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The extraction and quantization of local image and video descriptors for the subsequent creation of visual
codebooks is a technique that has proved very effective for image and video retrieval applications. In this
paper we build on this concept and propose a new set of visual descriptors that provide a local space-time
description of the visual activity. The proposed descriptors are extracted at spatiotemporal salient points
detected on the estimated optical flow field for a given image sequence and are based on geometrical
properties of three-dimensional piecewise polynomials, namely B-splines. The latter are fitted on the spa-
tiotemporal locations of salient points that fall within a given spatiotemporal neighborhood. Our descrip-
tors are invariant in translation and scaling in space-time. The latter is ensured by coupling the
neighborhood dimensions to the scale at which the corresponding spatiotemporal salient points are
detected. In addition, in order to provide robustness against camera motion (e.g. global translation due
to camera panning) we subtract the motion component that is estimated by applying local median filters
on the optical flow field. The descriptors that are extracted across the whole dataset are clustered in order
to create a codebook of ‘visual verbs’, where each verb corresponds to a cluster center. We use the result-
ing codebook in a ‘bag of verbs’ approach in order to represent the motion of the subjects within small
temporal windows. Finally, we use a boosting algorithm in order to select the most discriminative tem-
poral windows of each class and Relevance Vector Machines (RVM) for classification. The presented
results using three different databases of human actions verify the effectiveness of our method.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Due to its practical importance for a wide range of vision-re-
lated applications like video retrieval, surveillance, vision-based
interfaces, and human–computer interaction, vision-based analysis
of human motion is nowadays one of the most active fields of com-
puter vision. One of the main goals in this field is to efficiently rep-
resent an activity captured by a camera and to accurately classify
it, that is, assign it into one or more known action categories.

Given a video sequence, humans are usually able to deduce
quickly and easily information about its content. In particular, they
can discriminate relatively easily between a wide range of activi-
ties, even if they have observed each of the activities only a few
times. By contrast, the development of computational methods
for robust activity recognition still remains a very challenging task.
Moving camera conditions, dynamic background, occlusions,
abrupt illumination changes and multiple subjects in the scene,
introduce significant difficulties in the development of a robust
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motion analysis framework. This is evident from the abundance
of different motion analysis approaches that have been developed
[1–5].

The aim of this work is to obtain a good representation of the
human activity depicted in an image sequence and classify it into
one or more activity categories. For robustness against occlusion
and clutter, we opt for a sparse representation that is based on vi-
sual descriptors extracted around a set of spatiotemporal interest-
ing points. An important issue that we address is handling general
motions caused by a moving camera. We do so by detecting the
space-time interesting points on the estimated optical flow of the
image sequence. In order to filter out vectors that correspond so-
lely to camera motion, we locally subtract the median of the opti-
cal flow vectors prior to the interesting point detection. In this way,
the detected points correspond to areas of independent motion in
the scene. Inspired by the success of ‘bag of word’ models, which
rely on a codebook constructed by clustering static spatial descrip-
tors, we build a ‘bag of verbs’ model by clustering local space-time
descriptors. We use a boosting algorithm in order to select the
most discriminant sets of codewords for each class in the training
set. Finally, we use Relevance Vector Machines (RVM) for classifi-
cation. The kernel of the RVM is defined according to the proximity
between the test examples and the selected features of each class
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in the training set. In order to demonstrate the efficiency of our ap-
proach, we present experimental results on three different datasets
of human activities. The latter range from simple aerobics exercises
to common everyday actions, like walking and running.

1.1. Related work

Activity recognition systems can be divided into two main cat-
egories. Within the first category fall methods that use tracking in
order to represent the actions. Several methods have been pro-
posed, including tracking of articulated models (e.g. [6–8]), track-
ing of landmark points (e.g. [9–12]), or methods that attempt to
track specific shapes (e.g. [13,14]), like silhouettes and hand
shapes. The result is subsequently used for recognition, either by
taking into account the resulting trajectories of the landmark
points or by taking into account the temporal transitions of the
tracked models and shapes.

The difficulty in acquiring reliable trajectories for recognition
has lead several researchers to assume that they are known a-pri-
ori (e.g. [11,12]). This difficulty originates from the fact that artic-
ulated objects (e.g. the human body) can undergo various changes
in appearance and geometry due to rotations, deformations, rapid
non-linear motions, and partial occlusions. Furthermore, the high
dimensionality of the problem, and appearance changes that lead
to the so-called drifting problem [15], make tracking of body parts
cumbersome and in most cases unreliable.

Within the second category fall methods that rely on local spa-
tiotemporal feature-descriptor representations. Their success in
object detection and localization, their sparsity, and robustness
against illumination, clutter, and viewpoint changes [16] have in-
spired a number of methods in the area of motion analysis and
activity recognition. Detection of keypoints, in particular, has been
very popular, due to their detection simplicity. A typical example
are the space-time interest points [17,18], which correspond
roughly to points in space-time where the direction of motion
changes abruptly. A similar approach is used by Dollar et al. [19],
where an activity is summarized using sets of space-time cuboids.
Entropy based spatiotemporal salient point representations are
used in [20], as a temporal extension of the salient point detector
proposed in [21]. The method takes into account the information
content of pixels within a spatiotemporal neighborhood and de-
tects areas where there is a significant amount of motion. One of
the most common type of descriptors stems from the Scale Invari-
ant Feature Transform (SIFT). Introduced in [22], it has been used
widely in a variety of applications, including object classification
(e.g. [23,22]) and scene classification (e.g. [24,25]). The underlying
concept in SIFT is the use of a cascade of Gaussian filters of variable
width. Keypoints are subsequently detected as the extrema of the
Difference of Gaussian filters (DoG) across different scales. Shape
contexts [26] constitute an alternative local representation, in
which a log polar histogram of the object’s edges is used in order
to capture local shape. Its robustness against scale changes and
its ability to capture local spatial structure have made it very
appealing for applications related to human detection (e.g. [27]).
A similar and very effective approach for capturing local structure
in space and time are the histograms of oriented gradients (HoG),
extensively used for activity recognition (e.g. [28–31]). Biologically
inspired representations, such as the C features, have been pro-
posed in [32,33]. The method works in an hierarchical way and
the obtained features are invariant to scale changes in space and
time. Finally, Wong and Cipolla [34] use global information in
terms of dynamic textures in order to minimize noise and detect
their interesting points.

