Contractible subgraphs, Thomassen's conjecture and the dominating cycle conjecture for snarks

Hajo Broersma ${ }^{\text {a }}$, Gašper Fijavž ${ }^{\text {b }}$, Tomáš Kaiser ${ }^{\text {c,d,* }}$, Roman Kužel ${ }^{\text {c,d }}$, Zdeněk Ryjáček ${ }^{\text {c,d }}$, Petr Vrána ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Computer Science, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, England, United Kingdom
${ }^{\text {b }}$ Faculty of Computer and Information Science, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
${ }^{\text {c }}$ Department of Mathematics, University of West Bohemia, Czech Republic
${ }^{\mathrm{d}}$ Institute for Theoretical Computer Science (ITI), Charles University, P.O. Box 314, 30614 Pilsen, Czech Republic

Received 6 July 2004; received in revised form 13 November 2007; accepted 14 November 2007
Available online 26 December 2007

Abstract

We show that the conjectures by Matthews and Sumner (every 4-connected claw-free graph is Hamiltonian), by Thomassen (every 4-connected line graph is Hamiltonian) and by Fleischner (every cyclically 4-edge-connected cubic graph has either a 3-edge-coloring or a dominating cycle), which are known to be equivalent, are equivalent to the statement that every snark (i.e. a cyclically 4-edge-connected cubic graph of girth at least five that is not 3-edge-colorable) has a dominating cycle.

We use a refinement of the contractibility technique which was introduced by Ryjáček and Schelp in 2003 as a common generalization and strengthening of the reduction techniques by Catlin and Veldman and of the closure concept introduced by Ryjáček in 1997.

(c) 2007 Elsevier B.V. All rights reserved.

Keywords: Dominating cycle; Contractible graph; Cubic graph; Snark; Line graph; Hamiltonian graph

1. Introduction

In this paper we consider finite undirected graphs. All the graphs we consider are loopless (with one exception in Section 3); however, we allow the graphs to have multiple edges. We follow the most common graph-theoretic terminology and notation, and for concepts and notation not defined here we refer the reader to [2]. If F, G are graphs then $G-F$ denotes the graph $G-V(F)$ and by an a, b-path we mean a path with end vertices a, b. A graph G is claw-free if G does not contain an induced subgraph isomorphic to the claw $K_{1,3}$.

In 1984, Matthews and Sumner [8] posed the following conjecture.
Conjecture A ([8]). Every 4-connected claw-free graph is Hamiltonian.

[^0]Since every line graph is claw-free (see [1]), the following conjecture by Thomassen is a special case of Conjecture A.

Conjecture B ([12]). Every 4-connected line graph is Hamiltonian.
A closed trail T in a graph G is said to be dominating, if every edge of G has at least one vertex on T, i.e., the graph $G-T$ is edgeless (a closed trail is defined as usual, except that we allow a single vertex to be such a trail). The following result by Harary and Nash-Williams [6] shows the relation between the existence of a dominating closed trail (abbreviated DCT) in a graph G and Hamiltonicity of its line graph $L(G)$.

Theorem 1 ([6]). Let G be a graph with at least three edges. Then $L(G)$ is Hamiltonian if and only if G contains a $D C T$.

Let k be an integer and let G be a graph with $|E(G)|>k$. The graph G is said to be essentially k-edge-connected if G contains no edge cut R such that $|R|<k$ and at least two components of $G-R$ are nontrivial (i.e. containing at least one edge). If G contains no edge cut R such that $|R|<k$ and at least two components of $G-R$ contain a cycle, G is said to be cyclically k-edge-connected.

It is well-known that G is essentially k-edge-connected if and only if its line graph $L(G)$ is k-connected. Thus, the following statement is an equivalent formulation of Conjecture B.

Conjecture C. Every essentially 4-edge-connected graph contains a DCT.

By a cubic graph we will always mean a regular graph of degree 3 without multiple edges. It is easy to observe that if G is cubic, then a DCT in G becomes a dominating cycle (abbreviated DC), and that every essentially 4-edgeconnected cubic graph must be triangle-free, with a single exception of the graph K_{4}. To avoid this exceptional case, we will always consider only essentially 4 -edge-connected cubic graphs on at least five vertices.

Since a cubic graph is essentially 4-edge-connected if and only if it is cyclically 4-edge-connected (see [5], Corollary 1), the following statement, known as the Dominating Cycle Conjecture, is a special case of Conjecture C.

Conjecture D. Every cyclically 4-edge-connected cubic graph has a DC.
Restricting to cyclically 4 -edge-connected cubic graphs that are not 3-edge-colorable, we obtain the following conjecture posed by Fleischner [4].

Conjecture E ([4]). Every cyclically 4-edge-connected cubic graph that is not 3-edge-colorable has a DC.
In [10], a closure technique was used to prove that Conjectures A and B are equivalent. Fleischner and Jackson [5] showed that Conjectures B-D are equivalent. Finally, Kochol [7] established the equivalence of these conjectures with Conjecture E. Thus, we have the following result.

Theorem 2 ([5,7,10]). Conjectures A-E are equivalent.
A cyclically 4-edge-connected cubic graph G of girth $g(G) \geq 5$ that is not 3-edge-colorable is called a snark. Snarks have turned out to be an important class of graphs, for example in the context of nowhere zero flows. For more information about snarks see the paper [9]. Restricting our considerations to snarks, we obtain the following special case of Conjecture E.

Conjecture F. Every snark has a DC.
The following theorem, which is the main result of this paper, shows that Conjecture F is equivalent to the previous ones.

Theorem 3. Conjecture F is equivalent to Conjectures A-E.

The proof of Theorem 3 is postponed to Section 4.
As already noted, every cyclically 4-edge-connected cubic graph other than K_{4} must be triangle-free. Thus, the difference between Conjectures E and F consists in restricting to graphs which do not contain a 4 -cycle. For the proof
of the equivalence of these conjectures in Section 4 we first develop in Section 2 a refinement of the technique of contractible subgraphs that was developed in [11] as a common generalization of the closure concept [10] and Catlin's collapsibility technique [3], and in Section 3 a technique that allows us to handle the (non)existence of a DC while replacing a subgraph of a graph by another one.

2. Weakly contractible graphs

In this section we introduce a refinement of the contractibility technique from [11] under a special assumption which is automatically satisfied in cubic graphs. We basically follow the terminology and notation of [11].

For a graph H and a subgraph $F \subset H,\left.H\right|_{F}$ denotes the graph obtained from H by identifying the vertices of F as a (new) vertex v_{F}, and by replacing the created loops by pendant edges (i.e. edges with one vertex of degree 1). Note that $\left.H\right|_{F}$ may contain multiple edges and $\left|E\left(\left.H\right|_{F}\right)\right|=|E(H)|$. For a subset $X \subset V(H)$ and a partition \mathcal{A} of X into subsets, $E(\mathcal{A})$ denotes the set of all edges $a_{1} a_{2}$ (not necessarily in H) such that a_{1} and a_{2} are in the same element of \mathcal{A}, and $H^{\mathcal{A}}$ denotes the graph with vertex set $V\left(H^{\mathcal{A}}\right)=V(H)$ and edge set $E\left(H^{\mathcal{A}}\right)=E(H) \cup E(\mathcal{A})$ (here the sets $E(H)$ and $E(\mathcal{A})$ are considered to be disjoint, i.e. if $e_{1}=a_{1} a_{2} \in E(H)$ and $e_{2}=a_{1} a_{2} \in E(\mathcal{A})$, then e_{1}, e_{2} are parallel edges in $H^{\mathcal{A}}$).

Let F be a graph and $A \subset V(F)$. Then F is said to be A-contractible, if for every even subset $X \subset A$ (i.e. with $|X|$ even) and for every partition \mathcal{A} of X into two-element subsets, the graph $F^{\mathcal{A}}$ has a DCT containing all vertices of A and all edges of $E(\mathcal{A})$. In particular, the case $X=\emptyset$ implies that an A-contractible graph has a DCT containing all vertices of A.

If H is a graph and $F \subset H$, then a vertex $x \in V(F)$ is said to be a vertex of attachment of F in H if x has a neighbor in $V(H) \backslash V(F)$. The set of all vertices of attachment of F in H is denoted by $A_{H}(F)$. Finally, $\operatorname{dom}_{t r}(H)$ denotes the maximum number of edges of a graph H that are dominated by (i.e. have at least one vertex on) a closed trail in H. Specifically, H has a DCT if and only if $\operatorname{dom}_{t r}(H)=|E(H)|$.

The following theorem shows that a contraction of an $A_{H}(F)$-contractible subgraph of a graph H does not affect the value of $\operatorname{dom}_{t r}(H)$.

Theorem 4 ([11]). Let F be a connected graph and let $A \subset V(F)$. Then F is A-contractible if and only if

$$
\operatorname{dom}_{t r}(H)=\operatorname{dom}_{t r}\left(\left.H\right|_{F}\right)
$$

for every graph H such that $F \subset H$ and $A_{H}(F)=A$.
Specifically, F is A-contractible if and only if, for any H such that $F \subset H$ and $A_{H}(F)=A, H$ has a DCT if and only if $\left.H\right|_{F}$ has a DCT (the "only if" part follows by Theorem 4; the "if" part can be easily seen by the definition of A-contractibility).

Let F be a graph and let $A \subset V(F)$. The graph F is said to be weakly A-contractible, if for every nonempty even subset $X \subset A$ and for every partition \mathcal{A} of X into two-element subsets, the graph $F^{\mathcal{A}}$ has a DCT containing all vertices of A and all edges of $E(\mathcal{A})$.

Thus, in comparison with the contractibility concept as introduced in [11], we do not include the case $X=\emptyset$. This means that we do not require that a weakly A-contractible graph has a DCT containing all vertices of A.

Clearly, every A-contractible graph is also weakly A-contractible. It is easy to see that if F is weakly A-contractible and $|A| \geq 3$, then $d_{F}(x) \geq 2$ for every $x \in A$.

