
Model-driven development of mediation for business services
using COSMO

Dick A.C. Quartela, Stanislav Pokraeva, Teduh Dirgahayub, Rodrigo

Mantovaneli Pessoab, Maarten W.A. Steena and Marten van Sinderenb

aTelematica Instituut, Enschede, The Netherlands;
bCTIT, University of Twente, Enschede, The Netherlands

(Received 17 February 2009; final version received 28 February 2009)

Although service-oriented architectures offer real benefits when pursuing business
integration and flexibility, there are still no satisfactory solutions to accomplish
cooperation between services of existing systems that have no perfect match. In the case
of incompatible services, a 'mediator' may be introduced which resolves semantic and
syntactic interoperability problems by intervening in the cooperation between systems.
Building mediators is currently often a manual process, resulting in dedicated IT-driven
solutions, with no concern for re-use of process, models or code. This paper presents a
framework to guide the development of mediators, with the following objectives: (i)
uncover and capture the actual interoperability problem that needs to be solved; (ii) allow
the involvement of non-IT (i.e., business) experts in the development of the solution; (iii)
support evolution of the solution and re-use of results in case of changing interoperability
requirements; (iv) facilitate automation of parts of the process. The framework is based
on service-oriented and model-driven techniques. Available tool support for the different
elements in the framework is indicated.

Keywords: service mediation; interoperability; service composition; COSMO; model-driven
development.

1. Introduction
Re-use and composability are considered as important benefits of the service-oriented
paradigm. These benefits do however not come for free. Re-usable services need to be
identified, specified and, possibly, re-engineered. For this purpose, standardization
guidelines may be developed that reflect best-practices and put general quality
principles like generality, orthogonality and parsimony into practice. Composition
techniques need to be able to apply knowledge about existing services, in order to find
combinations of services that match some service request, and select the best among
alternatives. The idea behind standardization of services is to facilitate the
composition process by reducing the search and solution space. The realization of this
idea is however difficult and takes time. Instead, the composition and integration of
services from proprietary and legacy systems is currently common practice.

Over the past years, service composition has emerged as an active research area,
which has resulted in various approaches and techniques ([9],[29],[18],[1]). However,
the applicability of automated approaches is still limited considering the kind of
assumptions being made. Furthermore, many approaches are defined at a technology
level and cannot easily be used with alternative technologies.

This paper contributes to the area of service composition by presenting a framework
for service mediation. We approach mediation as a service composition problem, where
multiple systems have to cooperate using non-interoperable services. In order to resolve
the differences between these services, a mediator is designed. Two types of mediation
are considered: (i) information mediation to resolve differences between the

information models being used, and (ii) process mediation to resolve differences
between the interaction protocols being assumed by the systems.

Nowadays, building mediators is mostly a manual process performed by IT experts
that consult business domain experts only at the requirements elicitation phase. Often,
such projects fail due to miscommunication and misinterpretation of these
requirements, or the resulting solutions come at a high price because of the manual
labour required to build and maintain them. To address these issues we propose a
framework for building mediation solutions by using model-driven techniques. Model-
driven techniques are used to lift the design of the mediator from technology to
(platform-independent) model level, in order to clearly capture the semantics of the
problem in terms of the problem domain rather than solution techniques. This facilitates
the involvement of business domain experts in the design process. Furthermore, it
enables reuse of the mediator design in case of changing implementation technology.

This paper is further structured as follows. Section 2 analyses the mediation
problem and describes our requirements for a mediation framework. Section 3
presents two example mediation scenarios, where the second scenario is an adaptation
of the first to reflect the case of changing business requirements. Section 4 presents
our mediation framework, including a method for composing mediators. Section 5
demonstrates the method by applying it to the first scenario. Section 6 shows how the
method deals with change by applying it to the second scenario. Section 7 discusses
related work. And section 8 presents our conclusions and future work.

2. Mediation
This paper addresses the problem of integrating existing systems, in particular
business processes and enterprise applications. Following the service-oriented
paradigm, we assume that such systems are defined in terms of the services they
provide to and request from their environment, e.g., using WSDL. Furthermore, we
assume these services can not be changed.

2.1 Definition
Unless systems have been designed with cooperation in mind, it is unlikely that their
services will match perfectly. We distinguish two types of mismatches:
• information mismatches, which occur when systems use different information

models to describe the messages that are exchanged by their services;
• process mismatches, which occur when systems use services that define different

messages or different orderings of message exchanges.
Figure 1 illustrates two common categories of basic information mismatches: (i)

concept interpretation mismatches, where the same symbol is used to refer to different,
possibly related, concepts, and (ii) concept representation mismatches, where different
symbols are used to refer to the same or related concepts.

Figure 1. Examples of information mismatches

Figure 2 illustrates some common examples of basic process mismatches. In
practice, combinations of these mismatches will occur.

Figure 2. Examples of process mismatches

Service mediation aims at resolving information and process mismatches.
Webster’s defines mediation as “to act as intermediary agent in bringing, effecting, or
communicating” and “to interpose between parties in order to reconcile them”.
Correspondingly, we define service mediation as “to act as an intermediary agent in
reconciling differences between the services of two or more systems”. The need for an
intermediary, further on denoted as mediator, is imposed by the assumption that the
mediated services can not be changed. The definition abstracts, however, from whom
will perform the mediator role, e.g., some of the existing systems or a ‘third’ system.

2.2 Approach
We approach the design of a mediator as a composition problem: each service that is
requested by some of the involved systems has to be composed from one or more
services that are provided by the other systems and, possibly, by the same system.
This corresponds to fixed public process composition as described in [5], with the
composition (integration) process acting as a mediation broker. Process-based
integration, combined with the service-oriented paradigm, is better suited for
mediation than earlier approaches, such as hub-and-spoke and point-to-point [6].

Figure 3 illustrates our approach for the case of three systems A, B and C. We
assume that A requests some service S1 that has to be provided using services S3 and S5
of systems B and C. The first step defines the provided service S1’ that should match
the requested service S1. This service is provided by some (virtual) system Q, which
comprises (conceptually) systems B and C. The interaction between S1 and S1’ defines
the choreography of the message exchanges between systems A and Q. The second
step refines the provided service S1’ into an orchestration, comprising mediator M and
systems B and C. Mediator M should orchestrate, i.e., compose, the use of services S3
and S5 such that it offers service S1’ to A. The mediator should offer such a mediation
service for each service that is requested by systems A, B and C.

A mediation service as defined above provides interoperability for each individual
service that is requested by some system. This may however not guarantee
interoperability in scenario’s where multiple of these requested services have to
cooperate. Therefore, our approach allows one to model this cooperation and validate
whether it satisfies the goals for integration.

