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� This paper studies the Crank–Nicolson discretization scheme for abstract differential
equations on a general Banach space. We show that a time-varying discretization of a bounded
analytic C0-semigroup leads to a bounded discrete-time system. On Hilbert spaces, this result can
be extended to all bounded C0-semigroups for which the inverse generator generates a bounded
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1. INTRODUCTION

Consider the abstract differential equation

ẋ(t) = Ax(t), x(0) = x0, (1.1)

on a Banach space X . Hence x(·) is a Banach space valued function. This
equation may represent a partial differential equation. Throughout this
paper, we assume that (1.1) possesses for every initial condition x0 a unique
(weak) solution, which depends continuously on this initial condition.
In other words, we assume that A is the infinitesimal generator of a C0-
semigroup; see for more information [6, 9, 15, 18, 26].

When solving the differential equation, some form of approxi-
mation/discretization will be necessary. The Crank–Nicolson scheme

Address correspondence to Hans Zwart, Department of Applied Mathematics, University of
Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; E-mail: h.j.zwart@math.utwente.nl

717



718 S. Piskarev and H. Zwart

makes the following approximation, see for example [2, 22]. The time
derivative is replaced by

ẋ(t) ≈ x(t + �) − x(t)
�

, (1.2)

whereas the state at time t is replaced by

x(t) ≈ x(t + �) + x(t)
2

, (1.3)

where � is the time-step. Replacing the expression in (1.1) by the above
approximations gives

x(t + �) =
(
I − �

2
A

)−1(
I + �

2
A

)
x(t),

where we have assumed that
(
I − �

2A
)
is invertible. Thus by defining t = n�,

with n ∈ �, we obtain the difference equation

xd(n + 1) = Adxd(n), x(0) = x0, (1.4)

with Ad = (
I − �

2A
)−1(

I + �
2A

)
.

We have derived the above difference equation using ideas from
numerical analysis. However, the same operators appear when applying the
Cayley transform to the operator A, see, for example, Gomilko [12] or
Kalton et al. [16]. Furthermore, this is also a well-known equation in system
theory, see, for example, Chapter 12 in [23].

In numerical analysis, the approximation scheme (1.4) is widely used,
because if A is a matrix, then the solutions of (1.1) are bounded/stable
if and only if the solutions of (1.4) are bounded/stable. This result is
independent of the time step �. Of course, the approximation error
x(n�) − xd(n) will depend on this time step. For dissipative operators A on
a Hilbert space, the same result holds. On a general Banach space, there
are examples showing that (1.1) can have bounded solutions, whereas the
norm ‖An

d ‖ is unbounded in n� Thus an interesting and open problem
is which conditions on A and X are necessary and sufficient such that
the Crank–Nicolson discretization has the same stability properties as the
original equation (1.1).

From the independent papers [3, 14] with different key ideas, we have
the following result.

Theorem 1.1. Let A and A−1 each be the infinitesimal generator of a bounded
semigroup on the Hilbert space H . Then the operator Ad := (I + A)(I − A)−1 is
power bounded, that is, supn∈� ‖An

d ‖ < ∞.
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It is clear that (after re-scaling), this precisely gives that the Crank–
Nicolson scheme has in Hilbert spaces the property that all solutions of
(1.4) are bounded provided the solutions of (1.1) and of ẋ(t) = A−1x(t)
are bounded.

One of our questions is whether this results still holds when the time
step �, see (1.2) and (1.3), is nonconstant. By using the Lyapunov approach
as in Guo and Zwart [14], we show the following:

Theorem 1.2. Let A and A−1 each be the infinitesimal generator of a bounded
C0-semigroup on the Hilbert space H . Consider the time-varying difference equation

xd(n + 1) =
(
I − �n

2
A

)−1(
I + �n

2
A

)
xd(n), xd(0) = x0� (1.5)

If 0 < inf �n ≤ sup �n < ∞, then the solutions of (1�5) are bounded in n.
Furthermore, if the solutions of (1�1) are stable, that is, limt→∞x(t) = 0 for all x0,
then under the above conditions on �n the same holds for the solutions of (1.5).

The proof of this theorem will be presented in Section 2. From
the above two theorems two questions arise. Firstly, is A−1 always the
infinitesimal generator of a bounded C0-semigroup if A generates a
bounded C0-semigroup? Secondly, do Theorems 1.1 and 1.2 hold in a
general Banach space? For analytic C0-semigroups, one can find positive
answers, see [7, 28] for the first question and [5, 20] for the second
question. We present a new and very simple proof of the following
theorem, see also [21].

Theorem 1.3. Let A be the infinitesimal generator of a bounded analytic C0-
semigroup on a Banach space X . Consider the time-varying difference equation
(1�5). If 0 < inf �n ≤ sup �n < ∞, then the solutions of (1�5) are bounded in n.