Examples. 1. The graphs in Fig. 1 are examples of graphs that are weakly A-contractible but not A-contractible (vertices of the set A are double-circled).
2. The triangle C_{3} is A-contractible for any subset A of its vertex set.
3. Let C be a cycle of length $\ell \geq 4$, let $x, y \in V(C)$ be nonadjacent and set $A=V(C), X=\{x, y\}$ and $\mathcal{A}=\{\{x, y\}\}$. Then there is no DCT in C containing the edge $x y \in C^{\mathcal{A}}$ and all vertices of A. Hence no cycle C of length at least 4 is weakly $V(C)$-contractible.

If H is a graph and $F \subset H$, then H_{-F} denotes the graph with vertex set $V\left(H_{-F}\right)=V(H) \backslash\left(V(F) \backslash A_{H}(F)\right)$ and with edge set $E\left(H_{-F}\right)=E(H) \backslash E(F)$ (equivalently, H_{-F} is the graph determined by the edge set $E(H) \backslash E(F)$).

Fig. 1.
Our next theorem shows that, in a special situation, weak contractibility is sufficient to obtain the equivalence of Theorem 4.

Theorem 5. Let F be a graph and let $A \subset V(F),|A| \geq 2$. Then F is weakly A-contractible if and only if

$$
\operatorname{dom}_{t r}(H)=\operatorname{dom}_{t r}\left(\left.H\right|_{F}\right)
$$

for every graph H such that $F \subset H, A_{H}(F)=A, d_{H_{-F}}(a)=1$ for every $a \in A$, and $|V(K) \cap A| \geq 2$ for at least one component K of H_{-F}.

Proof. The proof of Theorem 5 basically follows the proof of Theorem 2.1 of [11].
Let F be a graph and let H be a graph satisfying the assumptions of the theorem. Then every closed trail T in H corresponds to a closed trail in $\left.H\right|_{F}$, dominating at least as many edges as T. Hence immediately $\operatorname{dom}_{t r}(H) \leq$ $\operatorname{dom}_{t r}\left(\left.H\right|_{F}\right)$.

Suppose that F is weakly A-contractible and let T^{\prime} be a closed trail in $\left.H\right|_{F}$ such that T^{\prime} dominates $\operatorname{dom}_{t r}\left(\left.H\right|_{F}\right)$ edges and, subject to this condition, T^{\prime} has maximum length. If $v_{F} \notin V\left(T^{\prime}\right)$, then T^{\prime} is also a closed trail in H, implying $\operatorname{dom}_{t r}\left(\left.H\right|_{F}\right) \leq \operatorname{dom}_{t r}(H)$, as requested. Hence we can suppose $v_{F} \in V\left(T^{\prime}\right)$.

If T^{\prime} is nontrivial, i.e. contains an edge, then the edges of T^{\prime} determine in H a system of trails $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$, $k \geq 1$, such that every $P_{i} \in \mathcal{P}$ has end vertices in A (note that all trails in \mathcal{P} are open since $d_{H_{-F}}(a)=1$ for all $a \in A$). Since $d_{H_{-F}}(a)=1$ for all $a \in A$, every $x \in A$ is an end vertex of at most one trail from \mathcal{P}, and we set $X=\left\{x \in A_{H}(F) \mid x\right.$ is an end vertex of some $\left.P_{i} \in \mathcal{P}\right\}$ and $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$, where A_{i} is the (two-element) set of end vertices of $P_{i}, i=1, \ldots, k$.

If T^{\prime} is trivial (i.e., a one-vertex trail), then we consider a component K of H_{-F} for which $\left|V(K) \cap A_{H}(F)\right| \geq 2$. Let $x_{1}, x_{2} \in V(K) \cap A_{H}(F)$. If $V(K) \backslash\left\{x_{1}, x_{2}\right\} \neq \emptyset$ then, since K is connected, K contains a path of length at least 2 with end vertices x_{1}, x_{2}, but then we have a contradiction with the maximality of T^{\prime}. Hence $V(K)=\left\{x_{1}, x_{2}\right\}$ and $E(K)=\left\{x_{1} x_{2}\right\}$, and we set $P_{1}=x_{1} x_{2}, \mathcal{P}=\left\{P_{1}\right\}, X=\left\{x_{1}, x_{2}\right\}$ and $\mathcal{A}=\left\{\left\{x_{1}, x_{2}\right\}\right\}$. Note that in both cases the set X is nonempty.

By the weak A-contractibility of $F, F^{\mathcal{A}}$ has a DCT Q, containing all vertices of A and all edges of $E(\mathcal{A})$. The trail Q determines in F a system of trails Q_{1}, \ldots, Q_{k} such that every Q_{i} has its two end vertices in two different elements of \mathcal{A}. Now, the trails Q_{i} together with the system \mathcal{P} form a closed trail in H, dominating at least as many edges as T^{\prime}. Hence $\operatorname{dom}_{t r}\left(\left.H\right|_{F}\right) \leq \operatorname{dom}_{t r}(H)$, implying $\operatorname{dom}_{t r}\left(\left.H\right|_{F}\right)=\operatorname{dom}_{t r}(H)$.

Next suppose that F is not weakly A-contractible (possibly even disconnected). Then, for some nonempty $X \subset A$ and a partition \mathcal{A} of X into two-element sets, $F^{\mathcal{A}}$ has no DCT containing all vertices of A and all edges of $E(\mathcal{A})$. Let $\mathcal{A}=\left\{\left\{x_{1}^{\prime}, x_{1}^{\prime \prime}\right\}, \ldots,\left\{x_{k}^{\prime}, x_{k}^{\prime \prime}\right\}\right\}$, and construct a graph H with $F \subset H$ by replacing the edges of $E(\mathcal{A})$ by k vertex disjoint $x_{i}^{\prime}, x_{i}^{\prime \prime}$-paths P_{i} of length at least $3, i=1, \ldots, k$, and by attaching a pendant edge to every vertex in $A \backslash X$. Since $X \neq \emptyset$, at least one component K of H_{-F} is a path with end vertices in A, implying $|V(K) \cap A| \geq 2$. Since $F^{\mathcal{A}}$ has no DCT containing all vertices of A and all edges of $E(\mathcal{A}), H$ has no DCT. However, clearly $\left.H\right|_{F}$ has a DCT and we have $\operatorname{dom}_{t r}(H)<\operatorname{dom}_{t r}\left(\left.H\right|_{F}\right)$.

In the special case of cubic graphs, we have the following corollary.

Fig. 2.
Corollary 6. Let F be a graph with $\delta(F)=2, \Delta(F) \leq 3$ and $|A| \geq 2$, where $A=\left\{x \in V(F) \mid d_{F}(x)=2\right\}$. Then F is weakly A-contractible if and only if

$$
\operatorname{dom}_{t r}(H)=\operatorname{dom}_{t r}\left(\left.H\right|_{F}\right)
$$

for every cubic graph H such that $F \subset H, A_{H}(F)=A$, and $|V(K) \cap A| \geq 2$ for at least one component K of H_{-F}.
Proof. Clearly $d_{H_{-F}}=1$ for every $a \in A$, since H is cubic. If F is weakly A-contractible, then $\operatorname{dom}_{t r}(H)=$ $\operatorname{dom}_{t r}\left(\left.H\right|_{F}\right)$ immediately by Theorem 5. For the rest of the proof, it is sufficient to modify the last part of the proof of Theorem 5 such that the constructed graph H is cubic. To achieve this, it is sufficient to use a copy of the graph in Fig. 2(a) instead of each of the paths P_{i}, and a copy of the graph in Fig. 2(b) instead of each of the pendant edges attached to the vertices $a_{j} \in A \backslash X$. Then there is a component K of H_{-F} with $|V(K) \cap A| \geq 2$ since X is nonempty. The graph $\left.H\right|_{F}$ has a closed trail dominating all edges except for the edges different from e_{j} in the copies attached to the vertices in $A \backslash X$, while in H there is no such closed trail.

We say that a subgraph $F \subset H$ is a weakly contractible subgraph of H if F is weakly $A_{H}(F)$-contractible. We then have the following corollary.

Corollary 7. Let H be a cubic graph and let F be a weakly contractible subgraph of H with $\delta(F)=2$. Then H has a DC if and only if $\left.H\right|_{F}$ has a DCT.
Proof. First note that in a cubic graph every closed trail is a cycle and that a cubic graph with a DC must be essentially 2-edge-connected. Since H is cubic and $\delta(F)=2, A_{H}(F)=\left\{x \in V(F) \mid d_{F}(x)=2\right\}$ and the weak contractibility assumption implies F is connected. If every component of H_{-F} contains one vertex from $A_{H}(F)$, then clearly neither H nor $\left.H\right|_{F}$ is essentially 2-edge-connected (since H is cubic) and hence neither H nor $\left.H\right|_{F}$ has a DCT. The rest of the proof follows from Corollary 6.

Example. Let H be the graph obtained from three vertex-disjoint copies F_{1}, F_{2}, F_{3} of the graph F_{i} from Fig. 2(a) by adding edges $x_{1}^{\prime} x_{2}^{\prime}, x_{1}^{\prime} x_{3}^{\prime}, x_{2}^{\prime} x_{3}^{\prime}, x_{1}^{\prime \prime} x_{2}^{\prime \prime}, x_{1}^{\prime \prime} x_{3}^{\prime \prime}, x_{2}^{\prime \prime} x_{3}^{\prime \prime}$. Then H is cubic, $F_{1} \subset H$ is weakly contractible, $\left.H\right|_{F_{1}}$ has a DCT, but H has no DC. This example shows that the assumption $\delta(F)=2$ in Corollaries 6 and 7 cannot be omitted.

3. Replacement of a subgraph

In this section we develop a technique to replace certain subgraphs by others without affecting the (non)existence of a DCT.

