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Abstract
Endovascular aortic replacement (EVAR) is an established technique, which uses stent grafts to treat aor-

tic aneurysms in patients at risk of aneurysm rupture. Late stent graft failure is a serious complication in
endovascular repair of aortic aneurysms. Better understanding of the motion characteristics of stent grafts will
be beneficial for designing future devices. In addition, analysis of stent graft movement in individual patients
in vivo can be valuable for predicting stent graft failure in these patients.

To be able to gather information on stent graft motion in a quick and robust fashion, we propose an
automatic method to segment stent grafts from CT data, consisting of three steps: the detection of seed points,
finding the connections between these points to produce a graph, and graph processing to obtain the final
geometric model in the form of an undirected graph.

Using annotated reference data, the method was optimized and its accuracy was evaluated. The experi-
ments were performed using data containing the AneuRx and Zenith stent grafts. The algorithm is robust for
noise and small variations in the used parameter values, does not require much memory according to modern
standards, and is fast enough to be used in a clinical setting (65 and 30 seconds for the two stent types, respec-
tively). Further, it is shown that the resulting graphs have a 95% (AneuRx) and 92% (Zenith) correspondence
with the annotated data.

The geometric model produced by the algorithm allows incorporation of high level information and ma-
terial properties. This enables us to study the in vivo motions and forces that act on the frame of the stent.
We believe that such studies will provide new insights into the behavior of the stent graft in vivo, enables the
detection and prediction of stent failure in individual patients, and can help in designing better stent grafts in
the future.
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Research highlights
• The proposed algorithm segments the wire frame of stent grafts.

• Comparison with annotated reference data shows a good agreement.

• The resulting geometric model describes the stent in a concise and natural manner.

• We will use this model to study in vivo motions and forces of the stent.
∗Appeared in Medical Image analysis, Vol 16, No 1, Januari 2012
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1 Introduction

1.1 Clinical context
Endovascular aortic replacement (EVAR) is an established technique, which uses stent grafts to treat aortic
aneurysms in patients at risk of aneurysm rupture (Bruin et al., 2010; Investigators, 2010; Zarins et al., 1999).
The long-term durability of these stent grafts is affected by the stresses and hemodynamic forces applied to
them, and may be reflected by the movements of the stent graft itself during the cardiac cycle. Late stent
graft failure is a serious complication in endovascular repair of aortic aneurysms (Cao et al., 2009; Demirci
et al., 2009; Jacobs et al., 2003; Li and Kleinstreuer, 2006a; Mattes et al., 2005; Roos et al., 2005), such as the
formation of endoleaks (blood flow into the aneurysm sac) that can result in aneurysm expansion and rupture
(Li and Kleinstreuer, 2006b; Lu et al., 2008; Stavropoulos and Charagundla, 2007). Better understanding of the
motion characteristics of stent grafts will likely be beneficial for designing future devices. In addition, these
data can be valuable in predicting stent graft failure in individual patients (Langs et al., 2007, 2011).

Applying ECG-gated CTA (Fuchs et al., 2000) provides three dimensional datasets at different phases of the
cardiac cycle. This allows 4D visualization of the scanned object and enables the investigation of its temporal
behavior. ECG-gated CT has been used to study the motions of aneurysms (Hazer et al., 2009; Muhs et al.,
2006; Wentz et al., 2007) and stent grafts (Langs et al., 2007; Teutelink et al., 2007). In recent work (Klein
et al., 2009a) it was found that ECG gating is a suitable technique for studying the expected motions in the stent
graft and vessel wall in abdominal aortic aneurysm (AAA).

Most studies on the motion of stent grafts focus on measuring the stent’s diameter changes (van Herwaarden
et al., 2006) or finding the motion for a sparse set of points on the stent (Langs et al., 2007). A model that enables
capturing material properties and high level knowledge about the stent graft would be a valuable tool to gain
more insight into the stent’s in vivo behavior (Langs et al., 2007). Such a model can also help in performing
more reliable (fluid dynamics) simulations, which is important for improving current stent designs (Cebral
et al., 2009; Kleinstreuer et al., 2007). To the best of our knowledge such a model has not yet been proposed in
literature.

