=(2:5010� (z + 1=z))

which is the power spectral density of the Carathèodory function
f̂(z) = 0:49948((1 + 0:4997z)=(1� 0:49967z)), a function close
to the true function f given in (4). Observe that we have deliberately
chosen 	 such that qmin is intuitively expected to lie on the boundary,
in contrary to Example 9 in which qmin is in the interior. To see this,
note that f maybe written as f = a=b with a = (1 + z=2)(z + 1)

and b = 2(1 � z=2)(z + 1) so that a�b + b�a = 	 and b�b share a
common double root at z = �1. In fact, the purpose of this example
is to illustrate a case where qmin is at the boundary and also seems
to be a stationary point, and to motivate the next theorem. We will
consider this example again in Section V.
Remark 11: When qmin is close to or on the boundary, numerical

problems can arise when Newton descent is used to find qmin. To im-
prove the situation for qmin close to the boundary, the optimization
problem can be reformulated and numerically solved by a continuation
method [13]. In certain circumstances, the same also applies when qmin

is at the boundary. This is discussed in Section V.
As it turns out, the generality of the observation in Example 10 can

be formally proven. It is the content of the next theorem.
Theorem 12: The solution of the PRCEP is in H1 if and only if
	 has a stationary point in the interior or boundary of its domain.

If Q (qmin) 2 @ +(n; ) and qmin is stationary, then every root of
Q (qmin) on will also be a root of 	 on , and the solution of the
PRCEP is of order less than n. In this case the solution is given by:
f = a=b where bb� = Q+ (qmin), ab� + b�a = ~	, and

1) Q+ (qmin) 2 +(n; ) denotes the pseudopolynomial that
is left behind after all factors z�1 � ei� corresponding
to the roots of Q (qmin) on have been removed from
Q (qmin);

2) ~	 denotes the pseudopolynomial that is left behind after all
factors z�1 � ei� corresponding to the roots of Q (qmin)

on have been removed from 	.

Proof: See the appendix .
Therefore, stationarity of the minimizer of 	 is essentially a trade-

mark for the boundedness of the solution: If it is stationary then the so-
lution is bounded, otherwise it is not. We may also show the following
sequential continuity result.

Theorem 13: Let 	 2 + (n; )nf0g and let

f	kgk�1 � + (n; )nf0g be a sequence such that
lim
k!1

k	�	kk1 = 0. If qmin = argmin

q2Q ( (n; ))
	 (q) and

qmin;k = arg min

q2Q ( (n; ))
	 (q), then lim

k!1
kqmin � qmin;kk = 0

and lim
k!1

kQ (qmin)�Q (qmin;k)k1 = 0.

Proof: See the Appendix .
Although one may view the last theorem as a corollary to [6, Th. 3.1]

when 	 and the PCS c0; c1; . . . ; cn are real, it is an interesting result
in its own right. Notice that its proof is based solely on properties of
	 (see Theorem 7) and is independent of Theorem 3. On the other

hand, [6, Th. 3.1] was derived based on Theorem 3. In fact, we claim
that it is possible to show the converse: Theorem 3 and [6, Th. 3.1]
can be derived from Theorems 7 and 13. This interesting ramification
of Theorem 13 presents an alternative analysis of the RCEP, including
unbounded solutions. The complete treatment is given in a separate
work [14].
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V. DISCUSSION, EXTENSIONS, AND APPLICATION OF RESULTS

Our convex optimization based approach is reminiscent of the ex-
tensive and abstract generalization of [3] and [5] given in [7], but it
may be inspected that the two treatments are not identical and there
are two important differences which we shall now discuss. First, the
objectives of the two works are different. In [7], the objective is to ex-
tend the convex optimization technique to generalize Theorem 3 to the
setting of a general class of interpolation problems with a so-called
complexity constraint, whereas in the present work we do not attempt
to rederive Theorem 3, but rather to use the theorem and/or properties
of 	 when 	 has zeros on (to the best of our knowledge, we are
the first to do this) to derive Theorems 8, 12, and 13. Second, our treat-
ment is centered on analysis of boundary properties of the functional
	 when 	 may have zeros on . Although a generalized version of
	 was formulated in [7], its properties when 	 has zeros on were

not investigated. Instead, an alternative route was taken whereby the
case 	 2 @ +(n; )nf0g is treated via analysis of a functional 	