Figure 3. Service mediation as service composition

2.3 Requirements
To address some of the shortcomings of existing integration approaches, we define
the following requirements for our approach:
1. The approach should allow one to design the integration solution in terms of the

problem domain rather than the implementation technology.
2. The approach should enable the formal verification of the integration solution.
3. The approach should facilitate changes in the implementation technology. This

means that if the implementation technology changes, it should be possible to re-
use the same abstract solution defined by the domain experts.

4. The approach should facilitate changes in business requirements. This means that
if the business requirements change, only the abstract solution specification has to
be updated to reflect the new business requirements.

3. Example scenarios
To illustrate and validate our approach we present two reference scenarios that are
defined in the Semantic Web Service Challenge (SWSC) [31]. This challenge
provides a standard set of integration problems, based on industrial specifications and
requirements, and provides a platform to test, discuss and evaluate solutions.

3.1 Scenario 1
A manufacturing company called Moon uses two back-end systems to manage its
order processing: a Customer Relation Management (CRM) system and a Stock
Management (SM) system. Moon has signed an agreement with a customer, called
Blue, to exchange purchase order messages in RosettaNet PIP 3A4 format. Currently,
the back-end systems of Moon use a proprietary data model and interaction protocol
that differ from the ones used by RosettaNet. The objective is to build a Mediator that
enables Moon and Blue to cooperate. Figure 4 depicts the scenario.

The interaction between both systems is initiated by Blue who sends a PIP 3A4
Purchase Order Request message (M1). PIP 3A4 enables a buyer to issue a purchase
order and to obtain a quick response (M13) from the provider that acknowledges which
of the purchase order product line items are accepted, rejected, or pending. Both
messages must be synchronously confirmed by an Acknowledgement of Receipt
message (M2 and M14).

According to the RosettaNet standard a Purchase Order Request is sent using a
single message. However, in order for Moon to be able to process a purchase order,
several steps have to be made. First, the customer needs to be identified by sending a
search string to Moon’s CRM system (message M3), which replies by sending a
customer object that matches the search string (message M4).

Send
POR

Receive
POC

Identify
customer

Receive
new order

request

Receive
line item

Receive
close order

Send
line item

confirmation

Moon CRM

Moon SMMediator

(M6) order id

(M10) item no

POR = Purchase Order
 Request
POC = Purchase Order
 Confirmation

Blue

(M1) RosettaNet
PIP3A4 POR

(M2) ack

(M13) RosettaNet
PIP3A4 POC
(M14) ack

(M3) search string

(M4) customer
object

(M5) customer id

(M7) order id, article id,
line item, quantity

(M8) ack

(M9) order id

(M12) ack

(M11) line item
confirmation

Figure 4. Mediation scenario 1

Next, the creation of a new order is requested by sending the customer object
(message M5) to Moon’s SM system, which returns the id of the newly created order
(message M6). After a new order is created, Moon’s SM system expects all order lines to
be added one by one (message M7). These messages are acknowledged synchronously
by sending the order id and an item id (message M8). Once all order lines have been
added, Moon SM is requested to close the order (message M9), and returns the number
of items that has been received (message M10). Subsequently, Moon’s SM system
confirms the status of each order line one by one (message M11), which is acknowledged
synchronously (message M12) by the mediator.

After all order lines have been confirmed a RosettaNet PIP3A4 Purchase Order
Confirmation message (M13) is sent to Blue and confirmed synchronously by an
Acknowledgement of Receipt message (M14).

3.2 Scenario 2
The second scenario aims at validating how well an integration method supports
change in the integration requirements. Company Moon decides to integrate also its
Production Management (PM) system. The Mediator can use the PM to order products
to be scheduled for production when they are not available from the SM system. Figure
5 depicts this scenario.

Figure 5. Mediation scenario 2

In case the SM system reports that an item is not available, the PM system will be
used to check whether that item can be produced. This is done by sending a message

(M15) to the PM system, which responds synchronously by sending a message (M16)
containing the price and the availability date. If the price and the availability date meet
the expectations of customer Blue (as specified in message M1) the item will be ordered
by sending a message (M17) to the PM system and be confirmed synchronously (M18).

In addition, the possibility is created in this scenario to define a shipment address
at the line item level. If present, this address should be used instead of the one defined
at the purchase order level. This implies that a purchase order from Blue may result in
the creation of multiple orders at Moon, one for each distinct shipment address.

4. Mediation framework
We have developed a mediation framework to support the design, implementation and
validation of mediation services. This framework consists of the following elements:
• a conceptual framework for modelling and reasoning about services, called

COSMO [25];
• languages to express service models using COSMO, which currently include

ISDL [13],[28], OWL [17], SPARQL [23] and Java;
• techniques to analyse the interoperability and conformance of service models [27];
• transformations between service design and service implementation level [8];
• tools supporting the editing, analysis and transformation of service models [24];
• a method for developing mediation services.

This paper focuses on our method for service mediation. The method uses and
relates the other elements of the framework listed above, which are only explained
here as far as required for a proper understanding of the paper. This includes a brief
description of how services are modelled in the second part of this section.

4.1 Method
Figure 6 illustrates the steps that constitute our method for service mediation. For
convenience, the integration of two systems is considered, but the same steps apply to
the case of multiple systems.

Figure 6. Method for service mediation

In general, the services of systems that have to be integrated are described at
implementation (technology) level, e.g., using WSDL. The method starts with
“lifting” these service descriptions to design level, by abstracting from
implementation specific information. Such information may unnecessarily complicate
the design of an integration solution, and therefore hinder the participation of business
domain experts that are knowledgeable about the integration requirements at business
level, but do not (want to) know how these requirements are implemented at IT level.
In terms of the MDA (Model Driven Architecture) this means that we transform the
service PSMs (Platform Specific Models) of the systems being integrated to their
respective service PIMs (Platform Independent Models).

Subsequently, the service PIMs may be semantically enriched by adding
information that could not be derived (automatically) from the service PSMs. For
example, a service PSM may be complemented with some text document that
describes part of the service in natural language. Alternatively, interviews or even
code inspection may be used to obtain information that is missing from the service
PSMs. The purpose of semantical enrichment is to make models precise and
complete, which in turn is necessary to enable formal reasoning about and,
potentially, the (semi-) automated generation of the integration solution.

The next steps represent the design, validation and implementation of the
integration solution, i.e., the mediator PIM. The design step can be split into two
parts: (i) the design of an information model, and (ii) the design of a behaviour model
for the mediator. The purpose of the information model is to enable information
mediation, by defining a mapping between the vocabularies of the systems being
integrated. The purpose of the behaviour model is to enable process mediation by
defining a mapping between the services that are requested and the services that are
provided by the systems being integrated (cf. section 2.1).