One of the major downsides of CT in general, is the exposure of the patient to ionizing radiation, which can
have negative effects on the long term health of the patient (Prokop, 2005; Fazel et al., 2009). The dose should
therefore be kept as low as possible. However, this results in higher noise levels and more image artifacts,
which can be a problem for automatic image analysis algorithms that often need high quality data to operate.
Algorithms that can perform their task on low dose data can therefore contribute to better patient safety.

1.2 Contributions
In this work we take an important step towards evaluating the motion of stent grafts in vivo: the segmentation
of the stent graft and its representation using a geometric model.

We propose a geometric model that represents the wire frame of the stent as an undirected graph, with
nodes placed at the corners and crossings of the frame, and the edges between the nodes representing the wires
(Figure 1). This model represents the topology of the stent’s frame in a concise and natural manner.

The main goal of the present work is to present a method to obtain the geometric model of the stent’s wire
frame from volumetric CT data. The method is fast and robust for high levels of noise, such that it is applicable
to CT data obtained with relatively low dose. To evaluate the quality of the produced geometric model, we
performed experiments in which the produced model was compared with a reference model annotated by three
experts.

1.3 Outlook
The geometric models produced by the proposed algorithm enable future studies on the motion of stent grafts
in vivo; the motion field between the cardiac phases (which can be obtained by image registration) capture
the motion of the stent and can be used to apply motion to the model. This will give quantitative information
about the motion of stent grafts. Subsequently, by incorporating material properties such as stiffness, and by
calculating the change of the angle between two edges, the forces present at the stent’s frame can be estimated
(Figure 1c). Both parameters will add valuable information to the analysis of stent grafts in vivo.

To be useful in future motion analysis, it is of importance that the model precisely represents the topology
of the wire frame of the stent graft; if the model contains erroneous or missing nodes or edges, the force
calculations can produce invalid results.
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Figure 1: Example graphs that describe a geometric model of the stent’s frame. The edges between the nodes
represent the physical wire frame of the stent. Nodes are placed at corners (a) and crossings (b), which makes
it possible to model different stent types. The (change of) angle φ when motion is applied to the model can be
used to estimate the force present in the node (c).

(a) AneuRx (b) Zenith

Figure 2: Illustration of iso-surface renderings from CT data of two different types of stent grafts.

While the proposed method can be applied to non-gated CT data, in the present work ECG-gated data was
used because of our intentions to study stent graft motion in the future.

1.4 Previous work
Few results have been published for the segmentation of the wire frame of stent grafts from CT data, despite
the need for such a technique to evaluate large 3D datasets. In preliminary work we segmented the wire frame
of the stent in 2D slices (Klein et al., 2008). In a recent work by Langs et al. (2011), the stent’s frame (in
the thoracic aorta) is found using a statistical model. They report that a threshold at 2000 Hounsfield Units is
sufficient to obtain a connected set of points belonging to the stent. Unfortunately, our data contains too much
noise (compared to the stent’s intensities) for such a method. This can be due to differences in the applied dose
(which is not not reported in Langs et al. (2011)) or in the material of the stent’s frame.

Several studies have been published on the segmentation of blood vessels in 3D, which have similarities
with the wires of the frame of the stent (Figure 2) and may therefore be of interest (see Lesage et al. (2009) and
Kirbas and Quek (2004) for an overview of vessel segmentation methods). One common method is the two-step
approach (Freiman et al., 2009; Kaftan et al., 2009; Manduca et al., 2009; Worz et al., 2009), which first seg-
ments the vessel using a vessel measure (Frangi et al., 1998) followed by centerline extraction. Unfortunately,
this method is not suitable for our research question because of gaps that can occur in the wire due to artifacts,
and the sharp corners of the wire which blood vessels do not posses (Figure 2). Methods that fit a series of
spheres or ellipsoids to the vessel (Beck et al., 2009; Zhou et al., 2008), and methods that segment the contour
in slices perpendicular to the vessel centerline (Hernandez-Hoyos et al., 2002; Lee et al., 2007) assume a solid
vessel with a diameter of several voxels. Due to the small diameter of the stent’s wire (1 to 3 voxels) and its
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Figure 3: Flowchart illustrating the required processing steps to extract a geometrical model from the CT data.

sharp corners these methods are also not suitable. Region growing methods (Bock et al., 2008) have problems
with leaks and gaps and need a second stage to find the geometry from the segmented voxels.