Let G be a graph and let $F \subset G$ be a subgraph of G. Let F^{\prime} be a graph such that $V\left(F^{\prime}\right) \cap V(G)=\emptyset$, let $A^{\prime} \subset V\left(F^{\prime}\right)$ be such that $\left|A^{\prime}\right|=\left|A_{G}(F)\right|$ and let $\varphi: A_{G}(F) \rightarrow A^{\prime}$ be a bijection. Let H be the graph obtained from G_{-F} and F^{\prime} by identifying each $x \in A_{G}(F)$ with its image $\varphi(x) \in A^{\prime}$. We say that the graph H is obtained by replacement (in G) of F by F^{\prime} modulo φ and denote $H=G\left[F \xrightarrow{\varphi} F^{\prime}\right]$.

Note that if $H=G\left[F \xrightarrow{\varphi} F^{\prime}\right]$ then also clearly $G=H\left[F^{\prime} \xrightarrow{\varphi^{-1}} F\right]$.
Let F be a graph and let $A=\left\{a_{1}, \ldots, a_{k}\right\} \subset V(F)$. Let \bar{A} be a set with $\bar{A} \cap V(F)=\emptyset,|\bar{A}|=|A|$, and set $\bar{A}=\left\{\bar{a}_{1}, \ldots, \bar{a}_{k}\right\}$. Then \bar{F}^{A} denotes the graph with vertex set $V\left(\bar{F}^{A}\right)=V(F) \cup \bar{A}$ and with edge set $E\left(\bar{F}^{A}\right)=E(F) \cup\left\{a_{i} \bar{a}_{i} \mid i=1, \ldots, k\right\}$ (i.e., \bar{F}^{A} is obtained from F by attaching a pendant edge to every vertex of A).

The following observation shows that, under certain conditions, the replacement in a graph G of a weakly contractible subgraph by another one affects neither the existence nor the nonexistence of a DCT in G.

Proposition 8. Let G be a graph with $\delta(G) \geq 1$ and let $F \subset G$ be a weakly contractible subgraph of G such that $|E(F)| \geq 1, d_{G_{-F}}(x)=1$ for every $x \in A_{G}(F)$ and $G \not \not \bar{F}^{A_{G}(F)}$. Let $F^{\prime},\left|E\left(F^{\prime}\right)\right| \geq 1$, be a weakly A^{\prime}-contractible graph for an $A^{\prime} \subset V\left(F^{\prime}\right)$, and let $\varphi: A_{G}(F) \rightarrow A^{\prime}$ be a bijection. Then G has a DCT if and only if $G\left[F \xrightarrow{\varphi} F^{\prime}\right]$ has a DCT.
Proof. Set $H=G\left[F \xrightarrow{\varphi} F^{\prime}\right]$. For $\left|A_{G}(F)\right|=0$ the assumptions $G \not \not \bar{F}^{A_{G}(F)}$ and $\delta(G) \geq 1$ imply that G is disconnected and neither G nor H has a DCT. If $\left|A_{G}(F)\right|=1$ or if $\left|A_{G}(F)\right| \geq 2$ and $\left|V(K) \cap A_{G}(F)\right|=1$ for every component K of G_{-F}, then neither G nor H can have a DCT since $|E(F)| \geq 1,\left|E\left(F^{\prime}\right)\right| \geq 1, d_{G_{-F}}(x)=1$ for every $x \in A_{G}(F)$ and $G \nsucceq \bar{F}^{A_{G}(F)}$. Thus, we can assume that $\left|A_{G}(F)\right| \geq 2$ and there is a component K of G_{-F} such that $\left|V(K) \cap A_{G}(F)\right| \geq 2$. Then, by Theorem 5, G has a DCT if and only if $\left.G\right|_{F}$ has a DCT. Similarly, H has a DCT if and only if $\left.H\right|_{F^{\prime}}$ has a DCT, but the graphs $\left.G\right|_{F}$ and $\left.H\right|_{F^{\prime}}$ are, up to the number of pendant edges at $v_{F}\left(v_{F^{\prime}}\right)$, isomorphic.

In the special case of cubic graphs, we obtain the following consequence.
Corollary 9. Let G be a cubic graph and let $F \subset G$ be a weakly contractible subgraph of G with $\delta(F)=2$. Let F^{\prime} be a graph with $\delta\left(F^{\prime}\right)=2$ and $\Delta\left(F^{\prime}\right) \leq 3$, let $A^{\prime}=\left\{x \in V\left(F^{\prime}\right) \mid d_{F^{\prime}}(x)=2\right\}$ and suppose that F^{\prime} is weakly A^{\prime}-contractible. Let $\varphi: A_{G}(F) \rightarrow A^{\prime}$ be a bijection. Then the graph $H=G\left[F \xrightarrow{\varphi} F^{\prime}\right]$ is cubic and G has a DC if and only if H has a DC.

Proof. Clearly $A_{G}(F)=\left\{x \in V(F) \mid d_{F}(x)=2\right\}$ and since G is cubic, we have $d_{G_{-F}}(x)=1$ for every $x \in A_{G}(F)$ and $G \not \not \bar{F}^{A_{G}(F)}$. Since φ is a bijection, H is cubic. By Proposition $8, G$ has a DCT if and only if H has a DCT, but in cubic graphs every DCT is a DC.

Now we consider a similar question if F and/or F^{\prime} are not contractible. We restrict our observations to cubic graphs.

A connected graph F without multiple edges with $\Delta(F) \leq 3$ will be called a cubic fragment. For any cubic fragment F and $i=1,2$ we set $A_{i}(F)=\left\{x \in V(F) \mid d_{F}(x)=i\right\}$ and $A(F)=A_{1}(F) \cup A_{2}(F)$ (note that if $F \subset H$, F is connected and H is cubic, then F is a cubic fragment and $A_{H}(F)=A(F)$). A cubic fragment F is said to be essential if $\left|V(F) \backslash A_{1}(F)\right| \geq 2$. It is easy to observe that if F is an essential cubic fragment, the set $V(F) \backslash A_{1}(F)$ induces (in F) a connected subgraph with at least one edge.

For a cubic fragment F we now introduce the concept of an F-linkage. An F-linkage will be allowed to contain loops. A loop on a vertex v is considered as an edge joining v to itself, and is denoted by an element $v v$ of the edge set. Edges of an F-linkage that are not loops will be referred to as open edges.

Let F be a cubic fragment and let B be a graph with $V(B) \subset A(F), E(B) \cap E(F)=\emptyset$, and with components B_{1}, \ldots, B_{k}. We say that B is an F-linkage, if $E(B)$ contains at least one open edge and, for any $i=1, \ldots, k$,
(i) every B_{i} is a path (of length at least one) or a loop,
(ii) if B_{i} is a path of length at least two, then all interior vertices of B_{i} are in $A_{1}(F)$,
(iii) if B_{i} is a loop at a vertex x, then $x \in A_{2}(F)$.

Let F be a cubic fragment and let B be an F-linkage. Then F^{B} denotes the graph with vertex set $V\left(F^{B}\right)=V(F)$ and edge set $E\left(F^{B}\right)=E(F) \cup E(B)$. Note that $E(B)$ and $E(F)$ are assumed to be disjoint, i.e. if $h_{1}=x_{1} x_{2} \in E(F)$ and $h_{2}=x_{1} x_{2} \in E(B)$, then h_{1}, h_{2} are parallel edges of the graph F^{B}.

Let F_{1}, F_{2} be cubic fragments with $\left|A\left(F_{1}\right)\right|=\left|A\left(F_{2}\right)\right|$ and let $\varphi: A\left(F_{1}\right) \rightarrow A\left(F_{2}\right)$ be a bijection. For any F_{1}-linkage $B, \varphi(B)$ denotes the graph with vertex set $V(\varphi(B))=\{\varphi(x) \mid x \in V(B)\}$ and edge set $E(\varphi(B))=$ $\{\varphi(x) \varphi(y) \mid x y \in E(B)\}$ (note that the sets $E\left(F_{2}\right)$ and $E(\varphi(B))$ are again considered to be disjoint, and we admit $x=y$ in which case $\varphi(x) \varphi(x)$ is a loop at $\varphi(x))$. Note that $\varphi(B)$ is an F_{2}-linkage.

Let F_{1}, F_{2} be cubic fragments with $\left|A\left(F_{1}\right)\right|=\left|A\left(F_{2}\right)\right|$ and let $\varphi: A\left(F_{1}\right) \rightarrow A\left(F_{2}\right)$ be a bijection. We say that φ is a compatible mapping if

Fig. 3.
(i) $\varphi\left(A_{i}\left(F_{1}\right)\right)=A_{i}\left(F_{2}\right), i=1,2$,
(ii) if B is an F_{1}-linkage such that F_{1}^{B} has a DC containing all open edges of B, then $F_{2}^{\varphi(B)}$ has a DC containing all open edges of $\varphi(B)$.

For a compatible mapping $\varphi: A\left(F_{1}\right) \rightarrow A\left(F_{2}\right)$ we will simply write $\varphi: F_{1} \rightarrow F_{2}$.
Let F_{1}, F_{2} be cubic fragments and let $\varphi: A\left(F_{1}\right) \rightarrow A\left(F_{2}\right)$ be a bijection such that $\varphi\left(A_{i}\left(F_{1}\right)\right)=A_{i}\left(F_{2}\right), i=1,2$. It is easy to observe that if F_{2} is weakly $A\left(F_{2}\right)$-contractible then φ is compatible, and if moreover F_{1} is weakly $A\left(F_{1}\right)$ contractible then both φ and φ^{-1} are compatible (note that B cannot contain a path of length at least 2 in this case this is clear for $\left|A\left(F_{i}\right)\right| \leq 2$, and for $\left|A\left(F_{i}\right)\right| \geq 3$ this follows from the fact that weak $A\left(F_{i}\right)$-contractibility of F_{i} then implies $\left.A\left(F_{i}\right)=A_{2}\left(F_{i}\right)\right)$.