Illumination variability, smooth motions and, moving camera
conditions, have lead several researchers to implement their meth-
ods in domains other than the intensity values at the image pixels.
Optical flow, in particular, has been a popular choice. Ke et al. [35]
use optical flow fields in their volumetric feature detector in order
to represent and recognize actions. The authors claim that their
method is robust to camera motion, however they do not explicitly
handle it, making the method sensitive to less smooth motions of
the camera. Shape flows [36,37] has been another method for deal-
ing with camera motion. In this method, motion flow lines ac-
quired by tracking [37] or using MPEG motion vectors [36] are
used in order to represent the activities. Matching is done directly
using the optical flow lines. However, the matching problem is NP-
hard, and while relaxation methods can reduce the computational
complexity, it still remains high. Fathi and Mori [38] use mid-level
features consisting of optical flow and spatial gradient vectors and
use two rounds of boosting in order to train their classifier. Ahmad
and Lee [39] use a combination of shape flow and image moments
in order to build their descriptors. However, their method relies on
silhouettes that are extracted by background subtraction. Shecht-
man and Irani [40] propose an algorithm for correlating spatiotem-
poral event templates with videos without explicitly computing
the optical flow. Their work, in conjunction with the temporal tem-
plates of Bobick and Davis [41] is used in [42] in order to construct
a descriptor of shape and flow for detecting activities in the pres-
ence of clutter (e.g. crowds).

Exemplar-based methods, like the ones mentioned above, often
require a large amount of training examples. Furthermore, in order
to classify an unknown instance of an activity, the number of com-
parisons that have to be performed is equal to the number of the
exemplars in the training set. This makes classification a time con-
suming process. To remedy this, a number of recent works use vi-
sual codebooks in order to detect and recognize objects and/or
humans. The visual codebook creation is performed by clustering
the extracted feature descriptors in the training set [43]. Each of
the resulting centers is considered to be a codeword and the set
of codewords forms a ‘codebook’. In a ‘bag of words’ approach, each
instance (for example an image) is represented as a histogram of
codewords. Recognition is then performed by means of histogram
comparison.

Visual codebooks have been extensively used for detecting ob-
jects, humans and activities. Aiming at object recognition, in [23],
SIFT-like descriptors are extracted hierarchically and a visual code-
book is created for each level of the hierarchy. Then, the histogram
of the descriptors at each level of the hierarchy is classified using
Support Vector Machines (SVM). SIFT descriptors in a bag-of-words
framework are also used in [24] for the combined problem of
event, scene, and object classification, with application to sports
images. In [44], a voting scheme similar to the one by Leibe et al.
[45] is implemented for localization and recognition of activities.
An interesting work is presented in [46], where oriented rectangles
are fitted on human silhouettes and matched against a visual code-
book. However, the use of silhouettes assumes knowledge of the
background and is sensitive to noise and camera motion. Further-
more, the system in [46] ignores dynamic information, and a hu-
man activity is considered as a sequence of static poses.

The major weakness of ‘bag of words’ approaches is that, by his-
togramming the descriptors, any information about their relative
position is lost. In an attempt to remedy this, several researchers
have proposed approaches that attempt to encode the spatial rela-
tionships between the features. One such approach is the relative
encoding of the feature positions by considering a reference point,
i.e. the center of the object on which the feature is extracted. Nota-
ble works which employ this concept for modeling static objects
are those by Marszalek and Schmid [47] and by Leibe et al. [45].
A similar method is used in [48], where the features consist of frag-
ments belonging to object edges, while the position of each frag-
ment is stored relatively to the object’s center. Alternatives to
this concept of structure include the ‘doublets’ of Sivic et al. [49]
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and the local self similarity descriptor of Shechtman and Irani [29].
In the former, pairs of visual words co-occurring within local spa-
tial neighborhoods are identified. In the latter, areas in images/vid-
eos that share similar geometric properties and similar space/time
layout are matched. An interesting approach using the principle of
‘search by example’ is presented in [25]. The method uses the prin-
ciples of Google by initially detecting and indexing spatial SIFT
descriptors in the training set. When presented with a query image
or a small image patch, the system returns a number of matches in
the training set that have similar descriptor values as well as sim-
ilar spatial layout. Finally, constellations of bags of features con-
sisting of both static and dynamic descriptors are used in [50,51]
in order to recognize human activities. The use of a constellation
model assists in recovering the spatiotemporal structure of the
descriptors in the examples.