The validation step is used to analyse whether interoperability is obtained by the
proposed integration solution. This step could be omitted in case one would support
the automated composition of mediators. But for now this seems an ideal that can not
been realized yet. In the final step, the mediator PIM is transformed to an
implementation, the mediator PSM.

4.2 The COSMO framework
We define a service as the establishment of some effect (or value) through the
interaction between two or more systems. The COSMO framework defines concepts
to support the modelling, reasoning about and analysis of services. These concepts are
structured along three axes as depicted in Figure 7.

Figure 7. The COSMO framework

The horizontal axis distinguishes four aspects, i.e., information, behaviour,
structure and quality, representing categories of service properties that need to be
modelled. This classification corresponds to aspects found in frameworks for
enterprise architectures like GRAAL [10] and ArchiMate [15].

The vertical axis distinguishes three global abstraction levels at which a service
can be modelled:
• a goal models a service as a single interaction, where the interaction result

represents the effect of the service as a whole;
• a choreography refines a goal by modelling a service as a set of multiple related,

more concrete interactions;
• an orchestration implements a service using a central coordinator that invokes and

adds value to one or more other services.

We note that these abstraction levels should not be treated as absolute levels, but
can again be considered in more or less detail, resulting in ‘sub-levels’ of abstraction.

The diagonal axis distinguishes the roles of the systems involved in a service: the
user, provider and integrated role. The integrated role abstracts from the distinction
between a user and provider by considering interactions as joint actions, thereby
focusing on what the user and provider have in common.

This paper mainly considers choreographies and orchestrations from the behaviour
and information aspect, and by distinguishing between a user and provider role.

4.3 Service modelling concepts
COSMO uses a small number of basic concepts to model the information aspect –
using the concepts of class, property and individual – and the behaviour aspect of
services – using the concepts of action, interaction and causality relation. These basic
concepts can be used at different abstraction levels to manage the complexity of
service design and validation. For this purpose, methods and techniques have been
defined to assess the conformance and interoperability of service models.

In this paper, however, services are modelled close to the level at which they are
described using WSDL, while abstracting from technology details. Therefore, and for
brevity, we only explain COSMO’s operation concept and its notation using ISDL.
More information on COSMO will be provided as needed when discussing the
validation of service models later on. But for a proper explanation we refer to [25].

Figure 8(i) and (ii) depict the operation concept and its interpretation in terms of a
flow chart-like notation, respectively. An operation represents a composition of three
instances of message passing interactions: the sending (invoke) and receipt (accept) of an
invocation, followed by either the sending (reply) and receipt (return) of the invocation
result, or the sending (fault) and receipt (catch) of a fault message. The use of the reply-
return and the fail-catch message passing instances are optional, i.e., either one or both
parts may be omitted; e.g., to model one-way operations.

Figure 8. Operation concept

Figure 9 depicts an ISDL model of the choreography between Moon’s SM system
– behaviour MoonSM – and a user of this system – behaviour User. This choreography
consists of four two-way operations (cf. section 3.1). In case of the user only the
individual operations are modelled. In case of the SM system also the relationships
between the operations are modelled. The processes of receiving and confirming line
items by the SM system are represented by the repetitive instantiation of sub-
behaviour b of type SM_AddLineItem and sub-behaviour b1 of type SM_ConfirmLineItem
(expressed as double bordered rounded rectangles). Grey coloured operation calls and
executions represent delegated operation calls and executions; since behaviour MoonSM
delegates the receipt of a line item and the sending of a confirmation to its sub-
behaviours SM_AddLineItem and SM_ConfirmLineItem, respectively.

A textbox defines the parameters associated with an operation, including the
constraints on these parameters (between square brackets). For example, the
constraint rsp = createAddResponse(addLineItem.req) of operation call addLineItem represents

that the value of response parameter rsp is defined by function createAddResponse, with
as argument the request parameter req.

A triangle pointing inside or outside a behaviour represents an entry or exit point,
respectively. Also entry and exit points may have parameters, which are represented
in textboxes. For example, the repetitive behaviour instantiation b has as entry
parameters a list of items and an order id. Upon instantiation these parameters are
initialized by an empty list and the order id established in operation createNewOrder, via
constraints items = createList() and orderId = getOrderId(createNewOrder.req). Furthermore,
these parameters may be used to define the repetition constraint of a repetitive
instantiation. For example, the repetition constraint lessThan(e.index, e.itemsNo) defines
that sub-behaviour b1 is repeated until all items have been confirmed. Instead, the
repetition constraint of b is defined to be always true. This repetitive behaviour
terminates once the closeOrder operation is invoked. Since the SM system does not
know when all line items have been added, a disabling relation (represented by a
black diamond on top of a horizontal bar) is used to model that it is willing to execute
both the closeOrder and addLineItem operation after an order has been created, but the
occurrence of new addLineItem operation instances is disabled (disrupted) as soon as the
closeOrder operation occurs.

Figure 9. Moon SM choreography

5. Application of the framework
This section illustrates the application of the mediation framework to the scenario of
section 3.1. For this purpose, the method of section 4.1 has to be made more concrete
by deciding on, amongst others, the type of PSMs that are considered, the languages
to be used at PIM level, and related to these choices the transformations and analysis
techniques that are needed, c.q. have to be developed. This means that in time the
mediation framework may be populated with different instances of the mediation
method, depending on the type of integration problems that have been addressed.

5.1 Step 1: Abstract from PSMs to PIMs
In this step, we derive the platform independent information and behaviour models of
the services of Blue and Moon, which are specified by WSDL documents. Figure 10
illustrates this step. The behaviour models are represented using ISDL, and the
information models are specified using UML class diagrams.

Figure 10. Abstract from PSMs to PIMs

This step is automated using the WSDL import function of the Grizzle tool ([24],
[13]). This tool provides an integrated editor and simulator for ISDL. The WSDL
import function enables a user to import a WSDL specification by providing the URL
of this specification. The user can choose to either import a single operation, single
port type or the complete WSDL definition. Furthermore, the user may choose
whether the web service should be considered from a client or server perspective.
Accordingly, a behaviour model is generated that represents the user (client) or
provider (server) role of the web service, in terms of operation calls or executions,
respectively. In addition, an information model is generated consisting of UML/Java
classes that represent the information types that are referred to by the operations in the
behaviour model. The transformation of WSDL to ISDL and UML/Java is
implemented using JAXB and JAX-WS ([14]). The EclipseUML tool ([11]) is used to
visualize and manipulate the information model. Behaviour User in Figure 9 illustrates
a behaviour model that is obtained with the WSDL import function.