(see [7, eq. (2.16)]) defined on a set of Schur functions (i.e., functions in
H bounded in magnitude by one) satisfying a certain constraint. In par-
ticular, it has been shown that the unique extremal point of 	 (which,
in this case, is a maximizer) is always stationary (see the penultimate
part of the proof of [7, Th. 1] on uniqueness of a solution [7, p. 13]).
On the other hand, this is not the case for 	. As we have shown, the
extremal point of 	 (which is a minimizer) need not be stationary. In
fact, it is precisely this unique property of 	 over 	 which led us
to a characterization of H1 solutions of the RCEP as stated in The-
orem 12. Continuing further, we note that for 	 positive definite on ,
	 is obtained from a transformation of the functional 	, the dual of
	 (see [7, eq. (2.14)]). To derive our results within the development

of [7], some results relating 	 and 	 need to be established for 	
nonnegative but not positive definite. Then one should show that the
maximizer f of 	 satisfies ess inf

z2

j1 + f(z)j > 0 (this is equivalent

to the RCEP having a bounded solution) if and only if the minimizer
of 	 is stationary. Clearly, these relations have not been considered
in [7]. In light of these facts, our results do not obviously follow from
[7]. On the contrary, it may be possible to generalize them to the set-
ting of [7] by further analysis of the generalized version of 	. Indeed,
we should keep in mind that our results are specialized to the RCEP,
while those of [7] apply to a more general, possibly abstract, class of
interpolation problems with a complexity constraint.

We now discuss some practical implications of Theorems 8 and 12.
From Theorem 8, we see that in the case where 	 has zeros on and
the minimizer of 	 is in the interior of Q�1( +(n; )) and away
from the boundary, the solution can be computed rather quickly and
easily by Newton descent. We have illustrated this in Example 9. When
the minimizer is close to the boundary, the continuation method of [13]
can be applied for good numerical results. For cases where Theorem 12
is applicable, it ought to also be possible to compute solutions by the
continuation method. Example 10 shows that even a standard Newton
descent method can yield an approximate solution, albeit a crude one.
Therefore, it is reasonable to expect the continuation method to give
good numerical results for such cases, or cases almost like it (i.e., al-
most cancellations of insignificant poles lying close to the boundary).
Indeed, to support this claim we rework Example 10 using the contin-
uation method.

Example 14: Let c0, c1, c2 and 	 be as given in Example 10. Ap-
plying the continuation method with step length parameter " = 0:01
(see [13, p. 1196]) yields b(z) = 1:1547 + 0:5773z � 0:5774z2,
a(z) = 0:5774 + 0:8660z + 0:2887z2, and the corresponding so-
lution is

f(z) =
0:5774 + 0:8660z+ 0:2887z2

1:1547 + 0:5773z� 0:5774z2
:

Therefore, it could be a worthwhile first step to find a solution by the
continuation method of [13]. Since convergence is better understood
for that method, this can be beneficial because at present there are no
theoretical convergence results for the more general numerical algo-
rithm of [6]. Moreover, the Hessian of the modification of 	 given
in [13] can be inverted in a fast and efficient manner because it has a
nice Toeplitz+Hankel (T+H) structure. This kind of structure does not
seem to be present in the latter algorithm. There can also be circum-
stances where one wants to place zeros of 	 on , yet one has a priori
knowledge that the solution is bounded or is only interested inH1 so-
lutions. An example of such a circumstance can be found in [15] and
[14]. Thus, our results have extended the utility of the earlier methods
of [5], [13].

Our work has largely been motivated by approximation of stochastic
systems with noncoercive (i.e., can have zeros on ), possibly nonra-
tional, spectral densities arising in practice. These processes appear in
applications such as aircraft control under the influence of turbulence
[8] and control of adaptive optics [9]. Specifically, we are interested
in new algorithms for computing canonical spectral factors of spectral
densities of the type mentioned above. Many spectral factorization al-
gorithms, such as the Bauer and Schur algorithms, which are based on
Cholesky decomposition of a semi-infinite Toeplitz matrix [16], [17]
are known to converge slowly when the spectral density has zeros close
to or on . Based on solutions of the RCEP (which can be specifically
chosen to correspond to pseudopolynomials with roots on ), a new
approach to spectral factorization has been proposed in [15], [18].