1.2. Overview of the approach

In this paper, we propose a set of novel visual descriptors that
are derived from the spatiotemporal salient points described in
[20]. In order to deal with motion induced by a moving camera,
we first estimate the optical flow using the algorithm proposed in
[52]. In order to compensate for camera motion, we locally subtract
the median of the optical flow vectors, estimated within a local win-
dow. The local nature of the filtering process that we apply helps us
reduce the influence of motion components that are due to global
translational motion and vectors that originate from more general
camera motion, like rotation and scaling. An example is given in
Fig. 2, in which the camera zoom is largely suppressed, while the
remaining flow vectors that correspond to the activity that takes
place in the scene, that is, the upwards motion of the subject’s
hands, are pronounced. The salient points that we extract, corre-
spond therefore to areas where independent motion occurs, like
ongoing activities in the scene. Centered at each salient point, we
define a spatiotemporal neighborhood whose dimensions are pro-
portional to the detected space-time scale of the point. Then, a
three-dimensional piecewise polynomial, namely a B-spline, is fit-
ted at the locations of the salient points that fall within this neigh-
borhood. Our descriptors are subsequently derived as the partial
derivatives of the resulting polynomial. At the next step, the set
of descriptors extracted from each spline is accumulated into a
number of histograms. This number depends on the maximum de-
gree of the partial derivatives. Since our descriptors correspond to
geometric properties of the spline, they are translation invariant.
Furthermore, the use of the automatically detected space-time
scales of the salient points for the definition of the neighborhood
ensures invariance to space and time scaling. Similar to other ap-
proaches (e.g. [46,50]), where a codebook of visual words is created
from a set of appearance descriptors, we create a codebook of visual
verbs by clustering our motion descriptors across the whole data-
set. Here, we use the term ‘verb’ instead of a ‘word’ for our codebook
entries, since each entry corresponds to a combined shape and mo-
tion descriptor rather than just a shape descriptor. Each video in our
dataset is then represented as a histogram of visual verbs. We use
Table 1
Successive steps of the proposed approach.

(1) Compute the optical flow according to the algorithm of [5
(2) Detect spatiotemporal salient points on the resulting flow
(3) Place each salient point at the center of a space-time cube
(4) Fit a B-spline polynomial on the salient points that fall wi
(5) Compute the partial derivatives of the resulting polynomi
(6) Bin the computed partial derivatives into a histogram and
(7) Create a codebook of K verbs by clustering the resulting d
(8) Perform feature selection using the Gentleboost algorithm
(9) Perform classification using the Relevance Vector Machine
boosting in order to select the most informative sets of verbs for
each class. Finally, we use a kernel based classifier, namely the Rel-
evance Vector Machine (RVM) [53], in order to classify test exam-
ples into one of the classes present in the training dataset. We
evaluate the proposed method using three different databases of
human actions. These include the widely used Weizmann [54]
and KTH [18] datasets as well as our own aerobics dataset [10]. Fi-
nally, we present experiments aimed at evaluating the generality of
our descriptors, that is, their ability to encode and discriminate be-
tween unseen actions, coming from an entirely different dataset
than that on which the method is trained. A list of the successive
steps of our algorithm is given in Table 1.

One of the main contributions of the method proposed is the
sparsity of the extracted descriptors – they are extracted at spatio-
temporal regions that are detected at sparse locations within the
image sequence. This is contrary to the work of, e.g. Blank et al.
[54], where a whole image sequence is represented as a space-time
shape. In addition, our representation allows us to automatically
detect the local spatiotemporal scale of the individual events tak-
ing place in the scene, as opposed to, e.g. [34,38], where the se-
quences are normalized with respect to their duration. The
extracted descriptors are robust to camera motion due to the use
of filtered optical flow as the basis of all computations. This is in
contrast to alternative methods like [54,33,50,51,19,28,46] where
a stationary camera is assumed. Finally, by selecting the most dis-
criminant features, we obtain a form of a prototypical example for
each class, as opposed to e.g. [54,33], where the whole feature set
is used. Our results are comparable to the ones presented in
[54,33,46,19,51] and show an improvement with respect to those
reported in [50,28,35,18] for the same test sequences.

The remainder of the paper is organized as follows. In Section 2
we describe our feature extraction process. This includes the opti-
cal flow computation, the detection of the salient points, the sub-
sequent B-spline fitting and the creation of the visual codebook.
In Section 3 we present our classification method, including the
feature selection procedure that we applied for selecting the most
discriminant time windows of each class. In Section 4 we present
the experimental results and in Section 5 we draw some
conclusions.

2. Representation

In this section we introduce the visual descriptors that we use
in order to represent an image sequence. We will initially provide
some basics on B-splines and we will subsequently describe how
are they used in extracting local, spatiotemporal, image-sequence
descriptors. Finally, we will briefly explain the process that we car-
ry out in order to create a codebook from these descriptors.

2.1. B-spline surfaces

Let us define an M � N grid of control points fPijg; i ¼ 1 . . . M and
j ¼ 1 . . . N. Let us also define a knot vector of h knots in the u direc-
tion, U ¼ fu1;u2; . . . ; uhg and a knot vector of k knots in the v direc-
2] (Fig. 2b), and compensate for camera motion using local median filters (Fig. 2d)
field using the algorithm of [20] (Fig. 2c)
with dimensions proportional to the space-time scale of the point (Fig. 4a)

thin the space-time cube (Fig. 4b)
al (Fig. 5)
form a descriptor vector for each B-spline polynomial

escriptor vectors across the whole dataset
[55] in order to select the most informative sets of descriptors for each class
[53]
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tion, V ¼ fv1; v2; . . . ; vkg. Then, a B-spline surface of degrees p and q,
in the u and v directions respectively, is given by:

Fðu; vÞ ¼
Xm

i¼0

Xn

j¼0

Q i;pðuÞQ j;qðvÞPij; ð1Þ

where Qi;pðuÞ and Qj;qðvÞ are B-spline basis functions of degree p and
q, respectively, defined as:

Qi;0ðuÞ ¼
1 if ui < u < uiþ1 and ui < uiþ1

0 otherwise

�
;

Qi;pðuÞ ¼
u� ui

uiþp � ui
Q i;p�1ðuÞ þ

uiþpþ1 � u
uiþpþ1 � uiþ1

Q iþ1;p�1ðuÞ:
ð2Þ

The grid of control points is referred to as the control net, while
the range of the knots is usually equal to ½0 . . . 1�. Essentially the
number of knots determine how coarse is the approximation. That
is, the larger the number of knots, the larger the number of points
on which the spline is evaluated.