The following example shows that the compatibility of a mapping φ does not imply φ^{-1} is compatible if the F_{i} 's are not weakly contractible.

Example. Let F_{1}, F_{2} be the graphs in Fig. 3 and let $\varphi: A\left(F_{1}\right) \rightarrow A\left(F_{2}\right)$ be the mapping that maps a_{j}^{1} on a_{j}^{2}, $j=1,2,3,4$. By a straightforward check of all possible F_{1}-linkages B and the corresponding DC's in F_{1}^{B} and in $F_{2}^{\varphi(B)}$, we easily see that there are, up to symmetry, the following possibilities.

$E(B)$	DC in F_{1}^{B}	DC in $F_{2}^{\varphi(B)}$
$a_{1}^{1} a_{4}^{1}$	$a_{1}^{1} a_{4}^{1} y x a_{1}^{1}$	$a_{1}^{2} a_{4}^{2} w u v z a_{1}^{2}$
$a_{1}^{1} a_{2}^{1}$	not existing	not existing
$a_{1}^{1} a_{2}^{1}, a_{2}^{1} a_{4}^{1}$	$a_{1}^{1} a_{2}^{1} a_{4}^{1} y x a_{1}^{1}$	$a_{1}^{2} a_{2}^{2} a_{4}^{2} w u v z a_{1}^{2}$
$a_{1}^{1} a_{3}^{1}, a_{3}^{1} a_{2}^{1}$	not existing	$a_{1}^{2} a_{3}^{2} a_{2}^{2} u w z a_{1}^{2}$
$a_{1}^{1} a_{2}^{1}, a_{2}^{1} a_{3}^{1}, a_{3}^{1} a_{4}^{1}$	$a_{1}^{1} a_{2}^{1} a_{3}^{1} a_{4}^{1} y x a_{1}^{1}$	$a_{1}^{2} a_{2}^{2} a_{3}^{2} a_{4}^{2} w u v z a_{1}^{2}$
$a_{1}^{1} a_{4}^{1}, a_{4}^{1} a_{3}^{1}, a_{3}^{1} a_{2}^{1}$	$a_{1}^{1} a_{4}^{1} a_{3}^{1} a_{2}^{1} x a_{1}^{1}$	$a_{1}^{2} a_{4}^{2} a_{3}^{2} a_{2}^{2} u w z a_{1}^{2}$
$a_{1}^{1} a_{4}^{1}, a_{2}^{1} a_{3}^{1}$	$a_{1}^{1} a_{4}^{1} y a_{3}^{1} a_{2}^{1} x a_{1}^{1}$	$a_{1}^{2} a_{4}^{2} w u a_{2}^{2} a_{3}^{2} v z a_{1}^{2}$
$a_{1}^{1} a_{2}^{1}, a_{3}^{1} a_{4}^{1}$	not existing	$a_{1}^{2} a_{2}^{2} u v a_{3}^{2} a_{4}^{2} w z a_{1}^{2}$

We conclude that $\varphi: A\left(F_{1}\right) \rightarrow A\left(F_{2}\right)$ is a compatible mapping, but there is no compatible mapping of $A\left(F_{2}\right)$ onto $A\left(F_{1}\right)$. Note that this mapping φ will play an important role in the proof of our main result in Section 4.

The following result shows that the replacement of a subgraph of a cubic graph modulo a compatible mapping does not affect the existence of a DC.

Theorem 10. Let G be a cubic graph and let C be a $D C$ in G. Let $F \subset G$ be an essential cubic fragment such that $G-F$ is not edgeless, and let F^{\prime} be a cubic fragment such that $V\left(F^{\prime}\right) \cap V(G)=\emptyset$ and there is a compatible mapping $\varphi: F \rightarrow F^{\prime}$. Then the graph $G^{\prime}=G\left[F \xrightarrow{\varphi} F^{\prime}\right]$ is a cubic graph having a DC C^{\prime} such that $E(C) \backslash E(F)=E\left(C^{\prime}\right) \backslash E\left(F^{\prime}\right)$.
(Note that if both φ and φ^{-1} are compatible and both F and F^{\prime} are essential, then G has a DC if and only if $G^{\prime}=G\left[F \xrightarrow{\varphi} F^{\prime}\right]$ has a DC.)

Proof. By the compatibility of $\varphi, A_{1}\left(F^{\prime}\right)=\varphi\left(A_{1}(F)\right)$ and $A_{2}\left(F^{\prime}\right)=\varphi\left(A_{2}(F)\right)$, hence G^{\prime} is cubic. Let C be a DC in G. We show that G^{\prime} has a DC C^{\prime} with $E(C) \backslash E(F)=E\left(C^{\prime}\right) \backslash E\left(F^{\prime}\right)$.

We first observe that $E(C) \cap E(F) \neq \emptyset$. Since F is essential, there is an edge $x y \in E(F)$ with $d_{F}(x) \geq 2$ and $d_{F}(y) \geq 2$. Then one of x, y (say, x) is on C. Since $d_{F}(x) \geq 2, x$ has a neighbor x_{1} in $F, x_{1} \neq y$. Then, since $d_{G}(x)=3$, the edge $x y$ or $x x_{1}$ is in $E(C) \cap E(F)$.

Let C_{F} and C_{-F} denote the subgraph of C induced by the edge set $E(C) \cap E(F)$ and $E(C) \cap E\left(G_{-F}\right)$, respectively. Since $E(C) \cap E(F) \neq \emptyset$ and $G-F$ is not edgeless, C_{-F} is a nonempty system of paths. Let P_{1}, \ldots, P_{k} be the components of C_{-F}. Then:

- the end vertices of every P_{i} are in $A(F)$,
- the interior vertices of every P_{i} are in $A_{1}(F)$ or in $V(G) \backslash V(F)$,
where $i=1, \ldots, k$.
We define an F-linkage B as follows:
(i) for every P_{i}, let P_{i}^{B} be the path obtained from P_{i} by replacing every maximal subpath of P_{i} with all interior vertices in $V(G) \backslash V(F)$ by a single edge (with both vertices in $A(F)$),
(ii) for every vertex $x \in A(F) \backslash V\left(C_{-F}\right)$ which is on C_{F} (note that such a vertex x must be in $A_{2}(F)$), let e_{x} be a loop at x,
(iii) B is the graph with components $\left\{P_{i}^{B} \mid i=1, \ldots, k\right\} \cup\left\{e_{x} \mid x \in A_{2}(F) \backslash V\left(C_{-F}\right) \cap V(C)\right\}$.

It is immediate to observe that the graph F^{B} has a DC C^{B} containing all open edges of B. By the compatibility of φ, the graph $\left(F^{\prime}\right)^{\varphi(B)}$ has a DC $C^{\prime B}$ containing all open edges of the graph $\varphi(B)$.

Let $C_{F^{\prime}}^{\prime}$ denote the subgraph of $C^{\prime B}$ induced by the edge set $E\left(C^{\prime B}\right) \cap E\left(F^{\prime}\right)$. Then $C_{F^{\prime}}^{\prime}$ is a system of paths, and the edges in $E\left(C_{F^{\prime}}^{\prime}\right) \cup E\left(C_{-F}\right)$ determine a cycle C^{\prime} in $G^{\prime}=G\left[F \xrightarrow{\varphi} F^{\prime}\right]$ with $E(C) \backslash E(F)=E\left(C^{\prime}\right) \backslash E\left(F^{\prime}\right)$. Note that, by the construction, $V(C) \cap A(F) \subset V\left(C^{\prime}\right) \cap A\left(F^{\prime}\right)$ (this is clear for vertices x with $d_{C_{-F}}(x) \geq 1$, and for vertices x with $d_{C_{-F}}(x)=0$ this follows from the fact that both C^{B} and $C^{\prime B}$ dominate all loops in B and in $\varphi(B)$, respectively).

It remains to show that C^{\prime} is a DC in G^{\prime}. Thus, let $x y \in E\left(G^{\prime}\right)$.
If $x, y \in V\left(G^{\prime}\right) \backslash V\left(F^{\prime}\right)=V(G) \backslash V(F)$, then x or y is on C_{-F}, implying x or y is on C^{\prime} since $C_{-F} \subset C^{\prime}$. If $x, y \in V\left(F^{\prime}\right) \backslash A\left(F^{\prime}\right)$, then x or y is on $C_{F^{\prime}}^{\prime}$, implying x or y is on C^{\prime} since $C_{F^{\prime}}^{\prime} \subset C^{\prime}$.

Up to symmetry, it remains to consider the case $x \in A\left(F^{\prime}\right)=\varphi(A(F))$. If $x \in V(C)$, then also $x \in V\left(C^{\prime}\right)$ since $V(C) \cap A(F) \subset V\left(C^{\prime}\right) \cap A\left(F^{\prime}\right)$, as observed above. Hence we can suppose that $x \notin V(C)$, implying $y \in V(C)$. If $y \in A\left(F^{\prime}\right)$, then similarly $y \in V\left(C^{\prime}\right)$ and we are done; hence $y \notin A\left(F^{\prime}\right)$. Then either $y \in V\left(F^{\prime}\right) \backslash A\left(F^{\prime}\right)$, or $y \in V\left(G^{\prime}\right) \backslash V\left(F^{\prime}\right)$. But then, in the first case y is on $C_{F^{\prime}}^{\prime}$ since C^{\prime} is dominating in $\left(F^{\prime}\right)^{\varphi(B)}$, and in the second case y is on C_{-F} since C is dominating in G. In either case this implies $y \in V\left(C^{\prime}\right)$.

The following result shows that the existence of a compatible mapping is not affected by a replacement of a subgraph by another one modulo a compatible mapping.