The main results of this note are readily extendable to the Nevan-
linna–Pick interpolation problem with degree constraint by suitable
modifications (see [12], [19]) of the proofs presented in this note.

VI. CONCLUSION

Our main contributions in this note are some new theoretical results
on solutions of the RCEP corresponding to	 2 @ +(n; )nf0g, i.e.,
the case where the parametrizing pseudopolynomial has zeros on .
In particular, we show that for a solution to be in H1, it is necessary
and sufficient that the minimizer of 	 is stationary. Furthermore, we
have shown that some solutions for this case can be computed using
methods that have been developed for 	 which is free of zeros on ,
extending the utility of those methods. We also establish the sequential
continuity of a certain map based solely on the properties of 	 and
independently of the result on complete parametrization of all solutions
of the RCEP. However, full exploitation of this result will be given in
[14].

We have also discussed differences between our work and [7] which
is also based on convex optimization but applies to a more general class
of interpolation problems. We point out some interesting differences
between the functionals 	 and 	, which are the main object of the
analysis of, respectively, our note and [7], and argue that our results do
not obviously follow from [7] and that it may be possible to generalize
them to the setting of [7].

Although we have specifically treated the RCEP, the results pre-
sented here readily extends to the Nevanlinna–Pick interpolation with
degree constraint as described in [12].

APPENDIX

Proof of Theorem 12

We need only prove the initial statement that the solution of the
PRCEP is bounded if and only if 	 has a stationary point in the in-
terior or boundary of its domain. The remaining statements of the the-
orem all follow from the proof of the initial statement. Let q be such
that Q(q) 2 @ +(n; ) and such that all the roots of Q(q) on are
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also the roots of 	 on . Let the set of all q 2 n+1 satisfying the pre-
vious two conditions be denoted byMn;	. First we show that for any
q 2Mn;	 [Q�1( +(n; )), the directional derivatives of 	 exist

in all feasible directions. To this end, for any q0 2 Q�1( +(n; ))
we define the directional derivative

r q �q (q) = lim
h#0

	 (q + h(q0 � q))� 	(q)

h
:

It is easy to check that if q + h(q0 � q) 2 @ +(n; ) for all 0 �
h < � and some � > 0, then Q(q) and Q(q0) must share a root on

. Since all roots of Q(q) on are also roots of 	 on , it follows
that 	=Q(q+ h(q0 � q)) is uniformly bounded a.e. on for all q0 2
Q�1( (n; )) and for all h > 0. From the mean-value theorem of
calculus, it follows that

	(ei�)
logQ(q + h(q0 � q))(ei�)� logQ(q)(ei�)

h

=
	(ei�)Q(q0 � q)(ei�)

Q(q)(ei�) + �(h; ei�)Q(q0 � q)(ei�)

where 0 < �(h; ei�) < h, for all � except for a finite number for
which Q(q)(ei�) = 0. Since the right hand side of the last equality is
uniformly bounded for almost all (h; ei�) 2 [0; 1]� , we have that

lim
h#0

	;
logQ(q + h(q0 � q))� logQ(q)

h

= 	; lim
h#0

logQ(q + h(q0 � q))� logQ(q)

h

by the Lebesque Dominated Convergence Theorem [20]. Therefore,
for any q = col (q0; . . . ; qn) 2 Mn;	 [ Q�1( +(n; )) and any

q0 = col (q00; . . . ; q0n) 2 Q�1( +(n; )) we get

rq �q (q)=< c�(q0�q)�

n

k=0

	

Q(q)
; gk� (q0k�qk)

=<

n

k=0

ck �
	

Q(q)
; gk

�

(q0k � qk)

where gk(z) = zk. Furthermore, we also observe that the directional
derivatives do not exist in any feasible direction for all q =2 Mn;	 [