By fitting B-spline surfaces on sparsely detected spatiotemporal
salient points (Section 2.3), we want to approximate the smooth
motion of subjects performing certain types of activities. It is well
known that polynomials of high degree tend to fit well around the
control points, and theoretically, increase the accuracy of the rep-
resentation. However, precise fitting of the polynomials to the con-
trol points, whose localization may also be affected by noise in the
background, would make the representation too specific for a par-
ticular activity example, or in other words, lead to overfitting. Fur-
thermore, higher order polynomials become increasingly
imprecise further away from the control points. Since the latter
are the sparsely detected salient points, it is evident that polyno-
mials of high order would decrease the robustness of the represen-
tation against noise. An example is depicted in Fig. 1, where
polynomials of 3rd and 8th degrees are fitted on the same set of
control points. From the figure it is evident that as the order of
the polynomials increases, the representation becomes less
smooth and increasingly imprecise in areas between the control
points. As a good tradeoff between descriptiveness and robustness
we use in this work 3rd degree polynomials, that is, p ¼ q ¼ 3.

2.2. Optical flow

Our analysis relies on the motion field that is estimated using an
optical flow algorithm. Our goal is to detect spatiotemporal inter-
est points and subsequently extract spatio(temporal) descriptors
at areas with significant variation in motion information, such as
motion discontinuities, rather than at areas with significant spatio-
temporal intensity variation, such as space-time intensity corners
(see [17]). The latter approach generates too many points in the
case of camera motion in a moving, textured background. By con-
trast, as long as the camera motion is smooth the spatiotemporal
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Fig. 1. B-spline representations of different orders, fitted around a set of control points (
opposed to 8-degree splines (b).
salient point detection at motion discontinuities should be invari-
ant to it. We estimate optical flow using the algorithm of [52], due
to its robustness to motion discontinuities and to outliers to the
optical flow equation.

The presence of general camera motion, like camera translation,
small rotations, and scale changes (resulting from camera zoom)
makes the application of a motion compensation technique an
essential step prior to feature extraction. In this way, the extracted
features will describe solely the independent motion taking place
in the scene, like human activities. In the proposed method we
use local median filtering in order to compensate for the local mo-
tion component. In a similar way, a global affine motion model can
be estimated, and then the corresponding component be compen-
sated for. For both, the goal is to provide representations that are
invariant (mainly) to camera motion.

The advantages of global versus local methods for obtaining
representations that are invariant to certain transforms (in our
case the camera motion) are a subject of ongoing debate in the field
of Computer Vision. For example, in order to compensate for
changes in the illumination, both local (e.g. local filtering, color-
invariant features) and global models (e.g. gamma correction) have
been proposed. A clear disadvantage of global parametric models is
their sensitivity to outliers (in our case, independently moving ob-
jects, including the human subject). On the other hand, the disad-
vantage of local methods is that they result to representations that
may be less descriptive (i.e. ‘too invariant’). For example, after local
intensity normalization gray and white areas cannot be distin-
guished. The motion compensation method that we use in this
work falls within the area of local methods, and is very similar to
the filtering that is applied in order to compensate for illumination
changes, for example, for extracting Quotient Images [56]. The lat-
ter are shown to be robust to local intensity variation due to, for
example, cast shadows.

Examples of motion compensation are depicted in Fig. 2 (local)
and Fig. 6 (local and global). It can be seen that most vectors that
are due to camera motion are suppressed, and the ones corre-
sponding to independent motion in the scene (i.e. the human activ-
ities) are pronounced.

2.3. Spatiotemporal descriptors

After compensating for optical flow vectors that are due to cam-
era motion, as explained in Section 2.2, we use the algorithm pro-
posed in [20] in order to extract a set of spatiotemporal salient
points S ¼ fð~ci;~siÞg. Here,~ci ¼ ðx; y; tÞ is the spatiotemporal position
of the point with index i. The vector~si is the spatiotemporal scale at
which the point was detected and has a spatial and temporal
dimension. This scale is automatically detected by the algorithm
in [20], as the scale at which the entropy of the signal within the
local spatiotemporal neighborhood defined by it is locally maxi-
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Fig. 2. (a) A single frame from a hand-waving sequence in which camera zoom is occurring and the corresponding optical flow field, before (b) and after (d) the application of
the local median filter. Removal of flow vectors that are due to the camera zoom is evident. (c) Some of the salient points detected using the optical flow field in (d).
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mized. A subset of the salient points detected on a frame of a hand-
waving sequence is shown in Fig. 2c. We should note that for the
detection of the points shown in Fig. 2c, contribute a number of
frames before and after the shown frame (temporal scale).

2.3.1. Preprocessing
In this section we will describe the preprocessing steps that are

followed prior to the B-spline fitting on the detected salient points.
In order to fit a B-spline polynomial we first need to define its con-
trol net, that is, Pij. Formally, for each salient point location we
want to fit a polynomial having as control net the points within
a small neighborhood around the point in question. For a good
fit, however, ordering of the control points in terms of their spatio-
temporal location is an important factor in order to avoid loops. In
order to make this more clear, let us consider a set of points
L ¼ fLig sampled randomly from an arbitrary curve, as shown in
Fig. 3a. Ideally, a polynomial having the set L as its control net
would approximate the curve with the one depicted as a dotted
line in the same figure. However, in order for this to happen, the
points in L should be given in the correct order, that is,
L ¼ fL1; L2; . . . ; Lng, as shown in Fig. 3a. If this is not the case, then
the polynomial will attempt to cross the points in a different order,
creating unwanted loops. Furthermore, it is clear that any points
enclosed by the curve, like the one marked as a triangle in the same
figure will also degrade the approximation and should not be con-
sidered. In order to overcome these problems, we perform two pre-
processing steps on the set S of the detected salient points, both
performed frame-wise.
In the first step, we eliminate points that are enclosed within
the closed surface defined by the motion boundary. In our imple-
mentation, a point lies on the motion boundary if it lacks any
neighbors within a circular slice shaped neighborhood of radius r,
minimum angle a, and having the point as origin. This process is
demonstrated in Fig. 3b, where the point in the centre of the circle
is selected as being located on the boundary.