Proposition 11. Let X, F be essential cubic fragments such that there is a compatible mapping $\psi: X \rightarrow F$. Let $F_{1} \subset F$ be an essential cubic fragment, and let F_{2} be a cubic fragment such that $V(F) \cap V\left(F_{2}\right)=\emptyset$ and there is a compatible mapping $\varphi: F_{1} \rightarrow F_{2}$. Let $F^{\prime}=F\left[F_{1} \xrightarrow{\varphi} F_{2}\right]$. Then there is a compatible mapping $\psi^{\prime}: X \rightarrow F^{\prime}$.
Proof. For any $x \in A(X)$ set

$$
\psi^{\prime}(x)= \begin{cases}\psi(x) & \text { if } x \in \psi^{-1}\left(A(F) \backslash A\left(F_{1}\right)\right), \\ \varphi(\psi(x)) & \text { if } x \in \psi^{-1}\left(A(F) \cap A\left(F_{1}\right)\right) .\end{cases}
$$

Then $\psi^{\prime}: A(X) \rightarrow A\left(F^{\prime}\right)$ is a bijection, and $\psi^{\prime}: A_{i}(X) \rightarrow A_{i}\left(F^{\prime}\right), i=1,2$, by the compatibility of ψ and φ. Let B be an X-linkage such that X^{B} has a DC containing all open edges of B. By the compatibility of ψ, the graph $F^{\psi(B)}$ has a DC C containing all open edges of $\psi(B)$. We need to show that $\left(F^{\prime}\right)^{\psi^{\prime}(B)}$ has a DC containing all open edges of $\psi^{\prime}(B)$. We will construct a cubic graph H such that $F \subset H, H$ has a DC that coincides with C on F, and the structure of $H-F$ implies that an application of Theorem 10 to H yields the required DC in $\left(F^{\prime}\right)^{\psi^{\prime}(B)}$.

Let B_{1}, \ldots, B_{k} be the components of $\psi(B)$, and choose the notation such that

Fig. 4.

- $B_{1}, \ldots, B_{p}(p \geq 1)$ are paths, $V\left(B_{j}\right)=\left\{x_{j}^{0}, \ldots, x_{j}^{\ell_{j}}\right\}$ (i.e. B_{j} is of length ℓ_{j}), $j=1, \ldots, p$;
- if none of B_{1}, \ldots, B_{k} is a loop, then $\ell=0$, otherwise $B_{p+1}, \ldots, B_{p+\ell}$ are loops, $V\left(B_{p+j}\right)=\left\{x_{p+j}\right\}$, $j=1, \ldots, \ell$;
- if $A(F) \backslash V(\psi(B))=\emptyset$, then $f=0$, otherwise $A(F) \backslash V(\psi(B))=\left\{x_{p+\ell+1}, \ldots, x_{p+\ell+f}\right\}$.

Thus, we have $k=p+\ell$ and $V(\psi(B))=\cup_{j=1}^{p+\ell}\left(V\left(B_{j}\right)\right)$.
Let $Q_{j}, R_{j}^{s}(s \geq 2), S_{j}$ and T_{j} be the graphs shown in Fig. 4. We construct a cubic graph H containing F by the following construction:

- take the graph F with the labeling of vertices of $A(F)$ defined above;
- for each B_{j} with $1 \leq j \leq p, \ell_{j}=1$, take one copy of Q_{j} and for $i=0,1$ identify $x_{j}^{i}=q_{j}^{i}$ if $x_{j}^{i} \in A_{1}(F)$ or add the edge $x_{j}^{i} q_{j}^{i}$ if $x_{j}^{i} \in A_{2}(F)$, respectively,
- for each B_{j} with $1 \leq j \leq p, \ell_{j}>1$, take one copy of R_{j}^{s} for $s=\ell_{j}$ and
- for $i=0$ and $i=\ell_{j}$ identify $x_{j}^{i}=r_{j}^{i}$ if $x_{j}^{i} \in A_{1}(F)$ or add the edge $x_{j}^{i} r_{j}^{i}$ if $x_{j}^{i} \in A_{2}(F)$, respectively,
- for $1 \leq i \leq \ell_{j}-1$ identify $x_{j}^{i}=r_{j}^{i}$;
- for each B_{j} with $p+1 \leq j \leq p+\ell$ (if $\ell>0$) take one copy of S_{j}, add the edge $x_{j} s_{j}$, and if $\ell \geq 2$, then for $j \geq p+2$ add the edge $v_{j-1} u_{j} ;$
- for each x_{j} with $p+\ell+1 \leq j \leq p+\ell+f$ (if $f>0$) do the following:
- if $x_{j} \in A_{1}(F)$, take one copy of S_{j}, identify $x_{j}=s_{j}$ and if $f \geq 2$, then for $j \geq p+\ell+2$ add the edge $v_{j-1} u_{j}$ (if $x_{j-1} \in A_{1}(F)$), or the edge $w_{j-1} u_{j}$ (if $x_{j-1} \in A_{2}(F)$), respectively;
- if $x_{j} \in A_{2}(F)$, take one copy of T_{j}, identify $x_{j}=t_{j}$ and if $f \geq 2$, then for $j \geq p+\ell+2$ add the edge $v_{j-1} w_{j}$ (if $x_{j-1} \in A_{1}(F)$), or the edge $w_{j-1} w_{j}$ (if $x_{j-1} \in A_{2}(F)$), respectively;
- if $x_{p+\ell+1} \in A_{2}(F)$, then relabel $w_{p+\ell+1}$ as $u_{p+\ell+1}$ and if $x_{p+\ell+f} \in A_{2}(F)$, then relabel $w_{p+\ell+f}$ as $v_{p+\ell+f}$;
- if $\ell \neq 0$, then
- for $\ell_{1}=1$ remove the edge $q_{1}^{0} a_{1}$ and add the edges $q_{1}^{0} u_{p+1}$ and $a_{1} v_{p+\ell}$,
- for $\ell_{1}>1$ remove the edge $r_{1}^{0} r_{1}^{1}$ and add the edges $r_{1}^{0} u_{p+1}$ and $r_{1}^{1} v_{p+\ell}$;
- if $f \neq 0$, then
- for $\ell_{1}=1$ remove the edge $b_{1} q_{1}^{1}$ and add the edges $b_{1} u_{p+\ell+1}$ and $q_{1}^{1} v_{p+\ell+f}$,
- for $\ell_{1}>1$ remove the edge $r_{1}^{\ell_{1}-1} r_{1}^{\ell_{1}}$ and add the edges $r_{1}^{\ell_{1}-1} u_{p+\ell+1}$ and $r_{1}^{\ell_{1}} v_{p+\ell+f}$.

Then H is a cubic graph, $F \subset H, A_{H}(F)=A(F)$, and it is straightforward to check that H has a DC C^{H} such that $E\left(C^{H}\right) \cap E(F)=E(C) \cap E(F)$.

Let C_{-F}^{H} denote the subgraph of C^{H} induced by the edge set $E\left(C^{H}\right) \cap E\left(H_{-F}\right)$. Then the structure of the graphs Q_{j}, R_{j}^{s}, S_{j} and T_{j} implies the following properties of C_{-F}^{H} :

- if $1 \leq j \leq p$ and $i=0$ or $i=\ell_{j}$, then $d_{C_{-F}^{H}}\left(x_{j}^{i}\right)=1$,
- if $1 \leq j \leq p$ and $1 \leq i \leq \ell_{j}-1$, then $d_{C_{-F}^{H}}\left(x_{j}^{i}\right)=2$,
- if $\ell>0$ and $p+1 \leq j \leq p+\ell$, then $d_{C_{-F}}^{H}\left(x_{j}\right)=0$ and x_{j} has no neighbor on C_{-F}^{H},
- if $f>0$ and $p+\ell+1 \leq j \leq p+\ell+f$, then $d_{C_{-F}}^{H}\left(x_{j}\right)=0$ and all neighbors of x_{j} in H_{-F} are on C_{-F}^{H}.

Set $H^{\prime}=H\left[F_{1} \xrightarrow{\varphi} F_{2}\right]$. By the compatibility of φ and by Theorem $10, H^{\prime}$ has a DC $C^{H^{\prime}}$ such that $E\left(C^{H^{\prime}}\right) \backslash E\left(F_{2}\right)=E\left(C^{H}\right) \backslash E\left(F_{1}\right)$. Specifically, $F^{\prime} \subset H^{\prime}$ and $E\left(C^{H^{\prime}}\right) \backslash E\left(F^{\prime}\right)=E\left(C^{H}\right) \backslash E(F)$. Let $C_{F^{\prime}}^{H^{\prime}}$ and $C_{-F^{\prime}}^{H^{\prime}}$ denote the subgraph of $C^{H^{\prime}}$ induced by $E\left(C^{H^{\prime}}\right) \cap E\left(F^{\prime}\right)$ and $E\left(C^{H^{\prime}}\right) \cap E\left(H_{-F^{\prime}}^{\prime}\right)$, respectively. Then $C_{-F^{\prime}}^{H^{\prime}}=C_{-F}^{H}$, and from the above properties of C_{-F}^{H} we obtain the following properties of $C_{F^{\prime}}^{H^{\prime}}$:

- if $1 \leq j \leq p$ and $i=0$ or $i=\ell_{j}$, then $d_{C_{F^{\prime}}^{H^{\prime}}}\left(x_{j}^{i}\right)=1$,
- if $1 \leq j \leq p$ and $1 \leq i \leq \ell_{j}-1$, then $d_{C_{F^{\prime}}^{H^{\prime}}}\left(x_{j}^{i}\right)=0$ and all edges of F^{\prime} with at least one vertex in $N_{F^{\prime}}\left(x_{j}^{i}\right)$ have at least one vertex on $C^{H^{\prime}}$,
- if $\ell>0$ and $p+1 \leq j \leq p+\ell$, then $d_{C_{F^{\prime}}^{H^{\prime}}}\left(x_{j}\right)=2$,
- if $f>0$ and $p+\ell+1 \leq j \leq p+\ell+f$, then either $d_{C_{F^{\prime}}^{H^{\prime}}}\left(x_{j}\right)=2$, or $d_{C_{F^{\prime}}^{H^{\prime}}}\left(x_{j}\right)=0$ and all neighbors of x_{j} in F^{\prime} are on $C_{F^{\prime}}^{H^{\prime}}$.
This implies that $C_{F^{\prime}}^{H^{\prime}}$ together with the open edges of $\psi^{\prime}(B)$ determines the required DC in $\left(F^{\prime}\right)^{\psi^{\prime}(B)}$ containing all open edges of $\psi^{\prime}(B)$.