Solving by induction the difference equation (1.5), we see that the state
at time n is given by

xd(n) =
( n−1∏

k=0

R0(k)
)
xd(0),

where R0(k) = (
I − �k

2 A
)−1(

I + �k
2 A

)
. Hence ‖xd(n)‖ is uniformly bounded

(in n) if and only if the operators
∏n−1

k=0 R0(k) are uniformly bounded.
One sees that the operators R0(k) mutually commute. From this the
following arises as a natural question.

Let a sequence of operators �R(j)�j∈� be such that

• they mutually commute, that is, R(j)R(k) = R(k)R(j),
• there exists an M such that supj ,k∈� ‖R(j)k‖ ≤ M .
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Are these conditions sufficient for the sequence ‖ ∏k
j=1 R(j)‖ to be

uniformly bounded?
Unfortunately, the answer to this question is no. Consider, for instance,

the following example. As Banach space X we take the space �∞,
the space of bounded sequences with norm ‖x‖ = supn |x(n)|, where
x = (x(1), x(2), � � � , x(n), � � � ). As operators we define R(1) = I , and for j ≥
2 we define R(j)x = y, with

y(1) = x(1) + x(j),

y(2) = x(2),
���

y(j − 1) = x(j − 1),

y(j) = 0,

y(j + 1) = x(j + 1),
���

For any j ∈ � it is clear that ‖R(j)k‖ ≤ 2 for all k ∈ �. Furthermore,
R(k)R(j) = R(j)R(k) for any k, j . So this sequence of operators satisfies
the two conditions. However, if we define xm as xm(n) = 1 for all n,
then ‖xm‖ = 1, but ‖R(1)R(2) � � �R(k)xk‖ = k and so ‖ ∏k

j=1 R(j)‖ is not
uniformly bounded.

The above example shows that care should be taken when going from
time-invariant operators to time-varying ones.

The proof of Theorem 1.2 is presented in the following section. In
Section 3, we study the properties of the inverse of the generator for a
general Banach space. Among others we show that A−1 always generates a
once integrated semigroup. In Section 4, we return to the discretization of
differential equations. In Guo and Zwart [14] it is shown that if A generates
a bounded C0-semigroup on the Hilbert space H , then for every x0 ∈ D(A)
the solution of (1.4) is bounded. In Section 4, we show that this no longer
holds in a general Banach space. Especially, we show that it does not hold
in Lp for p �= 2. At the end of this section, one may find the proof of
Theorem 1.3.

Let �(X ) denote a Banach algebra of all bounded operators from X to
X , and let �(X ) denote the set of densely defined, closed operator on X .
It is well-known that every infinitesimal generator of a C0-semigroup is an
element of �(X ). If A generates a bounded C0-semigroup, then (0,∞) ⊂
�(A) (the resolvent set of A), and hence I − �

2A has an inverse that is an
element of �(X ). Throughout this paper, we assume that zero is not a
point spectrum of A, and that A−1 ∈ �(X ). In other words, zero lies in
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the resolvent set, or in the continuous spectrum of A. From Goldstein [10,
Theorem 1.8.20], we have that if A generates a bounded C0-semigroup on
a reflexive Banach space X and if zero is not a point spectrum of A, then
the range of A is dense in X .

2. TIME-VARYING DISCRETIZATION

The aim of this section is to prove Theorem 1.2. For this proof, we need
two lemmas.

Lemma 2.1. Consider on the Hilbert space H for n ≥ 0 the difference equation

xd(n + 1) = Ad ,n+1xd(n), xd(0) = xd ,0� (2.1)

If for all r ∈ (0, 1) there exists positive operators R(r ), R̃(r ) ∈ �(H ) such that for
all n ∈ �

r 2A∗
d ,nR(r )Ad ,n − R(r ) ≤ −I , (2.2)

r 2Ad ,nR̃(r )A∗
d ,n − R̃(r ) ≤ −I (2.3)

and

M := sup
r∈(0,1)

(1 − r )‖R(r )‖ < ∞, M̃ := sup
r∈(0,1)

(1 − r )‖R̃(r )‖ < ∞, (2.4)

then

sup
n∈�

‖xd(n)‖ ≤ e
√
MM̃‖xd(0)‖� (2.5)

If (2.2)–(2.4) hold, and if

lim
r↑1

(1 − r )〈xd ,0,R(r )xd ,0〉 = 0,

then the solution of (2�1) for the initial condition xd ,0 converges to zero, that is,
limn→∞xd(n) = 0.