In recent work (Klein et al., 2009b) we have proposed three tracking algorithms to find the optimal path
along the wire of the stent, and compared them in an experiment. It was found that the method based on the
Minimum Cost Path (MCP) method produced the best results. In the current work, we use the MCP method to
segment the stent in a direct manner rather than applying a tracking approach. Additionally, the current work
describes the method to create a geometrical model from the results obtained by the MCP method.

1.5 Outline
First the algorithm to calculate the geometric model from the CT data is discussed in three steps in section 2.
Next, in section 3, we discuss the experiments that were performed to determine the optimal values for the
algorithm’s parameters, and the experiments to evaluate the accuracy of the algorithm. Finally, the results are
discussed in section 4.

In this work we consider two types of stent grafts which are commonly used in our institution to treat patients
with AAA: the AneuRx (Medtronic, Minneapolis, USA) and the Zenith (Cook, Bloomington, USA) stent graft
(Figure 2). The proposed method should be general enough to be capable of segmenting the wire frame of both
types of stent grafts.

2 Methods
Given are multiple volumetric images V (x)→ R with x = (x,y,z), acquired from a CT scanner using ECG-
gating; each image represents a phase in the cardiac cycle. In a pre-processing step of the proposed segmentation
algorithm, nphases volumes are averaged to reduce the noise at the cost of increased motion artifacts. The
averaged phases are taken from the end-diastole, which suffers the least from motion artifacts (Desjardins and
Kazerooni, 2004). In section 3 the optimal number of phases to average is determined in an experiment.

The proposed method can be divided into three steps, which are illustrated in the flow chart in Figure 3. First,
seed points are detected that are likely to be on the wire of the stent, resulting in a set of nodes pi = (x,y,z)
with i ∈ [0 . . .N− 1] and N the number of nodes. These nodes represent a graph without edges. In the next
step, the edges between the nodes are found using a modified version of the MCP method, resulting for each
node pi in a set of edges ei j, each connecting it to another node p j. Finally, the resulting graph is processed
by introducing new nodes and removing unwanted nodes and edges. These three steps are discussed in the
following subsections.

2.1 Detecting the seed points
A set of seed points is found by searching V for voxels subject to three criteria:

• The voxel intensity must be a local maximum.

• The voxel intensity must be higher than a predefined threshold value vseed .

• The voxel must have a direct neighbor with an intensity also above this threshold value.

Because the frame of the stent has an intensity that is (locally) constant, local maxima—and thus the resulting
seed points—are distributed homogeneously along the wire frame of the stent. Since the diameter of the wire of
the stent graft is much smaller than the voxels size, the partial volume effect causes the center of wire crossings
(in the AneuRx stent graft) to always be a local maximum.
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2.2 Connecting the seed points
The seed points are connected using a modified version of the minimum cost path (MCP) algorithm. The
MCP method can be used for segmentation of vessels and other structures (e.g. Cohen and Deschamps (2007);
Deschamps and Cohen (2000); Fahmi et al. (2008); Gülsün and Tek (2008); Jandt et al. (2009); Quek and
Kirbas (2001); Wink et al. (2004)). It is a level set method in which a front is propagated monotonically
following a (non-negative) cost function. The advantage of this method is that it can be implemented in a
computationally efficient way. It is a form of Dijkstra’s algorithm (Dijkstra, 1959) that finds the shortest path in
a graph of connected nodes. In the MCP method the nodes are represented by the pixels/voxels, and the edges
are implicitly defined by the grid; each node is connected to its direct neighbors.