In the second step, we order the selected boundary points. We
do this by randomly selecting a point on the boundary as a seed
and by applying an iterative recursive procedure that matches
the seed point with its nearest neighbor in terms of Euclidean dis-
tance. This process is repeated using as new seed the selected near-
est neighbor, until there are no nearest neighbors left, that is,
either an edge has been reached or all points have been selected.

Let us note that the described procedure above is local in nat-
ure. The primary role of r is the selection of the points that are
on the motion boundary. By properly setting up the radius r, the
points in the boundary of a moving object will be selected even
if there are more than one subjects performing activities in the
same scene, as long as they are at a distance of at least r pixels from
each other. Due to the use of salient point representations (i.e. as
the control points for the spline approximations), the presence of
noise will minimally affect the boundary selection procedure.
Due to the local entropy measurements for the salient point detec-
tion, noise will not greatly affect the conveyed information that
leads to their detection. While noise may lead to the detection of
spurious salient points, their saliency measure will be low com-
pared to the points that belong to the actual motion boundary
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and therefore, will be discarded by the algorithm described in [20].
In this work we have empirically selected a radius of 10 pixels and
an angle of 70 degrees.

2.3.2. Spline approximation
Let us denote with S0 ¼ fð~c0i;~s0iÞg the set of spatiotemporal salient

points located on the motion boundary, that are obtained by the
procedure described in the previous section. For each salient point
ð~c0i;~s0iÞwe define a spatiotemporal neighborhood centered at c0i with
dimensions proportional to the scale vector~s0i. Let us denote with O
the set of points engulfed by this neighborhood (see Fig. 4a). Then,
for each O, we fit a B-spline polynomial as in Eq. (1). The grid of
control points Pij in Eq. (1) corresponds to the set O, that is, each
Pij is a point in space-time. We should note that the grid is not
and does not need to be uniform, that is, the pairwise distances
of the control points may differ. The knot vectors U and V are a
parameterization of the fitted B-spline, and essentially encode
the way in which the B-spline surface changes with respect to its
control points. More specifically, the knot vector U encodes the
way the x coordinates change with respect to y, while the knot vec-
tor V encodes the way both x and y change with respect to t.

Using this process, any given image sequence is represented as
a collection of B-spline surfaces, denoted by fFiðu; vÞg. Recall that
we fit one surface per salient point position and therefore, the
number of surfaces per sequence, that is, Fis, is equal to the number
of points in S0. An example of a spline fitted to a set of points is pre-
sented in Fig. 4. Each member of the set fFiðu; vÞg is essentially a
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Fig. 4. (a) The set of points O that are engulfed within a spatiotemporal neighborhood. Th
the ones belonging to the same frame. (b) The resulting B-spline approximation describ
piecewise polynomial in a three dimensional space. This means
that we can fully describe its characteristics by means of its partial
derivatives with respect to its parameters u; v. That is, for a grid of
knots of dimensions k� h we calculate the following matrix Ri of
dimensions ðpq� 1Þ � ðhkÞ:

Ri ¼

@Fiðu1 ;v1Þ
@u . . . @Fiðuh ;vkÞ

@u

..

. . .
. ..

.

@ðp�1Þðq�1ÞFiðu1 ;v1Þ
@up�1@vq�1 � � � @ðp�1Þðq�1ÞFiðuh ;vkÞ

@up�1@vq�1

2
664

3
775 ð3Þ

where @p=@up is the partial derivative of order p with respect to u.
Note (see Eq. (1)) that Fiðu; vÞ is the value of the spline at u; v, that
is, Fiðu; vÞ is a 3� 1 vector. Consequently, each element of the ma-
trix in Eq. (3) is a vector of the same dimensions, and more specif-
ically a vector that specifies the direction of the corresponding
derivative. In Fig. 5 an illustration of the first derivatives with re-
spect to u and v is given. The derivatives are drawn as three-dimen-
sional vectors, superimposed on the spline from which they were
extracted.

Our goal is to represent each Fi with a single descriptor vector.
For this reason, we bin each row of Ri into a single histogram of
partial derivatives and we concatenate the resulting ðpq� 1Þ histo-
grams into a single descriptor vector. This vector constitutes the
descriptor of Fi and consequently the descriptor of a specific region
in space and time of the image sequence. By repeating this process
for each Fi, we end up with a set of descriptors for the whole
sequence.
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Fig. 5. First derivatives with respect to (a) u and (b) v, drawn as three-dimensional vectors.

Table 2
Recall and precision rates acquired on the three datasets for the three classification
experiments.

Database 1-NN Gentle-NN Gentle-RVM

Aerobics 0.84/0.85 0.91/0.94 0.95/0.96
Weizmann* 0.88/0.88 0.9/0.93 0.92/0.92
Weizmann 0.78/0.82 0.83/0.84 0.84/0.84
KTH 0.67/0.68 0.78/0.78 0.81/0.82
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2.4. Codebook creation

Applying a clustering algorithm to the whole set of descriptors,
in order to create a codebook, is usually very time and memory
consuming. As suggested in [47], the way a vocabulary is con-
structed has little or no impact to the final classification results.
In accordance to this finding, we randomly subsample our descrip-
tor set. Subsequently, we cluster our randomly selected features
using K-means clustering. The resulting cluster centers are treated
as codewords, and the set of codewords constitutes the utilized
codebook. In this work we used 1000 clusters, as a compromise be-
tween representation accuracy and speed.