Proof. The proof is divided into several steps. We define for K > k ≥ 0
the operator �(r ; k,K ) as

�(r ; k,K ) = r K−kAd ,K · � � � · Ad ,k+2Ad ,k+1� (2.6)
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For K = k, we define �(r ;K ,K ) = I . It is clear that � is the state
transition map from time k to time K multiplied by r K−k , that is, xd(K ) =
r−(K−k)�(r ; k,K )xd(k).

Step 1. Using equation (2.2), we find that for K ≥ 0

�(r ; 0,K )∗�(r ; 0,K ) ≤ �(r ; 0,K )∗[−r 2A∗
d ,K+1R(r )Ad ,K+1 + R(r )]�(r ; 0,K )

= −�(r ; 0,K + 1)∗R(r )�(r ; 0,K + 1)

+ �(r ; 0,K )∗R(r )�(r ; 0,K )� (2.7)

Step 2. For all n ∈ �, we have that

n∑
k=0

r 2k‖xd(k)‖2 =
n∑

k=0

r 2k〈xd(k), xd(k)〉

=
n∑

k=0

〈xd(0),�(r ; 0, k)∗�(r ; 0, k)xd(0)〉

≤
n∑

k=0

〈xd(0), (−�(r ; 0, k + 1)∗R(r )�(r ; 0, k + 1)

+ �(r ; 0, k)∗R(r )�(r ; 0, k))xd(0)〉
= −〈xd(0),�(r ; 0,n + 1)∗R(r )�(r ; 0,n + 1)xd(0)〉

+ 〈xd(0),R(r )xd(0)〉,

where we have used (2.7). Because R(r ) ≥ 0, we conclude that for n ≥ 0

n∑
k=0

r 2k‖xd(k)‖2 ≤ 〈xd(0),R(r )xd(0)〉� (2.8)

Step 3. Let n ∈ � and consider the backward, dual system of (2.1),
that is, for k = 0, � � � ,n − 1,

x̃d(k) = A∗
d ,k+1x̃d(k + 1), x̃d(n) = x̃d ,n � (2.9)

It is not hard to see that x̃d(k) = r k−n�(r ; k,n)∗x̃d ,n . Using equation (2.2),
we find similarly as in Step 1, that for k ≥ 1

�(r ; k,n)�(r ; k,n)∗ ≤ −�(r ; k − 1,n)R̃(r )�(r ; k − 1,n)∗

+ �(r ; k,n)R̃(r )�(r ; k,n)∗� (2.10)
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If we define Ad ,0 = Ad ,1, then we have that (2.10) holds for k ≥ 0. Hence
for x̃d(k), the following inequality holds:

n∑
k=0

r 2(n−k)‖x̃d(k)‖2 ≤
n∑

k=0

〈x̃d(n),�(r ; k,n)�(r ; k,n)∗x̃d(n)〉

≤
n∑

k=0

〈x̃d(n), (−�(r ; k − 1,n)R̃(r )�(r ; k − 1,n)∗

+ �(r ; k,n)R̃(r )�(r ; k,n)∗)x̃d(n)〉
= −〈x̃d(n),�(r ,−1,n)R̃(r )�(r ;−1,n)∗x̃d(n)〉

+ 〈x̃d(n), R̃(r )x̃d(n)〉
≤ 〈x̃d(n), R̃(r )x̃d(n)〉,

because R̃(r ) ≥ 0.

Step 4. Let n ∈ �. Then following [25], we have that

|(n + 1)r n〈x̃d(n), xd(n)〉| =
∣∣∣∣ n∑
k=0

〈x̃d(n),�(r , 0,n)xd(0)〉
∣∣∣∣

=
∣∣∣∣ n∑
k=0

〈�(r , k,n)∗x̃d(n),�(r , 0, k)xd(0)〉
∣∣∣∣

≤
√√√√ n∑

k=0

r 2(n−k)‖x̃d(k)‖2

n∑
k=0

r 2k‖xd(k)‖2

≤
√

〈x̃d(n), R̃(r )x̃d(n)〉
√〈xd(0),R(r )xd(0)〉

≤ 1
1 − r

√
MM̃‖x̃d(n)‖‖xd(0)‖, (2.11)

where we have used (2.8) and (2.10). Choosing in the above expression
r = n

n+1 we find that

|〈x̃d(n), xd(n)〉| ≤
(
1 + 1

n

)n√
MM̃‖x̃d(n)‖‖xd(0)‖�

Thus

‖xd(n)‖ ≤ e
√
MM̃‖xd(0)‖�
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Step 5. From equations (2.4) and (2.11) we find that

|(n + 1)r n〈x̃d(n), xd(n)〉| ≤
√

M̃
1 − r

‖x̃d(n)‖
√〈xd(0),R(r )xd(0)〉�

Let � be a positive number, and choose r� ∈ (0, 1) such that
〈xd ,0,R(r )xd ,0〉 ≤ �

1−r for r ∈ (r�, 1). Without loss of generality, we can
choose r� such that r�

1−r�
is an integer. Then for these r ’s

|(n + 1)r n〈x̃d(n), xd(n)〉| ≤
√

M̃
1 − r

‖x̃d(n)‖
√

�

1 − r
�

Choosing n ≥ r�
1−r�

or equivalently, r = n
n+1 , we obtain that

|〈x̃d(n), xd(n)〉| ≤
(
1 + 1

n

)n√
M̃‖x̃d(n)‖

√
��

Thus for these time instants, we have

‖xd(n)‖ ≤ e
√
M̃

√
��

Because we can do this for every positive �, we have proved the assertion.