For a cubic fragment F with $A(F)=A_{2}(F)$ we will simply write $\bar{F}^{A(F)}=\bar{F}$. If F_{1}, F_{2} are cubic fragments with $A\left(F_{i}\right)=A_{2}\left(F_{i}\right), i=1,2$ and $\varphi: A\left(F_{1}\right) \rightarrow A\left(F_{2}\right)$ is a bijection, then $\bar{\varphi}$ denotes the bijection $\bar{\varphi}: A\left(\overline{F_{1}}\right) \rightarrow A\left(\overline{F_{2}}\right)$ defined by $\bar{\varphi}(\bar{a})=\overline{\varphi(a)}, a \in A\left(F_{1}\right)$.

In the proof of Proposition 14 we will also need the following statement showing that the existence (or nonexistence) of a compatible mapping is not affected by adding pendant edges to vertices of attachment.

Proposition 12. Let F_{1}, F_{2} be cubic fragments with $\left|A\left(F_{1}\right)\right|=\left|A\left(F_{2}\right)\right|$ and $A\left(F_{i}\right)=A_{2}\left(F_{i}\right), i=1,2$, and let $\varphi: A\left(F_{1}\right) \rightarrow A\left(F_{2}\right)$ be a bijection. Then φ is compatible if and only if $\bar{\varphi}: A\left(\overline{F_{1}}\right) \rightarrow A\left(\overline{F_{2}}\right)$ is compatible.
Proof. Set $A\left(F_{1}\right)=\left\{a_{1}, \ldots, a_{k}\right\}$. Suppose first that φ is compatible and let \bar{B} be an $\overline{F_{1}}$-linkage such that there is a DC \bar{C} in $\left(\overline{F_{1}}\right)^{\bar{B}}$ containing all open edges of \bar{B}. Since $A\left(\overline{F_{1}}\right)=A_{1}\left(\overline{F_{1}}\right)$, all components of \bar{B} are paths. We define an F_{1}-linkage B as follows:
(i) $a_{i} a_{j} \in E(B), i \neq j$, if and only if \bar{B} has a component which is an $\overline{a_{i}}, \overline{a_{j}}$-path,
(ii) $a_{i} a_{i} \in E(B)$ if and only if $\overline{a_{i}} \in A\left(\overline{F_{1}}\right) \backslash V(\bar{B})$.
(This means that vertices in $A(F)$ corresponding to internal vertices of paths in \bar{B} will not be in $V(B)$, and vertices corresponding to vertices not in $V(\bar{B})$ will have loops in B.)

Since \bar{C} dominates all edges of $\overline{F_{1}}$ (including the edges $a_{i} \overline{a_{i}}$ with $\overline{a_{i}} \notin V(\bar{B})$), it is straightforward to see that removing from \bar{C} the edges of \bar{B} and the pendant edges of $\left\{a_{i} \overline{a_{i}}, i=1, \ldots, k\right\} \cap E(\bar{C})$, and adding the open edges of B results in a DC C in F_{1}^{B}, containing all open edges of B. Using the compatibility of φ we obtain a DC in $F_{2}^{\varphi(B)}$ containing all open edges of $\varphi(B)$, and adding the pendant edges and all edges of $\bar{\varphi}(\bar{B})$ yields a required DC in $\left(\overline{F_{2}}\right)^{\bar{\varphi}(\bar{B})}$.

Conversely, let $\bar{\varphi}: A\left(\overline{F_{1}}\right) \rightarrow A\left(\overline{F_{2}}\right)$ be compatible and let B be an F_{1}-linkage. Since $A\left(F_{1}\right)=A_{2}\left(F_{1}\right), B$ contains no paths of length more than one. Suppose the notation is chosen such that $E(B)=\left\{a_{1} a_{2}, \ldots\right.$, $\left.a_{2 p-1} a_{2 p}, a_{2 p+1} a_{2 p+1}, \ldots, a_{2 p+\ell} a_{2 p+\ell}\right\}$, where $2 p+\ell \leq k$. Then we define \bar{B} as the graph which has as components the path $a_{1} a_{2 p+\ell+1} \ldots a_{k} a_{2}$ and (if $p>1$) the edges $a_{2 i-1} a_{2 i}, i=2, \ldots, p$. The rest of the proof is similar to that above.

4. Equivalence of Conjectures A-F

Before proving our main result, Theorem 3, we first prove several auxiliary statements that describe the structure of potential counterexamples to Conjecture D.

Proposition 13. If Conjecture D is not true, then there is an essential cubic fragment F such that
(i) $\left|A_{2}(F)\right|=|A(F)|=4$,
(ii) there is a cyclically 4-edge-connected cubic graph G such that $F \subset G$,

Fig. 5.

Fig. 6.
(iii) there is no compatible mapping $\varphi: C_{4} \rightarrow F$.

Proof. Let G be a counterexample to Conjecture D, i.e. a cyclically 4-edge-connected cubic graph having no DC, let $e=u v \in E(G)$ and set $F=G-\{u, v\}$. Then F is an essential cubic fragment with $\left|A_{2}(F)\right|=|A(F)|=4$. Let, to the contrary, $\varphi: C_{4} \rightarrow F$ be a compatible mapping and set $G^{\prime}=G\left[F \xrightarrow{\varphi^{-1}} C_{4}\right]$. Then G^{\prime} is isomorphic to one of the graphs in Fig. 5, and hence G^{\prime} has a DC. But then, by Theorem 10, the graph $G=G^{\prime}\left[C_{4} \xrightarrow{\varphi} F\right]$ has a DC, a contradiction.

Proposition 14. Let F be an essential cubic fragment such that
(i) $\left|A_{2}(F)\right|=|A(F)|=4$,
(ii) there is a cyclically 4-edge-connected cubic graph G such that $F \subset G$,
(iii) there is no compatible mapping $\varphi: C_{4} \rightarrow F$,
(iv) subject to (i), (ii) and (iii), $|V(F)|$ is minimal.

Then F is essentially 3-edge-connected and contains no cycle of length 4 .
Proof. Recall that a cubic graph is cyclically 4-edge-connected if and only if it is essentially 4-edge-connected (see [5]).

We first show that F is essentially 3-edge-connected. Suppose the contrary. By definition, F is connected. Denote $A(F)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, and let f_{i} denote the edge in $E(G) \backslash E(F)$ incident with $a_{i}, i=1,2,3,4$. If F has a cut edge e, then some nontrivial (i.e. containing at least one edge) component of $F-e$ contains at most two vertices a_{i}, but then e together with the corresponding edges f_{i} is an essential edge cut in G of size at most 3 , a contradiction. Hence F has no cut edge. (Note that F has also no cut vertex since G is cubic.)

Thus, let $R=\left\{e_{1}, e_{2}\right\} \subset E(F)$ be an essential edge cut of F, and let F_{1}, F_{2} be nontrivial components of $F-R$. Denote $e_{i}=b_{i}^{1} b_{i}^{2}$ with $b_{i}^{j} \in V\left(F_{j}\right), i, j=1,2$. If $\left|V\left(F_{1}\right) \cap A(F)\right|=1$, then we set $V\left(F_{1}\right) \cap A(F)=\{x\}$ and observe that the edges e_{1}, e_{2} and the only edge of G_{-F} incident to x form an essential edge cut of G of size 3, a contradiction. We obtain a similar contradiction for $\left|V\left(F_{1}\right) \cap A(F)\right|=0$; hence $\left|V\left(F_{1}\right) \cap A(F)\right| \geq 2$. Symmetrically, $\left|V\left(F_{2}\right) \cap A(F)\right| \geq 2$, implying $\left|V\left(F_{1}\right) \cap A(F)\right|=\left|V\left(F_{2}\right) \cap A(F)\right|=2$. Thus, we can suppose that the notation is chosen such that $a_{1}, a_{2} \in V\left(F_{1}\right)$ and $a_{3}, a_{4} \in V\left(F_{2}\right)$.

If $\left|V\left(F_{1}\right)\right|>4$, then there is a compatible mapping $\varphi: C_{4} \rightarrow F_{1}$ by the minimality of F. Let \widetilde{C} be a copy of C_{4} and set $H=F\left[F_{1} \xrightarrow{\varphi^{-1}} \widetilde{C}\right]$. Then $|V(H)|<|V(F)|$ and, by the minimality of F, there is a compatible mapping $\psi: C_{4} \rightarrow H$. By Proposition 11 (with $X:=C_{4}, F:=H, F_{1}:=\widetilde{C}$ and $F_{2}:=F_{1}$), there is a compatible mapping $\psi^{\prime}: C_{4} \rightarrow H\left[\widetilde{C} \xrightarrow{\varphi} F_{1}\right]=F$, a contradiction. Hence $\left|V\left(F_{1}\right)\right| \leq 4$ and, symmetrically, $\left|V\left(F_{2}\right)\right| \leq 4$.

Now, since G is cyclically 4-edge-connected, either $\left\{a_{1}, a_{2}\right\} \cap\left\{b_{1}^{1}, b_{2}^{1}\right\}=\emptyset$, or (up to symmetry), $a_{1}=b_{1}^{1}$ and $a_{2}=b_{2}^{1}$. Hence F_{1} is a single edge or a cycle of length 4. Similarly, F_{2} is a single edge or a cycle of length 4 . Thus,
F is isomorphic to one of the graphs shown in Fig. 6. However, it is straightforward to check that for each of these graphs there is a compatible mapping $\varphi: C_{4} \rightarrow F$, a contradiction. Thus, F is essentially 3-edge-connected.