2.2.1 Theory

Given a set of seed points P = {p1,p2, . . . ,pn} (with pi = (x,y,z)) and the costs in each voxel C(x)→ R, the
algorithm iteratively calculates the cumulative costs D(x)→ R it takes to travel from the seed points to any
other point in the image (Algorithm 1). The minimum cost path from any voxel x = (x,y,z) to the seed point
can be found by backtracking using D.

A major difference with respect to Dijkstra’s algorithm is that the costs are defined at the voxels (i.e. nodes)
rather than at the edges. Therefore, voxels n and m should contribute equally to the transition cost. This fact is
sometimes neglected in literature, in which case line 9 in Algorithm 1 is replaced by d = D(m)+C(n), which
resembles the update rule of Dijkstra’s algorithm.

By weighting with the Euclidean distance between the voxels, the method corrects for the larger distance for
diagonal voxels, and can account for the anisotropicity of the data. In applications where the cost and cumulative
cost represent a distance measure, it is advantageous to consider the 8 (2D) or 26 (3D) nearest neighbors rather
than only the 4 (2D) or 6 (3D) neighbors; the shape of the front is in that case octagonal rather than square,
which results in smaller discretization errors.

A related method is the Fast Marching method (?) which replaces line 9 in Algorithm 1 with a formula
to solve the Eikonal equation. It therefore remains (more) consistent with the continuous formulation of the
problem, which significantly reduces the discretization errors. However, these errors are not significant in our
situation since the paths are relatively short and the intensity difference between the wire and the background
is relatively large. Additionally, the backtracking algorithm in the resulting cumulative cost map—which is
applied relatively often in the proposed method—is considerably more easy and faster for the MCP method.

2.2.2 Cost function

Since the stent is made of metal, it is represented in the data V (x) with relatively high CT-values compared
to the soft tissue in the human body. Therefore we define our cost function such that an increase in CT-value
results in a decrease in cost:

C(x) = 2−V (x)/va f f , (1)

where va f f is a predefined value representing the algorithm’s affinity for high intensities. Consider two hypo-
thetical paths, of which one is exactly twice as long as the other but running through voxels of higher intensi-
ties. The above formula implies that the longer path is preferred if the intensities over the path are at least va f f
Hounsfield Units higher. This increased affinity for high values over a shorter path prevents the algorithm from
cutting (sharp) corners.

2.2.3 Implementation

The MCP method can easily be modified to make it more suitable for a specific problem. For example, in
Klein et al. (2009b) the algorithm executes until a certain distance from the seed point is reached, and in Cohen
and Deschamps (2007) the traveled distance of the front compared to the largest travelled distance is used as a
measure to freeze the front and thus prevent leaking outside the vessel.

In the present work the MCP algorithm is modified (Algorithm 2) such that the fronts evolve from all the
seed points pi found in the seed point detection step (section 2.1). Connections between the nodes are detected
when two fronts collide. As the fronts propagate, two maps are maintained (both maps are initialized with all
values to −1). The first is the backtrack map B that specifies for each point what the previous point was. The
second is the identification map I, a Voronoi diagram (Aurenhammer et al., 2000) that specifies for each point x
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Algorithm 1 Pseudo code for the normal Minimum Cost Path method.
01 function MCP(C):
02 init cumulative cost map D(x) = ∞ ∀x
03 init D(pi) = 0 for all seed points
04 insert the seed points in list L
05 while not isempty(L):
06 take voxel m from L with minimum D
07 for n in neighborsOf(m):
08 δ = euclideanDist(n,m)
09 d = D(m)+ 1

2 ·δ · (C(n)+C(m))
10 if d < D(n):
11 D(n) = d
12 if n not in L:
13 insert n in L
14 return D

Algorithm 2 Pseudo code for the proposed (modified) version of the Minimum Cost Path method.
01 function MCP_connect_seed_points(C):
02 init D(x) = ∞, I(x) =−1, B(x) =−1 ∀x
03 init D(pi) = 0 for all seed points pi
04 init B(pi) = i for all seed points pi
05 init I(pi) = i for all seed points pi
06 insert the seed points in list L
07 while not isempty(L):
08 take voxel m from L with minimum D
09 for n in neighborsOf(m):
10 if I(n) 6=−1 and I(n) 6= I(m):
11 makeEdge(n,m)
12 δ = EuclideanDist(n,m)
13 d = D(m)+ 1