�

We use the above lemma to prove that the Crank–Nicolson
approximation is bounded for any time-discretization of the differential
equation

ẋ(t) = Ax(t), x(0) = x0, (2.12)

provided (2.12) has only bounded solutions and the same holds for A−1.

Lemma 2.2. Let A and A−1 be generators of bounded C0-semigroups, and let
Ad(h) := (I + hA)(I − hA)−1. If h ∈ [hmin, hmax] with 0 < hmin ≤ hmax < ∞,
then for every r ∈ (0, 1), there exist positive operators R(r ), R̃(r ) ∈ �(H ) that are
independent of h and that satisfy

r 2Ad(h)∗R(r )Ad(h) − R(r ) ≤ −I , (2.13)

r 2Ad(h)R̃(r )Ad(h)∗ − R̃(r ) ≤ −I , (2.14)

and

M := sup
r∈(0,1)

(1 − r )‖R(r )‖ < ∞, M̃ := sup
r∈(0,1)

(1 − r )‖R̃(r )‖ < ∞� (2.15)
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Proof. From Guo and Zwart [14], we know that the boundedness of
the C0-semigroup generated by A implies the existence of positive-valued
operators Q (	) and Q̃ (	) such that

(	I − A)∗Q (	) + Q (	)(	I − A) = I 	 > 0, (2.16)

(	I − A)Q̃ (	) + Q̃ (	)(	I − A)∗ = I 	 > 0, (2.17)

sup
	>0

	‖Q (	)‖ ≤ M1, sup
	>0

	‖Q̃ (	)‖ ≤ M̃1� (2.18)

Similarly, we have that the boundedness of the C0-semigroup generated by
A−1 implies the existence of positive operator valued functions S(	), S̃(	)
such that

(	I − A−1)∗S(	) + S(	)(	I − A−1) = I 	 > 0, (2.19)

(	I − A−1)̃S(	) + S̃(	)(	I − A−1)∗ = I 	 > 0, (2.20)

sup
	>0

	‖S(	)‖ ≤ M2, sup
	>0

	‖̃S(	)‖ ≤ M̃2� (2.21)

We use (2.16) and (2.19) to show that (2.13) holds. The proof of (2.14)
will be very similar.

Using the notation (I − hA)−∗ to denote the adjoint of (I − hA)−1, and
substituting (I − hA)−1(I + hA) in the left-hand side of (2.13), we obtain

r 2Ad(h)∗R(r )Ad(h) − R(r )

= (I − hA)−∗[r 2(I + hA)∗R(r )(I + hA)

− (I − hA)∗R(r )(I − hA)](I − hA)−1

= (I − hA)−∗[(r 2 − 1)[R(r ) + h2A∗R(r )A]
+ (r 2 + 1)[hA∗R(r ) + R(r )hA]](I − hA)−1

= (r 2 + 1)(I − hA)−∗
[
r 2 − 1
r 2 + 1

[R(r ) + h2A∗R(r )A] + hA∗R(r ) + R(r )hA
]

×(I − hA)−1� (2.22)

Next we define 	 as 1−r 2

2(r 2+1) and R(r ) = 2R1(r ), where

R1(r ) = 1
hmin

Q
(

	

hmax

)
+ hmaxS(hmin	)� (2.23)
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Substituting R1(r ) in the expression within the square brackets gives

r 2 − 1
r 2 + 1

[R1(r ) + h2A∗R1(r )A] + hA∗R1(r ) + R1(r )hA

=
[
−2	Q

(
	

hmax

)
− 2	h2A∗Q

(
	

hmax

)
A + hA∗Q

(
	

hmax

)
+ Q

(
	

hmax

)
hA

]
1

hmin

+ [−2	S(hmin	) − 2	h2A∗S(hmin	)A + hA∗S(hmin	) + S(hmin	)hA]hmax

=
[
−2	Q

(
	

hmax

)
− 2	h2A∗Q

(
	

hmax

)
A − hI + 2

h	
hmax

Q
(

	