Q�1( +(n; )).
Now, we are ready to prove necessity. By Theorem 3 and since

the solution of the PRCEP is bounded by hypothesis, we know that

there is a unique 
 2 +(n; ) such that h	=
; gki = ck , for
k = 0; 1; . . . ; n andQ�1(
) lies inMn;	[Q

�1( +(n; )). Setting
q = Q�1(
) then we have that r q �q(q) = 0. Hence, that partic-
ular choice of q is a stationary point and it is the unique minimizer of
	. This establishes the necessity.
We proceed to prove sufficiency. Let q be a stationary point of 	

by letting r q �q (q) = 0 for all q0 2 Q�1( (n; )). Then q 2

Mn;	 [ Q�1( +(n; )), otherwise no directional derivative will
exist at q, and we have

<

n

k=0

ck �
	

Q(q)
; gk

�

(q0k � qk) = 0: (5)

Now, for any q 2 Mn;	 [ Q�1( +(n; )) we may write Q(q) =
Q+(q)Q0 (q) whereQ0(q) is a pseudopolynomial with all its roots on

or is identically equal to 1 if no such roots exist, while Q+(q) is
a pseudopolynomial which does not have roots on the boundary. Be-
cause all the roots of Q(q) which are on the boundary are also roots
of 	 by hypothesis, we may write 	 = ~	(q)Q0(q), where ~	(q) is a

pseudopolynomial defined by ~	(q) = 	=Q0(q). After inserting the
two identities into (5), we obtain

<

n

k=0

ck �
~	(q)

Q+(q)
; gk

�

(q0k � qk) = 0: (6)

However, (6) holds for all q0 2 Q�1( (n; )). Therefore, by inspec-
tion (e.g., see proof of [19, Lemma 5.1]) we must have

ck �
~	(q)

Q+(q)
; gk = 0()

~	(q)

Q+(q)
; gk = ck

for k = 0; 1; . . . ; n. Therefore, there is a unique Carathèodory function
f such that (f + f�)(e

i�) = ~	(q)(ei�)=(Q+(q)(e
i�)), f satisfies

the interpolation constraints, and f is bounded. Hence, we have shown
sufficiency. Note the cancellation that takes place if Q(q) has roots on
the boundary. In this case the solution f will be of degree less than n.

Proof of Theorem 13

For r > 0, define the compact sets Br(qmin) =
fq 2 � n : kq � qmink � rg and Sr(qmin) = @Br(qmin). Also

define the compact sets Xr(qmin) = Br(qmin) \ Q�1 + (n; )

and Yr(qmin) = @Xr(qmin). We prove that given any � > 0 small
enough such that 0 =2 X�(qmin), there is a K (�) � 1 such that
qmin;k 2 B�(qmin) 8k > K (�). First, we observe that

j 	(q)� 	 (q)j � hj	�	kj ; jlogQ (q)ji

� k	�	kk1 h1; jlogQ (q)ji; if q 6= 0

where 1 : z 7! 1 8z2 . If we defineD = max
q2X (q )

h1; jlogQ (q)ji,

we have that 8q 2 X�(qmin)

j 	(q)� 	 (q)j � D k	�	kk1

or, more explicitly

	(q)�D k	�	kk1 � 	 (q)

� 	(q) +D k	�	kk1 : (7)

For any r > 0, define Zr(qmin) = Yr(qmin) if qmin 2

Q�1( +(n; )) and Zr(qmin) = Sr(qmin) \ Q�1( +(n; ))

if qmin 2 @Q�1( +(n; )). Notice that Zr(qmin) is a compact set.
Choose any � > 0 small enough such that 0 =2 X�(qmin) and such that
Z�(qmin) � Q�1( +(n; )) if qmin 2 Q�1( +(n; )). Next, for
any q 6= qmin define the unit vector uq = (q � qmin)=kq� qmink,
and for any q 2 Z�(qmin) and any 0 < d < � define the func-
tions L1(q; d)= 	(q)� 	(qmin + duq) and L2(q; d)= 	(qmin +
duq)� 	(qmin). Clearly, from the strict convexity of 	,L1(�; d) and
L2(�; d) are continuous, positive-valued (> 0) functions on Z�(qmin).
Furthermore, define �i(d)= min