2 ·δ · (C(n)+C(m))
14 if d < D(n):
15 D(n) = d
16 B(n) = m
17 I(n) = I(m)
18 if n not in L:
19 insert n in L
20 return edges

from which seed point it originates: I(x)→ i, maps point x to seed point pi. Consequently, the collision of two
fronts can be detected by testing I(m) 6= I(n) and I(n) 6= −1 (line 10 in Algorithm 2). If this test is positive,
an edge ei j between nodes pi and p j is created (with i = I(n) and j = I(m)), and the path between pi and p j is
found by backtracing the route using B (Figure 4b). Since it is possible that another (lower cost) path between
i and j is found later (Figure 4c), the above check should be performed at each iteration and for each neighbor.
Figure 4d shows how the front originating from one seed point partly replaces another front, thereby changing
the identification map I and the backtrack map B. This illustrates that the paths need to be traced at the moment
an edge is found.

As a stop criterion the value of D(m) is compared to a predefined threshold dmax. If the threshold is reached,
the cumulative cost is at such a level that we can assume all significant edges have been found.

2.3 Graph processing
The result of the MCP algorithm is a graph consisting of nodes (the seed points) connected by edges. Each
edge is associated with a path Pi j = [pi, . . . ,p j] of voxels connecting one node to another. Although the paths
themselves are optimal (in terms of the cost C), many of these edges are false edges, and must be removed. For
this purpose, two scalar values are associated with each edge. The first is αi j, the maximum cumulative cost
D(x) on the path. It represents the weakness (i.e. inverse strength) of the edge. This value is used to establish
the order of the edges; a stronger connection (lower α) is preferred over a weaker one. The second scalar value
is βi j, the minimum intensity (the CT-value in Hounsfield Units) on the path. Due to the definition of CT-values
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Figure 4: Illustration of three meeting fronts. The black circular shapes indicate seed points A, B and C. In (a)
the fronts do not yet meet. In (b) front A meets front B, and the path is traced. A few iterations later, in (c) a
better path (lower D) is found between A and B. The path is traced again and updated. In (d) a third front meets
with the first, connection seed points A and C.
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Figure 5: Flow chart illustrating the process of graph processing.

(−1000 representing air and 0 representing water) this value has a physical meaning and represents the quality
of the edge; it is used to determine whether an edge should be removed or not. The processing of the graph
occurs in multiple different passes which are illustrated in Figure 5 and described below.

1. Removing weak edges. Weak edges are removed based on the expected number of edges for each node
ne, which is two for the Zenith and four for the AneuRx stent graft. The algorithm iterates over all nodes
pi, and evaluates their edges. If a node has more than ne edges, the weakest surplus edges are selected
(using αi j) and considered for removal: the edge ei j is removed if βi j is smaller than the predefined
threshold vquality, and if the same criteria are also met when considering the edge from the node at the
other end (p j). If βi j > vquality there is enough evidence to assume the path Pi j corresponds to a wire and
the edge ei j is considered valid (Figure 6a).

2. Clean-up. Next, redundant edges are removed: all connections si j are considered in the order of de-
creasing αi j, starting with the weakest edge. An edge is found redundant if there is a path of one or two
stronger (i.e. lower α) edges that connect the same nodes. Next, each cluster (i.e. group of interconnected
nodes that is not connected to any other nodes) is removed if it consist of less than ncluster nodes, and each
tail (i.e. string of nodes) is trimmed if it consists of less than ntail nodes (Figure 6b).

3. Adding nodes at corners. The third pass starts with removing nodes from the graph that have exactly
two edges. The two edges are combined to form a new edge. Next, all edges are evaluated and new
nodes are inserted at the corners of the wire by searching for points on the path Pi j that have maximum
curvature (Figure 6c): for each point x on the path, two vectors are calculated, which each span five
positions on the path (corresponding to maximal 5 mm, which is less than the length of the wires). The
angle φ between the two vectors is calculated (Figure 7), and the resulting angle values for all the points
in the edge are smoothed with a Gaussian filter (with a standard deviation of 3 voxels) to account for the
discretization. By detecting local minima in the resulting list of angles, the point of maximum curvature
can be calculated.