5.2 Step 2: Semantic enrichment of PIMs
The WSDL descriptions of the example scenario define the services that are provided
by Blue and Moon in terms of their operations and the types of the input and output
messages of these operations. However, WSDL does not define the interaction
protocols, i.e., the possible orderings of the operations. Therefore, to derive the
complete PIMs of Moon and Blue, we have to use and interpret the textual
descriptions that are provided with the integration case (the boxes labelled “Prose” in
Figure 10). This is a manual process.

Firstly, the behaviour models that were generated in step 1 are completed by
defining relations between operations. These relations can be derived from the scenario
description. This includes the explicit modelling of the “loops” in the schema of Figure
4, representing the repetition of adding and confirming line items. For example, Figure
9 depicts the enriched model of the service provided by Moon SM.

Secondly, the information model may be enriched by interpreting the scenario
description. A WSDL description defines the syntax of the messages that are
exchanged, but provides no information about their semantics. This semantics can be
made explicit by defining new classes and use these classes to relate the existing
(generated) classes. Furthermore, the meaning of classes and their properties may be
defined by a mapping onto some domain-specific ontology, e.g., the Universal Data
Element Framework [32]. The benefits of these types of semantical enrichment can
however only be fully exploited when using a language that allows one to explicitly

model and reason about the semantics of classes and their properties. [26] discusses
the use of OWL for this purpose, and explores its potential for automated reasoning
and composition. In this paper, we focus on the model-driven aspect of our integration
method, and will discuss its combination with semantic-web technology in a
forthcoming paper.

5.3 Step 3: Design of the mediator PIM
In this step we design the behaviour and information model of the Mediator. The
information model is constructed from the union of the information models of Blue
and Moon. For the same reason as explained at the end of the previous section, this
information model is not enriched to define the relationships between the classes and
properties from the information models of Blue and Moon, except for informal
annotations that may explain these relationships using natural language. [26]
discusses a formal approach in defining such relationships using OWL. The
information model is extended, however, with classes to represent status information
of the Mediator, such as the set of order line items that have been confirmed so far.

The construction of the behaviour model of the Mediator requires the definition of:
(1) the services provided and requested by the Mediator;
(2) the composition of these services by relating the operations of the services;
(3) the information mapping relations among the parameters of the operations.

Step 3.1: Provided and requested services. In the example scenario, the Mediator
provides one service that must match the service requested by Blue. This service can
initially be defined as the ‘complement’ of the service requested by Blue. The
complement of a service is obtained by changing each operation call into an operation
execution, and vice versa, while keeping the same parameters. In addition, the
relations among the operations and the parameter constraints may (initially) be
retained. Analogously, the services that are requested by the Mediator can be obtained
by taking the complement of the services that are provided by Moon. Figure 11
depicts the resulting skeleton of the Mediator. For illustration purposes, we use
simplified behaviour models in the remainder of this section; replacing parameter type
names by the message identifiers used in section 3 and omitting some of the
constraints and entry and exit point parameters.

Mediator

Moon’s SM

Moon’s CRMBlue

invoke: M1
return: M2

accept: M3
reply: M4

accept: M5
reply: M6

accept: M13
reply: M14

accept: M7
reply: M8

accept: M1
reply: M2

invoke: M7
return: M8

invoke: M11
invoke: M12

invoke: M13
return: M14

invoke: M3
return: M4

accept: M9
reply: M10

invoke: M5
return: M6

invoke: M9
return: M10

accept: M11
reply: M12

confirmLineItem

closeOrder

addLineItem

createNewOrder

search

receiveRequest

receiveConfirmation

Figure 11. Skeleton of the Mediator

The retained relations and parameter constraints may be refined in the next design
steps, respectively. For example, the relation between operations receiveRequest and
receiveConfirmation has to be implemented by the orchestration of the services of Moon.
As another example, the disabling relation between addLineItem and closeOrder has already
been replaced by an enabling relation, since the order should be closed only after all
line items from message M1 have been added.

Step 3.2. Composition of services. The design of the Mediator behaviour can now be
approached as the search for a composition of the services requested from Moon,
which conforms to the service provided to Blue. The structure of this composition is
defined by the (causal) relations among the operations. Most of these relations can be
found by matching the input information that is required by each operation to the
output information that is produced by other operations. For example, operation search
of Moon’s CRM service requires as input a search string (message M3) that can be
matched to some element of the customer information that is part of the purchase
order information received by operation receiveRequest (message M1) This implies that
a relation should be defined between receiveRequest and search; see Figure 12(i).

Mediator
accept: M1
reply: M2

invoke: M7
return: M8

invoke: M13
return: M14

invoke: M3
return: M4

invoke: M5
return: M6

invoke: M9
return: M10

accept: M11
reply: M12

accept: M1
reply: M2

invoke: M3
return: M4
[M3 = por2search(M1)]

invoke: M5
return: M6
[M5 = por2newOrder(M1, M4)]

search

createNewOrder

receiveRequest

(i) Mediatior behaviour

(ii) Adding information mappings
as constraints

closeOrder

confirmLineItem

addLineItem

createNewOrder

searchreceiveRequest

receiveConfirmation

Figure 12. Design of the Mediator

Matching input and output information is however insufficient to find all relations.
For example, although both operations receiveRequest and search provide information that
matches the input required by operation createNewOrder, the information that is provided
by receiveRequest should be used. This hidden assumption has to be made explicit in the
behaviour model.

Furthermore, specific processing logic may have to be designed manually. For
example, the process of receiving confirmations from Moon’s SM system depends on
information from operations receiveRequest (the items to be confirmed), createNewOrder (the
order id) and addLineItem (the item id used by Moon), and depends on internal status
information of the Mediator, i.e., the knowledge that operation closeOrder has occurred
and the set of confirmations that has been received so far. Even when these information
requirements are given, the relations involved in the repetitive processing of
confirmations can not be derived easily, and have to be designed explicitly.

Step 3.3: Information mapping relations among parameters. The definition of the
information mapping relations (transformations) among operation parameters can be
approached as a refinement of the relations among operations defined in the preceding
step. These relations define for each operation on which other operations it depends,
and therefore which output parameters can be referred to (i.e., used) in the generation
of its input parameters. The information mappings then define how the value of each
input parameter is generated from the values of the output parameters and, possibly,
some internal state information of the Mediator. This involves the definition of
mappings between the vocabularies used by Blue and Moon. These mappings only
need to address those parts of the vocabularies that are related via the causal relations
defined in step 3.2

To define the mappings we use the approach presented in [12]. A mapping system
MS is a triple (S, T, M), where S is the source information model, T is the target
information model and M is the mapping between S and T, i.e., a set of assertions Qs
→ Qt, where Qs and Qt are conjunctions of queries over S and T, respectively, with the
same set of variables x. Thus, a mapping is equivalent to the axiom: ∀x: Qs(x,

ys) → Qt(x, yt). This mapping system is independent of the language used to represent
the information models of Blue and Moon. In this paper, we use UML class diagrams
that are derived from the XML schema in WSDL documents. But for instance, in case
OWL would be used, the correspondence between classes and properties from the
information models of Blue and Moon can be expressed as a function of subsumption,
e.g., Qs ⊆ Qt. This would allow one to use an OWL reasoner to check the information
model of the Mediator for consistency.