Next we show that
(*) F contains no subgraph $\widetilde{F}, \widetilde{F} \neq F$, with $|V(\widetilde{F})|>4$ and $\left|A_{2}(\widetilde{F})\right|=|A(\widetilde{F})|=4$.
Thus, let \widetilde{F} be such a subgraph. By the minimality of F, there is a compatible mapping $\varphi: C_{4} \rightarrow \widetilde{F}$. Let \widetilde{C} be a copy of C_{4} and set $H=F\left[\widetilde{F} \xrightarrow{\varphi^{-1}} \widetilde{C}\right]$. By the minimality of F, there is a compatible mapping $\psi: C_{4} \rightarrow H$. By Proposition 11 (with $X:=C_{4}, F:=H, F_{1}:=\widetilde{C}$ and $F_{2}:=\widetilde{F}$), there is a compatible mapping $\psi^{\prime}: C_{4} \rightarrow H[\widetilde{C} \xrightarrow{\varphi} \widetilde{F}]=F$, a contradiction. Hence there is no such \widetilde{F}.

Finally, we show that F contains no cycle of length 4 . Let, to the contrary, $Y \subset F$ be a copy of C_{4} (note that possibly $V(Y) \cap A(F) \neq \emptyset)$. Let \bar{F} be the graph obtained from F by attaching a pendant edge to each vertex in $A(F)$, and let F_{1} and F_{2} be the graphs shown in Fig. 3 (recall that we already know there is a compatible mapping $\varphi: F_{1} \rightarrow F_{2}$). Let \bar{Y} be the (only) subgraph of \bar{F} such that $Y \subset \bar{Y}$ and \bar{Y} is isomorphic to F_{2}, let T be a copy of F_{1} and let $\varphi: T \rightarrow \bar{Y}$ be a compatible mapping. Set $\bar{F}^{\prime}=\bar{F}\left[\bar{Y} \xrightarrow{\varphi^{-1}} T\right]$ (i.e., $\bar{F}=\bar{F}^{\prime}[T \xrightarrow{\varphi} \bar{Y}]$), and let F^{\prime} be the graph obtained from \bar{F}^{\prime} by removing the four pendant edges. Then F^{\prime} is a cubic fragment with $\left|A\left(F^{\prime}\right)\right|=\left|A_{2}\left(F^{\prime}\right)\right|=4$.

We show that there is no compatible mapping $\psi: C_{4} \rightarrow F^{\prime}$. Let, to the contrary, $\psi: C_{4} \rightarrow F^{\prime}$ be compatible. By adding pendant edges to $A\left(C_{4}\right)$ and $A\left(F^{\prime}\right)$ and by Proposition 12 , there is a compatible mapping $\bar{\psi}: \overline{C_{4}} \rightarrow \bar{F}^{\prime}$. Thus, we have $\bar{\psi}: \overline{C_{4}} \rightarrow \bar{F}^{\prime}, T \subset \bar{F}^{\prime}$ and $\varphi: T \rightarrow \bar{Y}$. By Proposition 11 , there is a compatible mapping $\bar{\psi}^{\prime}: \overline{C_{4}} \rightarrow \bar{F}$. By removing the pendant edges and by Proposition 12 we obtain a compatible mapping $\psi^{\prime}: C_{4} \rightarrow F$, a contradiction. Thus, there is no compatible mapping $\psi: C_{4} \rightarrow F^{\prime}$.

By the minimality of F, the graph F^{\prime} (and hence also \bar{F}^{\prime}) cannot be a subgraph of a cyclically 4-edge-connected cubic graph. Thus, there is an edge cut R^{\prime} of \bar{F}^{\prime} such that $\left|R^{\prime}\right| \leq 3$ and at least one component X^{\prime} of $\bar{F}^{\prime}-R^{\prime}$ contains a cycle and has minimum degree 2 (if such an R^{\prime} does not exist then, identifying the vertices of degree 1 of \bar{F}^{\prime} with vertices of a C_{4}, we get a cyclically 4-edge-connected cubic graph containing \bar{F}^{\prime}, a contradiction). However, there is no such edge cut in \bar{F}. Since $\bar{F}^{\prime}=\bar{F}\left[\bar{Y} \xrightarrow{\varphi^{-1}} T\right], R^{\prime}$ contains the edge $e=x y \in E(T)$ with $d_{T}(x)=d_{T}(y)=3$ and some two edges $f_{1}, f_{2} \in E\left(\bar{F}^{\prime}\right) \backslash E(T)$. Suppose the vertices of T are labeled such that $A_{1}(T)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, $E(T)=\left\{a_{1} x, a_{2} x, a_{3} y, a_{4} y, x y\right\}$ and $a_{1}, a_{2}, x \in V\left(X^{\prime}\right)$. Then $R^{\prime \prime}=\left\{f_{1}, f_{2}, a_{3} y, a_{4} y\right\}$ is an edge cut in \bar{F}^{\prime} such that $\left|R^{\prime \prime}\right|=4$ and $X^{\prime}+e$ is a component of $\bar{F}^{\prime}-R^{\prime \prime}$. Let $e_{1}\left(e_{2}, e_{3}, e_{4}\right)$ denote the pendant edge of \bar{Y} which corresponds to the edge $a_{1} x\left(a_{2} x, a_{3} y, a_{4} y\right) \in E(T)$, respectively, in the mapping φ. Then $R=\left\{f_{1}, f_{2}, e_{3}, e_{4}\right\}$ is an edge cut of \bar{F} such that the component X of $\bar{F}-R$ containing X^{\prime} and Y has $|V(X)|>4$ and $\left|A_{2}(X)\right|=|A(X)|=4$.

By $(*)$ (and since $F \nsucceq C_{4}$, implying $e_{1}, e_{2} \in E(F)$), F contains no such graph as a proper subgraph; hence $X=F$. But then $\left\{e_{1}, e_{2}\right\}$ is an edge cut of F, contradicting the fact that F is essentially 3-edge-connected. Hence F contains no cycle of length 4.

Proposition 15. If Conjecture D is not true, then there is an essential cubic fragment F such that

(i) F contains no cycle of length 4,
(ii) there is a cyclically 4-edge-connected cubic graph G such that $F \subset G$,
(iii) $\left|A_{2}(F)\right|=|A(F)|=4$ and $A(F)$ is independent,
(iv) there is a compatible mapping $\varphi: F \rightarrow C_{4}$.

Proof. By Propositions 13 and 14, there is an essential cubic fragment H such that H contains no cycle of length $4,\left|A_{2}(H)\right|=|A(H)|=4$, there is a cyclically 4-edge-connected cubic graph G such that $H \subset G$, and there is no compatible mapping $\psi: C_{4} \rightarrow H$. Let H be minimal with these properties. Since $A(H)=A_{2}(H)$, by the nonexistence of a compatible mapping $\psi: C_{4} \rightarrow H, H$ is not weakly $A(H)$-contractible. Hence there is a nonempty even set $X \subset A(H)$ and a partition \mathcal{A} of X into two-element subsets such that $H^{\mathcal{A}}$ has no DCT containing all vertices of $A(H)$ and all edges of $E(\mathcal{A})$. Set $A(H)=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and suppose the notation is chosen such that $\mathcal{A}=\left\{\left\{a_{1}, a_{2}\right\}\right\}$ if $|X|=2$ or $\mathcal{A}=\left\{\left\{a_{1}, a_{2}\right\},\left\{a_{3}, a_{4}\right\}\right\}$ if $|X|=4$. Then the graph H^{B} has no DC containing all open edges of B for either $E(B)=\left\{a_{1} a_{2}, a_{3} a_{3}, a_{4} a_{4}\right\}$ or $E(B)=\left\{a_{1} a_{2}, a_{3} a_{4}\right\}$.

Let H, H^{\prime} be two copies of H (with a corresponding labeling $A\left(H^{\prime}\right)=\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, a_{4}^{\prime}\right\}$), and let F be the cubic fragment obtained from H and H^{\prime} by adding the edges $a_{1} a_{1}^{\prime}$ and $a_{2} a_{2}^{\prime}$. Recall that H contains no cycle of length 4 .

Fig. 7.
Since H is essentially 3-edge-connected by Proposition 14, the set $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ (and hence also $\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, a_{4}^{\prime}\right\}$) is independent. Hence F also contains no cycle of length 4 , and the set $A(F)=\left\{a_{3}, a_{4}, a_{3}^{\prime}, a_{4}^{\prime}\right\}$ is independent. It remains to prove that there is a compatible mapping $\varphi: F \rightarrow C_{4}$.

First we show that the graph F^{B} has no DC containing all open edges of B for $E(B)=\left\{a_{3} a_{3}, a_{4} a_{4}, a_{3}^{\prime} a_{4}^{\prime}\right\}$. To the contrary, let C be such a DC. Then $(E(C) \cap E(H)) \cup\left\{a_{1} a_{2}\right\}$ is a DC in H^{B} containing all open edges of B for $E(B)=\left\{a_{1} a_{2}, a_{3} a_{3}, a_{4} a_{4}\right\}$, and $\left(E(C) \cap E\left(H^{\prime}\right)\right) \cup\left\{a_{1}^{\prime} a_{2}^{\prime}, a_{3}^{\prime} a_{4}^{\prime}\right\}$ is a DC in $H^{\prime B^{\prime}}$ containing all open edges of B^{\prime} for $E\left(B^{\prime}\right)=\left\{a_{1}^{\prime} a_{2}^{\prime}, a_{3}^{\prime} a_{4}^{\prime}\right\}$, which is not possible. Thus, there is no such DC in F^{B}. Symmetrically, $F^{B^{\prime}}$ has no DC containing all open edges of B^{\prime} for $E\left(B^{\prime}\right)=\left\{a_{3}^{\prime} a_{3}^{\prime}, a_{4}^{\prime} a_{4}^{\prime}, a_{3} a_{4}\right\}$. Let Y be a copy of C_{4} with vertices labeled $b_{3}, b_{4}, b_{3}^{\prime}$, b_{4}^{\prime} such that $b_{3} b_{4} \notin E(Y)$ and $b_{3}^{\prime} b_{4}^{\prime} \notin E(Y)$. Then it is straightforward to check that $Y^{B^{\prime \prime}}$ has a DC containing all open edges of $B^{\prime \prime}$ for all Y-linkages $B^{\prime \prime}$ except for the cases $E\left(B^{\prime \prime}\right)=\left\{b_{3} b_{3}, b_{4} b_{4}, b_{3}^{\prime} b_{4}^{\prime}\right\}$ and $E\left(B^{\prime \prime}\right)=\left\{b_{3}^{\prime} b_{3}^{\prime}, b_{4}^{\prime} b_{4}^{\prime}, b_{3} b_{4}\right\}$. Hence the mapping $\varphi: A(F) \rightarrow A(Y)$ that maps a_{i} on b_{i} and a_{i}^{\prime} on $b_{i}^{\prime}, i=3,4$, is a compatible mapping.