3. Classification

Having constructed a codebook, the goal is to represent and
classify a test image sequence into one of the available classes in
the training set. A conventional application of a ‘bag of verbs’ ap-
proach would dictate that each image sequence in the dataset is
represented as a histogram of visual codewords drawn from the
codebook. Using the codebook in this way for our specific set of
descriptors resulted in recognition rates of about 60% or less, using
a 1-NN classifier based on the v2 distance between the histograms
of the test and training sequences. The v2 distance was selected as
it is more suitable for comparing histograms than the Euclidean
distance. The low recognition rate that was obtained using this ap-
proach clearly indicates that using a single histogram of codewords
to describe a whole sequence is not suitable. The most plausible
reason for this is that a large number of descriptors in the code-
book is common to many (if not all) classes. We adopt, therefore,
a different approach and use the codebook in order to recover sim-
ilar temporal slices between the sequences. The descriptors that
belong to these slices have a specific extent in time, depending
on the temporal scales at which they were extracted (see Section
2.3.2).

Even though KNN based classification using a nearest neighbor
approach based on the v2 distance between the temporal slices
works quite well (see Table 2), it has an important drawback. A
large number of frames in the dataset are likely to be common to
many classes and therefore uninformative of the class. For exam-
ple, for a database depicting aerobic exercises, frames that corre-
spond to the neutral position of the human body, that is,
standing upright and facing the camera with the hands resting
along the body, are such common yet uninformative frames. It is
apparent that these frames will be matched for all classes that con-
tain them and they cannot be considered characteristic for a spe-
cific activity. Furthermore, while certain codewords might not be
informative about the class at a certain frame, they might be infor-
mative at another. It is evident, therefore, that a selection step pre-
ceding the classification would be highly beneficial in our case.

In this work we use the GentleBoost algorithm [55] in order to
select useful features for classification, due to its performance in
terms of convergence speed and classification accuracy [57]. Sub-
sequently, we use the selected features in a Relevance Vector Ma-
chine (RVM) classification scheme.

3.1. Feature selection

In feature selection by GentleBoost, at each stage a weak classi-
fier is trained on a weighted version of the dataset. Here, each weak
classifier operates on a different dimension/feature of the feature
vector. At each stage the algorithm picks the weak classifier that,
given the current sample weights w, separates the examples of dif-
ferent classes best. Then, the classification error is estimated and
the samples are reweighted so that misclassified samples weigh
more. This procedure is repeated until the classification error does
not change significantly between iterations. The performance mea-
sure used by GentleBoost to learn the weak classifiers and evaluate
their performance is the classification rate, that is, the percentage
of correctly classified examples, regardless of their class.

The usual input to boosting algorithms is a set of positive and
negative examples where the dimension of each example is equal
to the dimension of the feature vector. The setup for selecting the
most discriminative temporal slices for each class in our case is
somewhat different, since a feature is the histogram of the visual
verbs for a single slice, represented by a 1� P vector, where P is
the number of codewords in the codebook. We create initially an
P �Mi array A, where Mi is the total number of slices in all the
examples of class i. Each entry Ap;mi

; p ¼ 1 . . . P; mi ¼ 1 . . . Mi is
the percentage of codeword with index p in the mi slice that be-
longs to class i. This forms the set of positive examples. Each row
of A, therefore, expresses the percentage of the codeword that cor-
responds to that row across the whole set of positive temporal
slices. Subsequently we select Mi slices from all other classes,
which we consider to be the set of negative classes. Each slice is se-
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lected as the one with the minimum v2 distance from the corre-
sponding Mi slice of the positive set (belonging to array A). The se-
lected temporal slices constitute a P �Mi array B representing the
set of negative examples. Each entry of B is defined in a similar way
as the ones in A. Each row of B expresses the percentage of the
codeword that corresponds to that row across the selected set of
negative temporal slices. By concatenating arrays A and B we arrive
to a 2P �Mi array C. This is the input to the boosting algorithm.

By performing this procedure we expect that a slice in the posi-
tive part of C (i.e. array A) that is common to all classes, will not be
selected, since it will have a very similar representation with the
slice in the negative part (i.e. array B) with which it is being com-
pared. On the other hand, a slice in the positive part of C that is un-
ique to the class will have quite a different representation from the
slice in the negative part with which it is compared and is there-
fore selected as being informative of the class. By performing this
procedure for all classes, we end up with a set of selected temporal
slices per class, which we will subsequently use for classification.

3.2. Relevance Vector Machine

A Relevance Vector Machine (RVM) classifier is a probabilistic
sparse kernel classifier that is identical in functional form to the
Support Vector Machine (SVM) classifier. Given a dataset of N in-
put-target pairs fðFn; lnÞ;1 6 n 6 Ng, an RVM learns functional
mappings of the form:

yðFÞ ¼
XN

n¼1

wnKðF; FnÞ þw0; ð4Þ

where fwng are the model weights and Kð:; :Þ is a kernel function.
Gaussian or Radial Basis Functions (RBF) have been extensively
used as kernels in RVM and can be viewed as a measure of similarity
between F and Fn. For our work, we use the distance of each test
example to the selected features of each class, in order to define a
kernel for the RVM. More specifically, we use a Gaussian RBF to de-
fine the kernel, that is,

KðF; FnÞ ¼ e�
DðF;Fn Þ2

2g ; ð5Þ
where g is the width of the kernel and D is the average of the min-
imum distances between the temporal slices of the test sequence
and the informative temporal slices of each class as selected by
Gentleboost. In the two class problem, a sample F is classified to
the class l 2 ½0;1� that maximizes the conditional probability
pðljFÞ. For L different classes, L different classifiers are trained and
a given example F is classified to the class for which the conditional
distribution piðljFÞ;1 6 i 6 L is maximized:

ClassðFÞ ¼ arg max
i
ðpiðljFÞÞ: ð6Þ
4. Experiments

4.1. Datasets

For our experiments we use three different datasets of human
activities. The first one is the KTH dataset [18], containing 6 differ-
ent actions: boxing, hand-clapping, hand-waving, jogging, running,
and walking. Each action is performed by 25 subjects several times
under different conditions, including scale changes, indoors/out-
doors recordings, and varying clothes. The second is the Weizmann
dataset, used in [54], and contains nine different actions such as
walking, running, and jumping, performed once by nine different
subjects. We also used a dataset that we created1 [10], containing
1 This dataset is available upon request. Please contact A. Oikonomopoulos for
further information.
15 different aerobics exercises performed twice by five different
subjects.