To facilitate the use of the mapping approach, we have defined a Domain-Specific
Mapping Language (mapping DSL), including a textual and graphical editor. The
mapping DSL provides a means for defining the mapping relations between the
information models of Blue and Moon and for automatically deriving the information
model of the Mediator and the Java classes that implement the information mappings
(used at runtime to transform the exchanged messages between Blue and Moon). Figure
13 presents the metamodel of the mapping DSL.

Transformation

Mapping

Domain

Target Source

Binding

Expression

mappings1..*

expressions

bindings

domains0..*

0..*

0..*

Figure 13. Metamodel of the mapping DSL

A Transformation consists of one or more Mappings. A Mapping defines an assertion
Qs → Qt where Qs is defined as conjunction of Bindings in a number of Source domains
and Qt is defined in a Binding in the Target domain. In addition, a Mapping may contain
zero or more expressions which bind variables by invoking other mappings or custom
functions. Figure 14 illustrates the mappings between the class
Pip3A4PurchaseOrderRequest from the information model of Blue and the classes
SearchCustomer, Order and LineItem from the information model of Moon.

Pip3A4PurchaseOrderRequest

fromRole

PartnerRoleDescription

ContactInformation

ContactName

EmailAddress

TelephoneNumber

CommunicationNumber

PartnerDescription

BusinessName

BusinessDescription

PurchaseOrder

ProductLineItem

LineNumber

OrderQuantity

ProductIdentification

shipTo

PartnerDescription

PhysicalLocation

PhysicalAddress

addressLine1

cityName

NationalPostalCode

SearchCustomer

searchString

CreateNewOrder

Order

contact

shipTo

name

street

city

state

postalCode

country

name

email

telephone

AddLineItemRequest

lineItem

articleId

quantity

GlobalProductIdentifier

RequiredQuantity

ProductQuantity

GlobalCountryCode
CreateNewOrderResponse

orderId

orderId

Figure 14. Illustration of information mapping

Using the mapping DSL we formally define these mappings as follows:
transformation blue2moon {
 mapping por2search {
 target moon:SearchCustomerType SearchCustomer {
 contactName="searchString";
 }
 source por:Pip3A4PurchaseOrderRequestType req {
 contactName = "fromRole/PartnerRoleDescription/PartnerDescription/
 BusinessDescription/businessName/FreeFormText";
 } }
 mapping por2newOrder {
 target moon:OrderType createNewOrder {
 authToken = "authToken";
 name = "contact/name";
 phone = "contact/telephone";
 mail = "contact/email";
 addressLine1 = "shipTo/street";
 city = "shipTo/city";
 postcode = "shipTo/country";
 country = "shipTo/country";
 }
 source por:Pip3A4PurchaseOrderRequestType por {
 name = "fromRole/PartnerRoleDescription/PartnerDescription/
 ContactInformation/contactName/FreeFormText";
 phone ="fromRole/PartnerRoleDescription/ContactInformation/
 telephoneNumber/CommunicationsNumber";
 email = "fromRole/PartnerRoleDescription/ContactInformation/EmailAddress";
 addressLine1 = "fromRole/PartnerRoleDescription/PartnerDescription/
 PhysicalLocation/PhysicalAddress/addressLine1/FreeFormText";
 city="fromRole/PartnerRoleDescription/PartnerDescription/
 PhysicalLocation/PhysicalAddress/cityName/FreeFormText";
 postcode="fromRole/PartnerRoleDescription/PartnerDescription/
 PhysicalLocation/PhysicalAddress/NationalPostalCode";
 country= "fromRole/PartnerRoleDescription/PartnerDescription/
 PhysicalLocation/PhysicalAddress/GlobalCountryCode";
 }
 source moon:SearchCustomerResponseType rsp {
 authToken = "authToken";
 } }
..

These mappings are used to constrain the operation parameters in Figure 12(i). For
example, the value of the parameter of operation search (message M3) is defined by the
mapping M3 = por2search(M1), and the value of parameter operation createNewOrder is
defined by the mapping M5 = por2newOrder(M1, M4). Figure 12(ii) links these constraints to
the corresponding behaviour relations.

5.4 Step 4: Validation of the mediator PIM
In this step, the design of the Mediator is validated by means of:
• assessing the interoperability between the services of Blue, Mediator and Moon;
• simulating the interacting behaviour of these services.

Interoperability assessment.

A method for interoperability assessment has been presented in earlier work [27].
This method consists of two techniques.

The first technique checks whether each individual interaction can establish a result.
This check is based on the abstract interaction concept of COSMO, which allows
complex negotiations to be modelled in which the involved systems may define their
own, possibly conflicting, constraints on the interaction result. In this case, the
interactions are operations, which have been designed such that the parameter types at
the sending and receiving side are the same, and the parameter values are completely
determined by the sending side. However, when modelling the services of Blue and
Moon at a higher abstraction level, i.e., as goals, Blue and Moon may impose different
constraints. We refer to [27] for a detailed explanation on how this technique can be
used at various abstraction levels during a service design process.

The second technique checks whether the service composition as a whole can
establish a result. For this purpose, the interacting behaviour among Blue, the Mediator
and Moon is viewed from an integrated perspective. This perspective views operations
as joint actions, such that parameter constraints are defined as the conjunction of the
parameter constraints of the involved operation call and execution, and causal relations
are defined as the conjunction of the causal relations of the involved operation call and
execution. Figure 15 illustrates the integrated view of the mediation solution.

Subsequently the integrated view is transformed to a Coloured Petri Net. From
this net we construct the corresponding occurrence graph to perform reachability
analysis, using the CPNTools [7]. This analysis allows us to check whether operations
can be reached, and in a certain order.

Figure 15. Integrated view on the mediation solution

Simulation

The simulation of ISDL behaviours is supported by the Grizzle tool ([24], [13]).
Simulation allows a designer to analyse the possible orderings of operation
occurrences, as well as the information results that are established in these operations.
In addition, the Grizzle simulator provides hooks in the simulation process to execute
application code upon execution of an operation. This enables us to perform real web
service invocations and incorporate the results that are returned by web services
during the simulation. For this purpose, stub-code is linked to a modelled web-service
operation call. This code is generated automatically based on stereotype information
that has been retained during the WSDL import, such as the web service’s end-point
address and port type name. Figure 16 depicts an example of this information.