hmax

)]
1

hmin

+ [−2	S(hmin	)− 2	h2A∗S(hmin	)A− hA∗A+ 2h	hminA∗S(hmin	)A]hmax

≤ − h
hmin

I + 2	
hmin

[
h

hmax
− 1

]
Q

(
	

hmax

)
− h hmaxA∗A

+ 2	hhmax[hmin − h]A∗S(hmin	)A

≤ − h
hmin

I − hhmaxA∗A

≤ −I − h2A∗A, (2.24)

where we have used (2.16), (2.19), and twice the fact that hmin ≤ h ≤ hmax.
Combining (2.24) with (2.22) gives for R(r )

r 2Ad(h)∗R(r )Ad(h) − R(r ) ≤ 2(r 2 + 1)(I − hA)−∗[−I − h2A∗A](I − hA)−1

≤ −(r 2 + 1)I ≤ −I � (2.25)

because ‖x‖2 ≤ 2‖(I − hA)−1x‖2 + 2‖hA(I − hA)−1x‖2.
It remains to show that

sup
r∈(0,1)

(1 − r )‖R(r )‖ < ∞�

We have

sup
r∈(0,1)

(1 − r )‖R(r )‖ ≤ sup
r∈(0,1)

1 − r 2

2(r 2 + 1)
2‖R(r )‖

≤ sup
	∈(0, 12 )

4	
∥∥∥∥ 1
hmin

Q
(

	

hmax

)
+ hmaxS(hmin	)

∥∥∥∥
≤ 4

hmax

hmin
M1 + 4

hmax

hmin
M2,
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where we have used (2.15) and (2.21). Hence we have constructed
a solution R(r ) of (2.13) which satisfies the first inequality in (2.15).
Similarly, by using (2.17) and (2.20), we can construct a solution of (2.14)
satisfying the second inequality of (2.15). Hence we have proved the
lemma. �

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. The first part of the theorem follows directly
from Lemmas 2.1 and 2.2. To prove the stability, we need that if A generates
a stable C0-semigroup, and if A−1 generates a bounded C0-semigroup, then
this C0-semigroup is stable as well. Furthermore, from [14] we know that
if A generates a stable C0-semigroup, then there exists a solution of (2.16)
such that for all x ∈ H

lim
	↓0

	〈x ,Q (	)x〉 = 0�

Because A−1 also generates a stable C0-semigroup, we have that a similar
result holds for S(	), see (2.19). Because we can choose

R(r ) = 2
hmin

Q
(

	

hmax

)
+ 2hmaxS(hmin	)

we see that the assertion follows from Lemma 2.1. �

The proof of Theorem 1.3 is given at the end of Section 4.

3. SOME PROPERTIES OF INVERSE GENERATORS

In Zwart [28] and Gomilko [11], we can find the following result.

Lemma 3.1. Let A generate an exponentially stable C0-semigroup (T (t))t≥0 on
a Banach space X . Then the following equality holds

eA
−1�x0 = x0 −

∫ ∞

0
�hac(t�)T (t)x0dt ,

where

hac(t) = 1√
t
J1(2

√
t),

with J1(·) the Bessel function of the first kind and of the first order.
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In this lemma, we made the assumption that A generates an
exponentially stable C0-semigroup. This implies that A−1 is a bounded
operator, and thus it generates a C0-semigroup. Note that we do not know
whether this C0-semigroup is bounded. In the more general situation, when
A generates a bounded C0-semigroup, it is still unknown whether its inverse
generates a C0-semigroup as well. However, we have that it generates a once
integrated semigroup. The following definition is taken from [1].

Definition 3.2. Let A ∈ �(X ) and k ∈ �. The operator A is said to be
the generator of k-times integrated semigroup if there exist an 
 ≥ 0 and
a strongly continuous function S(·) : [0,∞) → �(X ) such that (
,∞) ⊂
�(A), ‖S(t)‖ ≤ Me
t , and

(�I − A)−1 = �k
∫ ∞

0
e−�t S(t)dt , for Re(�) > 
�

In this case, the family of operators (S(t))t≥0 is called k-times integrated
semigroup generated by A and we denote it as (eAtk )t≥0.