4.2. Camera motion

In order to demonstrate the effectiveness of the local median fil-
ter in compensating for general camera motion, we simulate the
latter in videos from the aerobics dataset. In contrast to the KTH
datasrt, the aerobics dataset contains sequences with textured,
non-planar background. In order to simulate camera motion, we
apply a rectangular cropping window around the subjects in the
dataset. Subsequently, we apply rapid, random displacements of
the cropping window. For comparison, we also apply a global affine
model for motion compensation. We use an iterative weighted
least squares algorithm for estimating the parameters of the affine
model, where the weights are updated at each iteration using the
robust m-estimator of Geman-McClure [58]. In Fig. 6 the results
of both motion compensation techniques are depicted.

As can be seen from the figure, both methods efficiently filter
out the majority of the flow vectors that are due to the camera mo-
tion. For the case of the global model, there exist a number of resid-
ual flow vectors that do not belong to the occurring activity
(frames (a, d, e)). While the median filter does not seem to suffer
from this problem, it occasionally tends to filter out vectors that
belong to the activity. This is evident in frames (b) and (c), and is
directly related to the size of the utilized filtering window. In this
paper, we used a window of 25� 25 pixels.

4.3. Classification results

We performed our classification experiments using cross vali-
dation, carried out in the leave-one-subject-out manner. That is,
in order to classify a test example performed by a specific test sub-
ject, we created a codebook and trained the respective classifiers
using all available data instances except of those belonging to
the same class and performed by the same subject as in the test
example. In order to assess the impact of each step of our method-
ology (the feature selection and the RVM classification), we present
classification results from three different experiments. In the first
experiment, each temporal slice of a test sequence is matched with
the closest slice of a training sequence in terms of their v2 distance.
The overall distance measure between the image sequences is then
calculated as the average of the minimum calculated slice dis-
tances. The test example is then classified to the class of the train-
ing example for which the smallest overall distance has been
calculated. In the second experiment the slices of each test exam-
ple are matched against the selected slices of each class (selected
by the Gentleboost in the feature selection step). Once again, this
is done in terms of the v2 distance. The test sequence is then as-
signed to the class for which the smallest resulting distance has
been calculated. Finally, in the third experiment we present the
classification results obtained using RVM as a classifier. More spe-
cifically, we use the distance of each test example to the selected
slices of each class in order to define the kernel of the RVM, accord-
ing to Eq. (6). For comparison, we present two different results for
the Weizmann dataset. In the first, the skip class is included in the
database. In the second one, this class is not included, since several
researchers present results that do not include this class. This class
is arguably the most difficult to recognize [54,33]. The collective
classification results for all three datasets and all three experi-
ments, in terms of recall and precision rates are given in Table 2,
where the reduced Weizmann dataset is denoted by Weizmann*.

As we can see from Table 2, there is a considerable increase in
classification performance on all three datasets when the feature
selection step is introduced, that is, when the most discriminative
temporal slices/windows per class are selected for training. This re-



Fig. 6. Motion compensation results using local median filters and a global affine model. Top row: individual frames. 2nd row: estimated optical flow. 3rd row: remaining
flow vectors after locally subtracting the median of the optical flow. Bottom row: remaining flow vectors after the application of robust global affine motion compensation.
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sult clearly suggests that slices which are common in a large num-
ber of classes have a negative impact on the classification perfor-
mance. This justifies our choice to conduct feature selection. On
the other hand, there is only a slight increase in classification per-
formance on the Weizmann and KTH datasets by additionally using
RVM for classification, while the increase for the aerobics dataset is
about 4%. We attribute this to the fact that the most informative
elements are already selected by our feature selection scheme.
We should note, however, that the contribution of the RVM classi-
fication step is always positive, but not very significant except for
the aerobics dataset.

The average recall rate for Gentle-RVM approach applied to the
KTH dataset is about 81%. From the confusion matrix in Fig. 7, we
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Fig. 7. Confusion matrix for the KTH dataset.
can see that confusions are commonly made between similar clas-
ses running and jogging. However, as noticed by Schuldt et al. [18],
these confusions are in fact reasonable, since what appears to some
people as running may appear to others as jogging and vice versa.
Concerning the Weizmann* dataset (where the skip class is ex-
cluded), the average recall rate of Gentle-RVM approach is 92%.
From the confusion matrix in Fig. 8, we can see that there are some
confusions between similar classes like jump, run, walk, and side, as
well as wave1 and wave2. However, as we can see from Fig. 8, these
confusions are rather rare. Finally, we performed similar classifica-
tion experiments using a global affine model for camera motion
compensation. The parameters of the model were estimated as de-
scribed in Section 4.2. We achieved a 75% average recall rate for the
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KTH dataset, using Gentleboost for feature selection and RVM for
classification.