Figure 16. Example stereotype information

Furthermore, the simulator allows external web-clients to invoke a modelled web-
service operation execution (cf. Figure 8(i)). A web service proxy is automatically
generated and deployed in an application server, again using forementioned stereotype
information. This proxy is responsible for handling the reception of the invocation
request and the return of the invocation result. In between, the proxy delegates the
calculation of the invocation result to the simulator, which indicates to the user that the
operation is enabled and waits till the user requests the simulation of this operation.

The support for real, also called ‘live’, web service invocations allows one to use
the simulator as an orchestration engine in which an orchestration can be executed by
simulating its ISDL model. This means that the simulator also provides an
implementation for the Mediator. However, this simulator lacks important properties
of an execution environment, such as performance, monitoring, etc. Therefore, we
transform the Mediator design towards a BPEL process in the next step.

5.5 Step 5: Derivation of the mediator PSM
In this final step an implementation is derived for the Mediator design. In our
approach we do not assume a particular execution platform. For example, the
platform-specific service model of the mediator can be transformed to a WS-BPEL
specification, EJB, or .Net application. Figure 17 depicts an abstract architecture of a
possible execution platform.

The architecture of the Mediator consists of two main components: a Control
Flow Manager and a Data Flow Manager. The Control Flow Manager is responsible
for sending and receiving messages in a particular order as well as for querying and
updating the state of the Mediator. The Data Flow Manager in turn, is responsible for

managing the state of the Mediator and for performing the necessary data
transformations and constraint checking.

Mediator

Data Flow Manager

Inbound
message

Outbound
message

Control Flow
Manager

Message
receiver

Message
sender

State manager

Coordinator

Reasoner

Data

Model

Data
transformer

Constraint
checker

Figure 17. Abstract architecture of an execution platform

The Control Flow Manager consists of three subcomponents: a Message receiver, a
Message sender and a Coordinator. The Message receiver is responsible for receiving
all inbound messages and the Message sender for sending all outbound messages. The
Coordinator executes the behaviour specified in the behaviour model of the Mediator,
i.e., based on the current state it activates and deactivates the Message receiver and
Message sender. When a message is received, the Coordinator interacts with the Data
Flow Manager to update the state of the Mediator. When a message is to be sent the
Coordinator interacts with the Data Flow Manager to obtain the data required to
construct the outbound message.

To derive the Control Flow Manager we use the approach described in [8]. This
approach distinguishes three steps: behaviour pattern recognition, behaviour pattern
realization and activity transformation.

Figure 18. Transformation steps

To decouple the pattern recognition and pattern realization steps (and in this way
provide support for building reusable transformations), an intermediate language is
defined, i.e., the Common Behavioural Patterns Language (CBPL). Each recognized
pattern is mapped onto a CBPL pattern, which is again mapped onto a composition of
four basic patterns: sequence, concurrence, selection and iteration.

The Data Flow Manager consists of two components: a State manager and a
Reasoner. The State manager is responsible for updating the state of the Mediator (after
receiving a message) and for querying that state (before sending a message or when
checking a constraint). In some cases data in the received message may have to be
transformed before updating the state. For that purpose the State manager uses the Data
transformer component. Likewise, in some cases the State manager uses the Data
transformer to construct new messages. The Data transformer is in fact the component
that implements the mapping relations specified in the information model of the
mediator. Similar to the Data transformer, the Constraint checker queries the state of
the mediator and provides an answer whether a constraint holds or not.

To take full advantage of the formal specification of the information model of the
Mediator, e.g., in OWL, the Data Flow Manager may contain a Reasoner component.
The Reasoner uses the formal knowledge specified in the information model of the
Mediator in conjunction with the facts about the current state of the Mediator to infer
new state information, i.e., it makes all implicit knowledge about the state more explicit.
In addition, the Reasoner can be used by the Data transformer and the Constraint
checker as an intelligent query engine and constraint solver.

A platform-specific service model contains information that is not present in the
platform-independent service model. Examples of such information are the XML
namespaces of the exchanged messages or the endpoints of the service operations. To
provide the required platform-specific information we annotate the elements of the
platform-specific service model. For the SWSC case, we have selected WS-BPEL as
platform to implement the Control Flow Manager. A transformation has been
developed that transforms an orchestration model in ISDL, via CBPL, to a BPEL
specification that can be executed on a standard WS-BPEL engine. For information
on this transformation we refer to [24].

6. Dealing with changed requirements
In order to show how our mediation method copes with changed integration
requirements, this section applies the method to the second mediation scenario as
described in section 3.2.

6.1 Step 1: Abstract from PSMs to PIMs
In this step, we reuse the transformation described in section 5.1 and derive the
information and behavior PIM of the PM system, which concern messages M15 – M18 in
Figure 5. The PIMs of the other systems can simply be re-used.

6.2 Step 2: Semantic enrichment of PIMs
This step is identical to step 2 from section 5.2. In this case there is no need to enrich
the behaviour PIM of the PM system, since its service operations
checkProductionCapability and confirmOrder can be invoked independently of each other.

6.3 Step 3: Design of the mediator PIM
In this step, we update the information and behaviour models of the Mediator to
reflect the changes in the business requirements. Similar to step 3 from section 5.3,
we first obtain the new services requested by the Mediator by ‘complementing’ the
services provided by the PM system. Next we reuse the relations between the ‘old’
services defined for scenario 1, and add relations between the new services and the
old services. Finally, we re-use the ‘old’ information mappings and add new
mappings to relate the information models of the Mediator and the PM system.

Figure 19 depicts the resulting behaviour PIM of the Mediator. This picture shows
that the addition of the PM system is addressed by extending the ‘old’ PIM model – the
parts in grey represent the re-used parts. The extra requirement concerning the use of
shipment addresses at line item level is solved by re-using the ‘old’ mediation solution
in a repetitive process, i.e., the ‘old’ solution is defined in a separate behaviour, called
MoonSM, which is invoked one or more times depending on the number of shipment
addresses in the purchase order requested by Blue. Action split is added to split the
original order in multiple sub-orders, one per shipment address. Action assemble
combines the confirmation of these sub-orders in a single confirmation which is
returned to Blue.

accept: M1
reply: M2

invoke: M13
return: M14

invoke: M3
return: M4

invoke: M7
return: M8

accept: M11
reply: M12

invoke: M13
return: M14

invoke: M15
return: M16

available?

not available?

rejected?

accepted?

invoke: M5
return: M6

invoke: M9
return: M10

Moon SM

split

assemble

Mediator

confirmLineItem

createNewOrder

searchreceiveRequest

receiveConfirmation

checkProduction
Capability

closeOrder

addLineItem

confirmOrder

Figure 19. Mediation solution for scenario 2

6.4 Step 4: Validation of the mediator PIM
After updating the service PIM of the Mediator to address the new requirements, we
analyse whether the integration solution still enables the integrated systems to
interoperate. The same techniques as described in section 5.4 can be used for this
purpose.