Theorem 3.3. Let the operator A generate the bounded C0-semigroup (T (t))t≥0

on a Banach space X . Assume further that A−1 exists as an element of �(X ). Then
A−1 generates 1-times integrated semigroup and for t ≥ 0

eA
−1t

1 x0 = tx0 + t 2
∫ ∞

0
h ′
ac(ts)T (s)x0ds

= tx0 + t 2
∫ ∞

0

[√
tsJ0(2

√
ts) − J1(2

√
ts)

(ts)3/2

]
T (s)x0ds, x0 ∈ X � (3.1)

Proof. By the asymptotic behavior of the Bessel functions, it is easy to
see that h ′

ac is absolutely integrable on [0,∞), see [27]. Because T (t)x0 is
bounded on this interval, it is easy to see that the expression on the right
of (3.1) is bounded by Mt , for some positive M . Next we are going to show
that (�I − A−1)−1x0 = �

∫ ∞
0 e−�t eA

−1s
1 x0 ds. Standard Laplace theory gives that

the Laplace transform of t is 1/�2. Now we concentrate on the second term
in (3.1):

�

∫ ∞

0
t 2

[ ∫ ∞

0
h ′
ac(ts)T (s)x0ds

]
e−�t dt

= �

∫ ∞

0

[ ∫ ∞

0
t 2h ′

ac(ts)e
−�t dt

]
T (s)x0 ds

= �

∫ ∞

0

[
t 2

s
hac(ts)e−�t

∣∣∣∣∞
0

−
∫ ∞

0
hac(ts)

1
s
[t 2e−�t ]′dt

]
T (s)x0 ds
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= −�

∫ ∞

0

1
s

∫ ∞

0
hac(ts)�2te−�t − �t 2e−�t dt T (s)x0 ds

= −�

∫ ∞

0

1
s

[
2
�2
e− s

� + −2� + s
�3

e− s
�

]
T (s)x0 ds

= − 1
�2

∫ ∞

0
e− s

�T (s)x0 ds

= − 1
�2

(
1
�
I − A

)−1

x0�

So we have that the Laplace transform of the right-hand side of (3.1)
equals to

1
�
x0 − 1

�2

(
1
�
I − A

)−1

x0 =
(
1
�

(
1
�
I − A

)
− 1

�2

)(
1
�
I − A

)−1

x0

= (�I − A−1)−1x0� �

Remark 3.4. From [17], it follows that there is a maximal subspace D ⊂X
such that operator A−1 restricted to D generates a C0-semigroup. This
means that the generator A−1 of the once integrated semigroup eA

−1t
1

generates on D the C0-semigroup eA
−1t .

If A−1 is bounded, then it is clear that it generates a C0-semigroup.
Because the inverse commutes with A, we know that A + A−1 is an
infinitesimal generator as well. If A−1 is merely a closed, densely defined
operator, then it is unknown whether it generates a C0-semigroup. Under
the assumption that it does, we study the domain and range of the
generator of (eAt eA

−1t)t≥0.

Proposition 3.5. Assume that the operators A and A−1 both generate
C0-semigroups, which are denoted by (eAt)t≥0 and (eA

−1t)t≥0, respectively. The
generator A1 of the C0-semigroup T (t) := eAt eA

−1t , t ≥ 0, has the following
properties:

1. ran(A1) ⊂ D(A) + ran(A).
2. D(A) ∩ ran(A) ⊂ D(A1) and on this set, we have that A1 = A + A−1.
3. D(A) ∩ ran(A) = �x ∈ X | x = Az, z ∈ D(A2)� is a core of operator A1, that is,

the closure of (A1,D(A) ∩ ran(A)) equals (A1,D(A1)).

Proof. Consider the following identity for any x ∈ X and any t > 0,(
eAt − I

)(
eA

−1t − I
)
x = (

eAt eA
−1t − I

)
x − ((

eAt − I
) + (

eA
−1t − I

))
x � (3.2)
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Furthermore, for any C0-semigroup (S(t))t≥0, we have that

S(t)x0 − x0 = AS

∫ t

0
S(s)x0ds,

where AS is the corresponding infinitesimal generator. Combining these
facts, we see that (eAt eA

−1t − I )x ∈ ran(A1), but the other elements of (3.2)
belong to ran(A) and ran(A−1). Because the range of A−1 equals the
domain of A, the first assertion follows.

If x ∈ D(A) ∩ D(A−1) = D(A) ∩ ran(A), then (3.2) gives that x ∈ D(A1).
Furthermore, dividing in (3.2) by t and taking the limits gives

0 = A1x − (Ax + A−1x),

which shows the second assertion.
The third assertion follows from Corollary III.5.8 of [9]. �

In third property of the previous proposition, we see that D(A) ∩
ran(A) plays an important role. If A is (boundedly) invertible, then the
range of A is the whole Banach space, and so this intersection equals
the domain of A. The following proposition gives a nice fact when this
intersection equals the range of A�

Proposition 3.6. Under the assumption of Proposition 3.5, we have that
ran(A) ⊂ D(A) if and only if D(A2) = D(A)�

Proof. If ran(A) ⊂ D(A), then for any x ∈ D(A) one has Ax ∈ ran(A) ⊂
D(A), that is, x ∈ D(A2). Conversely, if D(A2) = D(A), then for any y ∈
ran(A) there exists an x ∈ D(A) such that y = Ax . Because by assumption,
we have that x is also an element of D(A2), we have that y ∈ D(A).
Therefore ran (A) ⊂ D(A)� �

We end this section with the following observation, which follows
from [13]. Because ran(A) and ran(A−1) are dense in X , the bounded
C0-semigroups (eAt)t≥0 and (eA

−1t)t≥0 are mean stable, that is,

1
t

∫ t

0
eAsx ds → 0,

1
t

∫ t

0
eA

−1sx ds → 0 for any x ∈ X as t → ∞�

4. CRANK–NICOLSON ON A GENERAL BANACH SPACE

In this section, we study the behavior of the Crank–Nicolson
discretization as given in equation (1.4). Because the stability/
boundedness properties are invariant under time-scaling, we may without



Crank–Nicolson Scheme for Abstract Linear Systems 731

loss of generality assume that � = 2. Hence operator Ad equals (I −
A)−1(I + A). We denote by � the mapping that gives to A the discretization
Ad , that is,

�(A) = (I − A)−1(I + A) := Ad � (4.1)

Now it is easy to see that

�(A) = −�(A−1)� (4.2)

Furthermore, we have the following equality

An+1
d = An

d (I − A)−1 + An
d A(I − A)−1

= An
d (I − A)−1 − An

d (I − A−1)−1� (4.3)

Combining (4.3) with (4.1) and (4.2) gives

(�(A))n+1 = (�(A))n(I − A)−1 − (−1)n(�(A−1))n(I − A−1)−1� (4.4)

From this observation, the following lemma follows directly.

Lemma 4.1. If for every initial condition in the domain of A the difference
equation (1.4) has a bounded solution, and if for every initial condition in the
domain of A−1 the difference equation (1.4) has a bounded solution, then for any
initial condition the solution of (1.4) is bounded.

In Guo and Zwart [14], it has been shown that on Hilbert spaces,
the mapping A → (�(A))n(I − A)−1 is bounded uniformly in n provided
A generates a bounded C0-semigroup. In other words the assumption in
Lemma 4.1 holds for A. In this section, we want to investigate whether
the first assumption in Lemma 4.1 holds for bounded C0-semigroups in a
Banach space. This can be equivalently formulated as the question whether
the mapping

�n(A) = (�(A))n(I − A)−1 (4.5)

is uniformly bounded for operator A that generates a bounded
C0-semigroup.

It is not hard to show that if A generates the bounded C0-semigroup
eAt , then the following equality holds,

�n(A) =
∫ ∞

0
Ln(2t)e−t eAtdt , (4.6)
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where Ln(t) is the Laguerre polynomial given by

Ln(t) =
n∑

k=0

(
n
k

)
1
k!(−t)k � (4.7)

Furthermore, we have the following lemma.

Lemma 4.2. Let A be the infinitesimal generator of the bounded C0-semigroup eAt

on a Banach space X . Let f be an element of L1(0,∞). Then

� (A) =
∫ ∞

0
f (t)eAtdt (4.8)

exists (as Pettis integral) and satisfies

‖� (A)‖ ≤
∫ ∞

0
|f (t)|dt sup

t≥0
‖eAt‖� (4.9)

Furthermore, there exists a Banach space and an infinitesimal generator A of a
contraction C0-semigroup on this Banach space such that∫ ∞

0
|f (t)|dt = ‖� (A)‖� (4.10)

Hence, if f �∈ L1(0,∞), then (4.8) need not to exist as a bounded operator.

Proof. The first part follows from [15, Chapter XV], so we concentrate on
the second part. As Banach space we choose X = C0(0,∞), the continuous
functions with limit zero at infinity. The norm on this space is given
by the maximum-norm. As C0-semigroup we choose the left-shift, that is,
(T (t)x)(�) = x(t + �). It is clear that this is a contraction C0-semigroup. Let
f ∈ L1(0,∞) be a given function, and define h(�) = sign(f (�)). For every
� > 0, we can find an element x� ∈ X with norm one such that∣∣∣∣ ∫ ∞

0
f (�)[h(�) − x�(�)]d�

∣∣∣∣ ≤ ��

For ‖F (A)‖, we find

‖� (A)(x�)‖ ≥ |(� (A)(x�))(0)|=
∣∣∣∣ ∫ ∞

0
f (t)x�(t + 0)dt

∣∣∣∣
≥

∣∣∣∣ ∫ ∞

0
f (t)h(t)dt

∣∣∣∣ − � =
∫ ∞

0
|f (t)|dt − ��
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Because x� has norm one, and because this holds for all � > 0, we see that

‖� (A)‖ ≥ sup
�>0

‖� (A)(x�)‖
‖x�‖ ≥

∫ ∞

0
|f (t)|dt �

Combining this with (4.9), we see that we have proved (4.10). �

From this lemma and equation (4.6), we can conclude that �n(A)
is uniformly bounded in n for any infinitesimal generator of a bounded
C0-semigroup on a Banach space if and only if

sup
n∈�

∫ ∞

0
|Ln(2t)e−t |dt < ∞� (4.11)

Let us recall that Ln(t)e− t
2 is an orthonormal sequence (see, e.g., [19]) in

the space L2(0,∞). So 2
∫ ∞
0 |Ln(2t)e−t |2dt = 1, but unfortunately, we have

the following result.