Note that we do not know any example of a cubic fragment with the properties given in Proposition 15. Moreover, we believe that such a graph in fact does not exist.

Now we are ready to prove the main result of this paper, Theorem 3.
Proof of Theorem 3. Clearly, Conjecture E implies Conjecture F. By Theorem 2, it is sufficient to show that Conjecture F implies Conjecture D. Thus, suppose Conjecture D is not true, and let F be an essential cubic fragment as given by Proposition 15. Let G be a counterexample to Conjecture D, i.e. a cyclically 4-edge-connected cubic graph without a DC. For any cycle C of length 4 in G, choose a compatible mapping of F on C, and let G^{\prime} be the graph obtained by recursively replacing every cycle of length 4 by a copy of F. Then G^{\prime} is a cubic graph of girth $g\left(G^{\prime}\right) \geq 5$ and, by Theorem $10, G^{\prime}$ has no DC. Moreover, G^{\prime} is cyclically 4 -edge-connected since any cycle-separating edge cut in G^{\prime} of size at most 3 would imply the existence of such an edge cut in G. If G^{\prime} is not 3-edge-colorable, G^{\prime} is a snark and we are done. Otherwise, we use the following fact and construction by Kochol [7].

Claim ([7]). If a cubic graph G contains the graph H of Fig. 7 as an induced subgraph, then G is not 3-edgecolorable.

We use the claim as follows. Let $x y \in E\left(G^{\prime}\right)$, let $x^{\prime}, x^{\prime \prime}\left(y^{\prime}, y^{\prime \prime}\right)$ be the neighbors of x (of y) different from $y(x)$, respectively, and let $G_{i}^{\prime}, i=1,2,3$, be three copies of the graph $G^{\prime}-x-y$ (where $x_{i}^{\prime}, x_{i}^{\prime \prime}, y_{i}^{\prime}, y_{i}^{\prime \prime}$ are the copies of $x^{\prime}, x^{\prime \prime}, y^{\prime}, y^{\prime \prime}$ in $\left.G_{i}^{\prime}\right), i=1,2,3$. Then the graph \bar{G} obtained from $G_{1}^{\prime}, G_{2}^{\prime}, G_{3}^{\prime}$ and H by adding the edges $x_{1}^{\prime} v_{3}, x_{1}^{\prime \prime} v_{4}$, $y_{1}^{\prime} x_{2}^{\prime}, y_{1}^{\prime \prime} x_{2}^{\prime \prime}, y_{2}^{\prime} x_{3}^{\prime}, y_{2}^{\prime \prime} x_{3}^{\prime \prime}, y_{3}^{\prime} v_{1}$ and $y_{3}^{\prime \prime} v_{2}$ is a cyclically 4-edge-connected graph of girth $g(\bar{G}) \geq 5$. By the claim, \bar{G} is not 3-edge-colorable. It remains to show that \bar{G} has no DC.

Let, to the contrary, C be a DC in \bar{G}. Then it is easy to check that for some $i \in\{1,2,3\}$, the intersection of C with G_{i}^{\prime} is either a path with one end in $\left\{x_{i}^{\prime}, x_{i}^{\prime \prime}\right\}$ and the second in $\left\{y_{i}^{\prime}, y_{i}^{\prime \prime}\right\}$, or two such paths. But, in both cases, the path(s) can be easily extended to a DC in G^{\prime}, a contradiction.

5. Concluding remarks

1. Note that our proof of the equivalence of Conjecture F with Conjectures A-E is based on properties (compatible mappings) that are specific for the C_{4}. This means that our proof cannot be directly extended to obtain higher girth restrictions.
2. We pose the following conjecture and show it is equivalent to Conjectures A-F.

Conjecture G. Every cyclically 4-edge-connected cubic graph contains a weakly contractible subgraph F with $\delta(F)=2$.

Theorem 16. Conjecture G is equivalent to Conjectures A-F.
Proof. We first show that Conjecture G implies Conjecture D. Suppose Conjecture G is true and let G be a minimum counterexample to Conjecture D. Hence G has no DC. Let $F \subset G$ be a weakly contractible subgraph of G with $\delta(F)=2$ and set $A=A_{G}(F)$. Note that $A \neq \emptyset$ since $\delta(F)=2$. By Corollary 7, the graph $\left.G\right|_{F}$ has no DCT. If $|A| \leq 3$, then every edge in G_{-F} has at least one vertex in A since G is essentially 4-edge-connected. But then $\left.G\right|_{F}$ has a (trivial) DCT, a contradiction. Hence $|A| \geq 4$.

We use the following operation (see [5]). Let H be a graph, let $v \in V(H)$ be of degree $d=d_{H}(v) \geq 4$, and let x_{1}, \ldots, x_{d} be an ordering of the neighbors of v (allowing repetition in case of multiple edges). Let H^{\prime} be the graph obtained by adding edges $x_{i} y_{i}, i=1, \ldots, d$, to the disjoint union of the graph $H-v$ and the cycle $y_{1} y_{2} \ldots y_{d} y_{1}$. Then H^{\prime} is said to be an inflation of H at v. The following fact was proved in [5].

Claim ([5]). Let H be an essentially 4-edge-connected graph of minimum degree $\delta(G) \geq 3$ and let $v \in V(H)$ be of degree $d(v) \geq 4$. Then some inflation of H at v is essentially 4-edge-connected.

Now let G^{\prime} be an essentially 4-edge-connected inflation at v_{F} of the graph obtained from $\left.G\right|_{F}$ by deleting its pendant edges. Then G^{\prime} is a cubic graph having no DC (since otherwise $\left.G\right|_{F}$ would have a DCT). Since no cycle of length $\ell \geq 4$ is weakly contractible, F is not a cycle, and since $\delta(F)=2$, we have $\left|A_{G}(F)\right|<|E(F)|$. But then $\left|E\left(G^{\prime}\right)\right|<|E(G)|$, contradicting the minimality of G.

For the rest of the proof, it is sufficient to show that Conjecture D implies Conjecture G. Indeed, if C is a dominating cycle in $G, e=u v \in E(C)$ and $A=\{u, v\}$, then the graph F with $V(F)=V(G)$ and $E(F)=E(G) \backslash\{e\}$ is a weakly A-contractible subgraph of G.

It should be noted here that the last part of the proof of Theorem 16 is based on a construction with $|A|=2$, which forces $G-F$ be empty (G_{-F} is a one edge graph) since G is cubic and cyclically 4-edge-connected. It is straightforward to observe that the following stronger statement implies Conjectures A-G. However, we do not know whether these statements are equivalent.

Conjecture H. Every cyclically 4-edge-connected cubic graph G contains a weakly contractible subgraph F with $\left|A_{G}(F)\right| \geq 4$.

Acknowledgements

The third, fourth and the fifth authors' research was supported by grants No. 1M0545 and MSM 4977751301 of the Czech Ministry of Education.

References

[1] L.W. Beineke, Characterizations of derived graphs, J. Combin. Theory Ser. B 9 (1970) 129-135.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976. Elsevier, New York.
[3] P.A. Catlin, A reduction technique to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-44.
[4] H. Fleischner, Cycle decompositions, 2-coverings, removable cycles and the four-color disease, in: J.A. Bondy, U.S.R. Murty (Eds.), Progress in Graph Theory, Academic Press, New York, 1984, pp. 233-246.
[5] H. Fleischner, B. Jackson, A note concerning some conjectures on cyclically 4-edge-connected 3-regular graphs, in: L.D. Andersen, I.T. Jakobsen, C. Thomassen, B. Toft, P.D. Vestergaard (Eds.), Graph Theory in Memory of G.A. Dirac, in: Annals of Discrete Math., vol. 41, North-Holland, Amsterdam, 1989, pp. 171-177.
[6] F. Harary, C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-709.
[7] M. Kochol, Equivalence of Fleischner's and Thomassen's conjectures, J. Combin. Theory Ser. B 78 (2000) 277-279.
[8] M.M. Matthews, D.P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984) 139-146.
[9] R. Nedela, M. Škoviera, Decompositions and reductions of snarks, J. Graph Theory 22 (1996) 253-279.
[10] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217-224.
[11] Z. Ryjáček, R.H. Schelp, Contractibility techniques as a closure concept, J. Graph Theory 43 (2003) 37-48.
[12] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309-324.

[^0]: * Corresponding author at: Department of Mathematics, University of West Bohemia, Czech Republic.

 E-mail addresses: hajo.broersma@durham.ac.uk (H. Broersma), gasper.fijavz@fri.uni-lj.si (G. Fijavž), kaisert@kma.zcu.cz (T. Kaiser), rkuzel@kma.zcu.cz (R. Kužel), ryjacek@kma.zcu.cz (Z. Ryjáček), vranaxxpetr@quick.cz (P. Vrána).