6.5 Derivation of the mediator PSM
In this final step, we re-use the transformation described in section 5.5 to derive a
platform specific model for the Mediator in terms of WS-BPEL. This step is
automated and only requires us to add the endpoint address of the PM system.

7. Related and future work
Several approaches and solutions have been proposed within the SWS challenge. Here
we briefly discuss the approaches based on the WSMO, SWE-ET, jABC/jETI and
FOKUS frameworks.

The DERI approach [19] follows the Web Services Modelling Ontology (WSMO)
framework. It consists of four main components – ontologies, goals, web services and
mediators. The main difference between WSMO and our work is that our framework
has less concepts while providing comparable expressive power. Both solutions,
however, differ with respect to the way of process modelling. WSMO describes the

mediator interaction behaviour by means of Abstract State Machines. A state is
described by a WSMO ontology, the domain ontology constitutes the underlying
knowledge representation and each transition rule defines a state transition where the
condition is defined as an expression in logic, which must hold in a state before the
transition is executed. For the purposes of the SWS Challenge, the provided solution
assumes that the invocation order is unimportant. This is not the case though: the
operations of system Moon should be invoked in a particular order.

The joint team of Politecnico di Milano and CEFRIEL [4] focuses more on the
modelling of the Mediator’s internal logic, which is defined by a BPMN model. A
coarse WebML skeleton is automatically generated from the BPMN model and
manually refined by the designer. The WebML process model, specified as a graph of
(web)pages, differs quite significantly from our approach. Pages consist of connected
units, representing the publishing of atomic pieces of information, and operations for
modifying the underlying data or performing arbitrary business actions. Units are
connected by links, to allow navigation, parameter passing, and computation of the
hypertext from one unit to another. The method was not natively meant to face
mediation problems, but showed to adapt rather well to this class of problems.

The jABC approach [30] uses Service Logic Graphs as choreography models,
allowing the designer to model the mediator in a graphical high-level modelling
language by combining reusable building blocks into (flow-)graph structures. These
basic building blocks are called Service Independent Building Blocks (SIB) and have
one or more edges (branches), which depend on the different outcomes of the
execution of the functionality represented by the SIB. The provided model-driven
design tools allow the modelling of the mediator in a graphical high-level modelling
language and support the derivation of an executable mediator from these models.
More recently [16], the approach has focused on how to apply a tableau-based software
composition technique to automatically generate the mediator’s interaction behaviour.
This uses a Linear Time Logic (LTL) planning algorithm originally embedded in the
jABC platform. However, the applicability of automated synthesis of the mediator’s
business logic is still limited considering the kind of assumptions being made. In
comparison with the jABC approach, our approach does not cover automated synthesis
of the mediator logic as it intentionally leaves the planning task to the business domain
experts.

The core concept of the FOKUS [2] approach is the integration of ontology
mappings into WS-BPEL processes. The approach addresses the data mediation by
applying semantic bridges to mediate between different information models and
representations. Semantic bridges are described as a set of description logic-based
axioms relating entities in business information models that are defined in different
ontologies but have a similar meaning. The description logic-based data model
provided by ontologies in conjunction with semantic bridges allows for applying
automatic semantic matching and reasoning mechanisms based on polymorph
representations of service parameters. The interaction behaviour of the mediator has
been manually designed and addressed by using a BPEL engine as the coordinating
entity. Some BPEL enhancements were developed to integrate semantic bridges and
to support data flow specifications in terms of rules. These enhancements were
implemented as external functions that can be plugged into BPEL engines. Thus, in
contrast to our approach, the presented approach designs the mediation solution at
technology level. It relies strongly on WS-BPEL and cannot easily be used with
alternative technologies.

9. Conclusions and future work
In this paper, we have presented a framework for developing mediation services as a
means to integrate non-interoperable systems. The framework combines model-driven
and service-oriented techniques. Model-driven techniques are used to lift the design of
a mediation solution from technology to (platform-independent) model level, in order to
clearly capture the semantics of the integration problem and proposed solution, and to
facilitate the involvement of business domain experts by abstracting from
implementation details. In this way we could address the first requirement on our
mediation approach (cf. section 2.3).

Following the service-oriented paradigm, the systems that have to be integrated are
assumed to be defined in terms of the services they provide to and request from their
environment. The integration problem is then approached as a service composition
problem, where a mediator must be found that orchestrates and enhances the existing
services provided by one system in such a way that it matches the service requested by
another system. The service concept helps in addressing the first requirement of our
approach, since it provides a unifying concept to bridge the gap between business
(services) and IT (services).

A method has been presented to guide the development of a mediator. Tool support
is provided for each of the steps in this method, including the modelling, analysis and
‘live’ simulation of the mediation solution. The presented interoperability analysis and
simulation techniques address the second requirement on our mediation approach, i.e.,
to enable the formal verification of the integration solution.

In addition, transformations between model and implementation level have been
developed, with web services (WSDL and BPEL) being assumed as implementation
technology. Since these transformations can be reused when the integration problem
changes, they limit the impact of changes at model and implementation level. For
example, a modification in the WSDL specifications is ‘lifted’ automatically to model
level, and a re- design of the mediator is ‘pushed’ automatically to implementation level
by running the transformations on the modified artefacts. This also enabled us to
quickly deal with ‘last minute’ changes in solving a surprise scenario for the SWSC,
and thus to address the third and fourth requirement on our approach.

A fifth requirement – not addressed in this paper – is that our approach should
enable the semantic integration (or composition) of services. Currently, the
composition of the mediation solution is mainly a manual process. The use of
semantic web technology enables, in principle, the automated reasoning about the
mediator design, in particular the information modelling part. We have applied this in
the development of a general technique to assess the interoperability of systems,
based on OWL, and have used it in other work [27] to validate the interoperability
that is offered by the mediator. [26] also discusses techniques based on OWL to
automate parts of the composition process of the mediator. Our ongoing and future
work will focus on the elaboration of these techniques, and the development of tool
support to make them practically applicable. Here, automation is not a goal in itself.
In fact, we do not think semantic web technology can be used (yet) to develop fully
automated techniques for building mediators. However, semantic web technology can
be helpful in automating techniques that support the designer in re-using design
information that is present in existing models.