Lemma 4.3. For the Laguerre polynomials Ln(t), the following estimate holds:∫ ∞

0
|Ln(2t)e−t |dt = O(

√
n)� (4.12)

Proof. This can be found in Lemma 1.5.4 of [24]. We present a different
proof. The Laplace transform of Ln(2t)e−t is given by

g (s) = −1
(s + 1)

(
s − 1
s + 1

)n

�

Because s−1
s+1 has absolute value one on the imaginary axis, we can write

g (i
) as −1
i
+1 e

in�(
) for some real-valued function �. Furthermore, �′′(
)
is non-zero for almost all 
. From Corollary 1.5.1 of [4], we know that
the induced multiplier norm of g (s) on L∞ is larger or equals c

√
n for

some constant c . This induced norm equals the L1-norm of the function
Ln(2t)e−t , and so we have proved our lemma. �

Combining Lemmas 4.2 and 4.3 shows that on a general Banach space,
the mapping �n(A) is not uniformly bounded in n. Hence this implies that,
in contrast with the Hilbert space situation, in a Banach space the solutions
of the difference equation (1.4) need not be bounded when the initial
condition lies in the domain of A. An example of such a Banach space
can be constructed using Corollary 1.5.1 in [4]. If A is the infinitesimal
generator of the shift C0-semigroup on Lp , then ‖�n(A)‖ ≥ cn | 12− 1

p |, and
thus unbounded.
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As stated in Lemma 4.2, there exists a Banach space and an
infinitesimal generator A of a bounded C0-semigroup, such that
‖�n(A)‖ = ∫ ∞

0 |Ln(2t)e−t |dt . One might (wrongly) conclude from this that
Theorem 1.1 does not hold on Banach spaces. However, for this concrete
generator and Banach space, we know that its inverse A−1 is not the
infinitesimal generator of a bounded C0-semigroup. Hence, we do not
have a Banach space counterexample to Theorem 1.1.

As we see in Theorem 1.3, there are C0-semigroups for which the (time-
varying) discretization is stable on any Banach space. Next we present the
proof of this theorem.

Proof of Theorem 1.3. We begin by noting that the operator A−1

generates bounded analytic C0-semigroup, too, see [7] or [28].
Let us introduce the notation R0(j) = (I + �j

2 A)(I − �j

2 A)
−1. Hence,

similarly as in (4.4), we have the boundedness of
∏k

j=0 R0(j) if and only if
the operators ( k∏

j=0

R0(j)
)(

I − �k+1

2
A

)−1

, k ∈ �,

are uniformly bounded for any generator A of a bounded analytic
C0-semigroup. Now we follow [5], and we use the representation( k∏

j=0

R0(j)
)(

I − �k+1

2
A

)−1

−
k∏

j=1

eAn�j
(
I − �k+1

2
A

)−1

= 1
2�i

∫
�

( k∏
j=1

(
1 + �j

2 �

1 − �j

2 �

)
−

k∏
j=1

exp(�j�)
)(

1 − �k+1

2
�

)−1

(�I − A)−1d��

Now we divide the contour � = �� ∪ (� \ ��) as in [5]. Because supj �j <∞,

we can estimate
∣∣ 1+�j �/2

1−�j �/2

∣∣ ≤ exp(−c |�|) in the small neighborhood of zero
on ��, where c is independent of �j and �. Because infj �j > 0, we have
for �∈ � with large modulus that |(1 − �k+1�/2)−1| ≤ M/|�| with M not
depending on �j and �. The final estimate of the integral uses the formula

k∏
j=1

aj −
k∏

j=1

bj =
k∑

j=1

(aj − bj)
j∏

l=1

al
k∏

l=j+1

bl

and the fact that |��ke−c�k�| uniformly bounded for all � ∈ � , k ∈ �, and
�∈ (0,∞). �
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Let us mention in this connection that in the paper [8], they
considered the case when �n → 0 as n → ∞ and t = n�n , so they got the
stability

∥∥( I+�nA/2
I−�nA/2

)n
(1 − A)−�

∥∥ ≤ constant , when multiplying the fraction by
resolvent of power (I − A)−� with any � > 1/2.
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