As shown in Table 3, the results that we obtained for the Gentle-
RVM approach on the KTH dataset outperform the ones presented
in, e.g. [35,18]. Furthermore, we achieve similar results as the ones
reported in [19,51]. Contrary to our method, however, these works
do not specifically address camera motion, since they assume a sta-
tionary camera. Furthermore, we do not apply any preprocessing
step to the raw image sequences prior to feature detection, con-
trary to Fathi and Mori [38], who use stabilized sequences of
cropped frames, centered on the human figure as their input. Sim-
ilarly, Wong and Cipolla [34], temporally normalize their se-
quences to have similar length. Instead, we handle temporal
variations by automatically detecting temporal scale in the spatio-
temporal salient point detection step and by using this scale in or-
der to define the neighborhoods for the B-spline approximation.
Finally, we do not perform any background subtraction before
detecting our features, as opposed to Jhuang et al. [33] and Ahmad
and Lee [39]. The latter, use a Gaussian Mixture Model (GMM) in
order to identify foreground pixels as the ones which vary over
time. In the proposed method, however, we achieve a similar effect
by detecting the spatiotemporal salient points at areas in which
there is significant amount of motion, as described in [20].

Concerning the Weizmann dataset, our results are almost 4%
lower than those reported in [54] and [33]. However, besides han-
dling camera motion, the main advantage of our method compared
to these works is the feature selection step. By contrast in [54,33]
the whole set of the extracted features is used for classification
purposes. In addition, our system uses a sparse representation as
opposed to [54], where a whole image sequence is represented
as a space-time shape. Sparse, local representations, are shown to
be significantly better in dealing with clutter and occlusions for ob-
ject detection and recognition in comparison to global representa-
tions (e.g. see [59]). Similar observations can be therefore expected
in the case of action recognition problems. As can be seen from the
results in Table 2 and Figs. 7 and 8, this assumption proved to be
true. The only other work presented so far in the body of the re-
lated literature that uses a sparse and structured representation
is that proposed in [50]. However, a recognition rate of 72.8% is re-
ported on the Weizmann dataset which is by far inferior to the 92%
achieved by our method.

As previously mentioned, we used cross validation in a leave-
one-subject-out manner in order to evaluate our method. This
means that for any test example, the codebook contains informa-
tion about the class of this example. We would like to determine
here, if our features are general enough to handle completely un-
known classes. That is, given a codebook of visual verbs we want
to examine how well can this codebook discriminate classes that
did not contribute to its creation. Our motivation for this experi-
ment lies in the fact that our system is able to consistently recover
short-term motion in small spatiotemporal regions. Therefore,
given that an unknown class can share a number of similar
Table 3
Comparisons of the proposed method to various methods proposed elsewhere for KTH da

Methods Features Classifier

Our method B-splines Gentleboost + RVM
Ke et al. [35] Optical flow Boosting
Schuldt et al. [18] ST interesting points [17] SVM
Ahmad et al. [39] Flow + moments MDHMM
Dollar et al. [19] Gabor filters NN
Wong et al. [34] DoG + NMF SVM
Niebles et al. [51] Gabor filters pLSA + SVM
Fathi et al. [38] Optical flow Adaboost
Jhuang et al. [33] C features SVM
spatiotemporal regions with several known classes, there should
be some ability for good discrimination. We performed two differ-
ent experiments. In the first experiment we created a codebook
from 14 classes of the aerobics dataset. The remaining class was
used for testing. In other words, the remaining class was repre-
sented by using visual verbs defined for other classes. The result
was that 8 out of 10 instances of the test class were correctly clas-
sified. In the second experiment, we created a codebook from the
whole aerobics dataset and tested it for discrimination of classes
from the Weizmann dataset. The classes between these two data-
sets are almost completely different. Exceptions are the classes
jack, wave1, and wave2 of the Weizmann dataset which are also
present in the aerobics dataset. The average recall rate for this
experiment was 67.7%, with the worst performing classes being
jump, run, walk, and skip, as we can see from the confusion matrix
of Fig. 9. However, poor results for these classes could be expected,
as these classes do not seem to share common frames with classes
of the aerobics dataset. Overall, these results indicate that it might
be possible to use the proposed descriptors for representing new
classes of actions. We intend to investigate this issue in further de-
tail using all action databases and performing the same experi-
ments with features that are currently the state of the art in the
field, like those proposed in [54,33] and [50] (i.e. Poisson, C2, and
Gradient features).

5. Conclusions

In this paper, we presented a feature-based method for human
activity recognition. The features that we extract stem from auto-
matically detected salient points and contain static information
concerning the (moving) body parts of the subjects as well as dy-
taset.

Weaknesses/benefits Accuracy (%)

Camera motion handling, sparse representation (+) 80.8
Robust to camera motion (+), but no specific handling (�) 62.97
Stationary camera (�), results on selected sequences (�) 71.83
Background subtraction (�) 88.3
Stationary camera (�) 81.17
Samples preprocessed into similar temporal length (�) 86.7
Stationary camera (�) 81.5
Stabilization (�) 90.5
Background subtraction (�) 91.7
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namic information concerning the movements/activities. Further-
more, our features are robust to camera motion, through the use
of filtered optical flow for their extraction. We use the extracted
features to recover similar temporal windows that essentially en-
code the short-term motion typical for a given activity in a ‘bag
of verbs’ approach. Our results show that our representation is able
to recover a wide variety of different motion/activity classes. Fur-
thermore, our experiments show that our system is able to gener-
alize well and handle unknown classes (i.e. those that did not
contribute to the creation of the utilized codebook). To the best
of our knowledge, this is the first approach to human activity rec-
ognition that achieves generalization to unknown classes.

The future directions of our research include additional experi-
ments in order to determine the robustness of the proposed meth-
od in more challenging scenarios, like in the presence of dynamic
background. To wit, an obvious improvement of our method which
would enable handling of dynamic background, is to take into ac-
count the spatiotemporal consistency of the features. This would
enable not only dynamic background handling, but activity seg-
mentation as well, in cases where more than one activity is taking
place within the same scene (e.g. several activities occurring one
after the other and/or two or more people in the scene doing differ-
ent activities).
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