In general, service composition and mediation have emerged as an active and
productive research area. Various approaches and techniques have been presented,
such as static vs. dynamic, model-driven, declarative, automated vs. manual, context-
based, and workflow vs. planning approaches ([9],[29],[18],[1]). Currently, we

investigate the use of existing AI planning techniques [20] for automated construction
of the behaviour of the Mediator. In particular, we focus on the use of backward-
chaining techniques to discover causal relations among the activities performed by the
Mediator. In our approach, we start with the activities that send messages and
recursively search for activities that provide the information required to construct
these messages. The search is performed using the mappings defined in the
information model of the Mediator.

Acknowledgement
This work is partly funded by the Dutch Ministry of Economic Affairs, the Dutch Tax
Administration and BiZZdesign, through the BServed project (http://bserved.telin.nl).

References
[1] Alamri A, Eid M and El Saddik A. Classification of the State-of-the-art Dynamic Web Services Composition.

In: International Journal of Web and Grid Services, Vol. 2, No. 2, 2006, pp. 148-166.
[2] Barnickel N, Weinand R and Fluegge M. Semantic System Integration – Incorporating Rule based Semantic

Bridges into BPEL Processes. In: Proceedings of the 6th International Workshop on Evaluation of Ontology-
based Tools and the Semantic Web Service Challenge, Tenerife, Spain, June 1-2, 2008.

[3] Battle S. Gloze: XML to RDF and back again. In: Proceedings of 2006 Jena User Conference, 2006.
http://jena.hpl.hp.com/juc2006/proceedings.html.

[4] Brambilla M, Celino I, Ceri S, Cerizza D, Della Valle E and Facca F. A Software Engineering Approach to
Design and Development of Semantic Web Service Applications, In: Proceedings of the 5th International
Semantic Web Conference (ISWC 2006), LNCS 4273, 2006, pp. 172-186.

[5] Bussler C. Semantic Web Services: Reflections on Web Service Mediation and Composition. In: Proc. of the
Fourth Int. Conf. on Web Information Systems Engineering (WISE), 2003, p. 253.

[6] Busser C. B2B Integration – Concepts and Architecture. Springer. ISBN 3-540-43487-9.
[7] CPNTools - Computer Tools for Coloured Petri Nets. http://wiki.daimi.au.uk/cpntools//cpntools.wiki.
[8] Dirgahayu T, Quartel D and van Sinderen M. Development of Transformations from Business Process

Models to Implementations by Reuse, In: 3th International Workshop on Model-Driven Enterprise
Information Systems, 2007, pp. 41-50.

[9] Dustdar S and Schreiner W. A survey on web services composition. In: International. Journal of Web and
Grid Services, Vol. 1, No. 1, 2005, pp. 1-30.

[10] van Eck P, Blanken H, Wieringa R. Project GRAAL: Towards Operational Architecture Alignment.
International Journal of Cooperative Information Systems 13(3), 2004, pp. 235-255.

[11] ElipseUML. http://www.eclipsedownload.com/.
[12] Haase P and Motik B. A mapping system for the integration of OWL-DL ontologies. In: Proceedings of the

First international Workshop on interoperability of Heterogeneous information Systems (Bremen, Germany,
November 04 - 04, 2005). IHIS '05. ACM, New York, NY, 9-16.

[13] ISDL. http://ctit.isdl.utwente.nl.
[14] JAX-WS and JAXB. http://java.sun.com/webservices/technologies/index.jsp.
[15] Jonkers H, Lankhorst M, van Buuren R, Hoppenbrouwers S, Bonsangue M, van der Torre L. Concepts for

Modelling Enterprise Architectures. International Journal of Cooperative Information Systems, vol. 13, no. 3,
2004, pp. 257-287.

[16] Margaria T, Bakera M, Raffelt H and Steffen B. Synthesizing the Mediator with jABC/ABC. In: Proceedings
of the 6th International Workshop on Evaluation of Ontology-based Tools and the Semantic Web Service
Challenge, Tenerife, Spain, June 1-2, 2008.

[17] McGuinnes D and van Harmelen F. OWL Web Ontology Language Overview – W3C Recommendation 10
February 2004. http://www.w3.org/TR/owl-features/.

[18] Milanovic N and Malek M. Current Solutions for Web Service Composition. In: IEEE Internet Computing,
Vol. 8, No. 6, 2004, pp. 51-59.

[19] Mocan A, Moran M, Cimpian E and Zaremba M. Filling the gap - extending service oriented architectures
with semantics. In: IEEE International Conference on e-Business Engineering (ICEBE), 2006, pp. 594-601.

[20] Peer J. Web service composition as AI planning - a survey. Technical report, Univ. of St. Gallen, Switzerland,
2005.

[21] Pellet. http://pellet.owldl.org/.
[22] Protégé. http://protege.stanford.edu/overview/protege-owl.html.
[23] Prud’hommeaux E and Seaborne A. SPARQL Query Language for RDF - W3C Proposed Recommendation

12 November 2007. http://www.w3.org/TR/rdf-sparql-query/ .
[24] Quartel D, Dirgahayu T and van Sinderen M. Model-driven design, simulation and implementation of service

compositions in COSMO. To appear in: Int. J. of Business Process Integration and Management.
[25] Quartel D, Steen M, Pokraev S and van Sinderen M. COSMO: a conceptual framework for service modelling

and refinement. In: Information Systems Frontiers, 9 (2-3), 2007, pp. 225-244.

[26] Quartel D, Pokraev S, Mantovaneli Pessoa R, van Sinderen S. Model-driven Development of a Mediation
Service Proceedings of the Eleventh IEEE International EDOC Enterprise Computing Conference (EDOC
2008), 2008, pp. 117-126.

[27] Quartel D and van Sinderen M. On interoperability and conformance assessment in service composition. In:
Proceedings of the Eleventh IEEE International EDOC Enterprise Computing Conference (EDOC 2007),
2007, pp. 229-240.

[28] Quartel D, Dijkman R, van Sinderen M. Methodological support for service-oriented design with ISDL.
Proceedings of the 2nd Internatiation Conference on Service Oriented Computing, 2004, pp. 1-10.

[29] Rao J and Su X. A Survey of Automated Web Service Composition Methods. In: Semantic Web Services and
Web Service Composition, LNCS 3387, 2005, pp. 43-54.

[30] Steffen B, Margaria T, Nagel R, Jörges S and Kubczak C. Model-Driven Development with the jABC. In:
Proceedings of Haifa Verification Conference, LNCS 4383, 2006, pp. 92-108.

[31] SWS challenge. http://sws-challenge.org.
[32] UDEF. http://www.opengroup.org/udefinfo/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