q2Z (q )
Li(q; d) for i = 1; 2. Observe

that �i(d) > 0 for i = 1; 2, for if it is not then 9q 2 Z�(qmin) such
that L1(q; d) = 0 and/or L2(q; d) = 0, contradicting the fact that they
are positive-valued on Z�(qmin). Let us now choose a fixed d 2 (0; �).
Choose Kd (�) (note the dependence on d) large enough such that
k	 � 	kk1 < minf�1(d); �2(d)g=3D for all k > Kd (�), then
using (7) one easily gets that for any q 2 Z�(qmin)

	 (qmin) < 	 (qmin + duq) < 	 (q) 8k > Kd (�) : (8)

From (8) and the strict convexity of 	 for all k, it follows that
qmin;k 2 X�(qmin)nZ� (qmin) for all k > Kd (�).

Summarizing, we have shown that for every � > 0 such that
0 =2 X�=2 (qmin), 9K (�=2) such that for all k > K (�=2),
qmin;k 2 X�=2 (qmin) is in the interior of B�(qmin), or in other words,
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lim
k!1

kqmin � qmin;kk = 0. From the last result, it follows immedi-

ately that lim
k!1

kQ (qmin)�Q (qmin;k)k
1

= 0. This concludes the

proof.
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Adaptive Output-Feedback Tracking of Stochastic
Nonlinear Systems

Hai-Bo Ji and Hong-Sheng Xi

Abstract—We address the adaptive stabilization and tracking problems
for a class of output feedback canonical systems driven by Wiener noises
of unknown covariance. Filtered transformation and backstepping tech-
niques are employed in the stochastic control design. We obtain two adap-
tive controllers that guarantee the global stability in probability for van-
ishing perturbations or the input-to-state stability in probability for non-
vanishing perturbations respectively. The tracking error can converge to a
small residual set around the origin in the sense of mean quartic value.

Index Terms—Stability in probability, stochastic adaptive stabilization,
stochastic disturbance attenuation.

I. INTRODUCTION

After a success of constructive control design for deterministic sys-
tems, stochastic nonlinear control has attracted attention recently. Some
nonlinear control design methods such as Sontag’s stabilization for-
mula, backstepping techniques and nonlinear optimality were extended
to the case of stochastic nonlinear systems [1]–[3], [8], [13], where
the exogenous disturbances are Wiener noises. The main technical ob-
stacle in the Lyapunov design for stochastic systems is that the Itô sto-
chastic differentiation involves not only the gradient but also the higher
order Hessian term. Pan and Basar [13] were the first to solve the sto-
chastic stabilization problem for the class of strict-feedback systems
based on a risk-sensitive cost criterion, their result guarantees global
asymptotic stability in probability. Deng and Krstić [1], [2] suggested a
quartic Lyapunov function to give a backstepping design for stochastic
strict-feedback systems and then extended the results on inverse op-
timal control to the stochastic case. A continuation of these contri-
butions is the adaptive stabilization [6] of the stochastic parametric
strict-feedback systems in the presence of uncertain noises, where the
unknown parameters are both system parameters and a reduced covari-
ance parameter.

Apart from the strict-feedback model mentioned above, a class of
systems in the output feedback canonical form proposed by Marino
and Tomei is another well-known model. Geometric conditions which
characterize the class of nonlinear systems that can be transformed into
this form were given in [11]. It was shown in [10] and [12] that the
class of systems which are globally stabilizable by output feedback is
not much broader than this canonical form. The filtered transforma-
tion is the key technique to design an adaptive output feedback control
for these systems. Krstić et al. employ another filtered transformation
(K-filters) and use tuning functions scheme to revamp the control de-
sign.

In this note, we address the output feedback global adaptive stabiliza-
tion and tracking problem for the output-feedback systems disturbed
by Wiener noise of unknown covariance. For the case of vanishing
perturbations, that is, the equilibrium point is preserved in the pres-
ence of perturbations (noises and other uncertain terms), our goal is
the adaptive stabilization in probability. For the case of nonvanishing
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