4. Repeat pass 2. Since the graph has changed, new edges can now be marked redundant. These should
be removed before proceeding to the next pass. Furthermore, pass 5 gets rid of many nodes in invalid
clusters, which therefore are now eligible for removal.

5. Adding nodes at crossings. By tracing the paths of two edges from the same node, the algorithm deter-
mines whether the paths are partly the same. In these cases a new node is inserted at the point where the
paths diverge, and the overlapping parts of the paths are replaced by a single edge (Figure 6e) (Cohen and
Deschamps, 2007). This pass is not applied if ne = 4, because in that case the nodes are already correctly
positioned at the crossings and this pass would only introduce false crossings.

6. Repeat pass 2. Since the graph has changed, new edges can now be marked redundant (Figure 6f).
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7. Smoothing. Finally, the paths are smoothed using a moving average filter (with a range of three voxels).

3 Experiments

3.1 Materials
ECG-gated CT data was obtained for 10 different patients (4 with AneuRx, 6 with Zenith) using a Siemens
Somatom 64-slice CT scanner (Siemens Medical Solutions, Erlangen, Germany). A rotation time of 0.37 s,
a pitch of 0.34, and 2× 32× 0.6 mm2 collimation were used. The effective tube current (per rotation) time
product was 180 mAs and the tube voltage was 120 kVp. Each volume was reconstructed using the B36f
reconstruction filter and resulted in approximately 300 slices of 512×512 voxels. The slices (with a thickness
of 2 mm) were spaced 1 mm apart, and the resolution in the xy plane was approximately 0.5 mm. Retrospective
gating was applied to obtain 10 (equal distant) cardiac phases. The resulting data were manually cropped to
256×256×256 voxels to reduce the memory requirements.

For the purpose of creating a reference graph, two dimensional images of unfolded pieces of stent were
obtained via radial raycasting. Virtual cylinders were manually aligned with the stent’s centerline, and given a
diameter slightly larger than that of the stent. Rays were projected (using maximum intensity projection) from
the axis onto the face of the cylinder to obtain an unfolded image of the stent (Figure 8a). Since a bifurcation
cannot be unfolded in this manner, only tubular sections without bifurcations were used. This resulted in
18 unfolded stent images: 6 of the AneuRx stent graft and 12 of the Zenith stent graft. In total there were
approximately 700 edges for each stent type.

An annotation tool was developed which could be used to annotate a graph in the 2D image of the unfolded
stent. Using the mouse, nodes could be created, repositioned and removed, and edges between the nodes could
be defined. The annotator could initialize the graph with the (un-tuned) algorithm to alleviate the required work
for the annotator in regions which can be considered “easy”.

Three trained observers (an experienced radiologist, an experienced vascular surgeon and a computer scien-
tist) annotated the stent’s frame using the annotation tool. Because the (x,y,z) location in the original volume
was known for each pixel in the unfolded images, a three dimensional graph could be obtained from the expert’s
2D annotations (Figure 8b), which served as a reference to evaluate the proposed algorithm.

3.2 Comparison Method
To compare the geometric model produced by the algorithm with the annotated reference, a method to compare
two graphs is required. In graph theory the edit distance (Bunke, 1998) is a common method to compare
two graphs. The method considers the list of operations on one graph to transform it into the other. A final
distance measure is obtained by adding the costs for each edit operation. Since for the geometric model the
edges represent the physical wires, while the nodes are only a way to connect these, we use a cost of 1 to
add or remove an edge, and a cost of 0 to add or remove a node. Consequently, the edit distance becomes
Nmiss+Nwrong, representing the number of false negatives plus the number of false positives. To produce a score
expressed as a percentage, we apply the Dice Similarity Coefficient (DSC) (Crum et al., 2006):

DSC =
2 ·Nmatch

(Nmatch +Nmiss)+(Nmatch +Nwrong)
·100% (2)

where Nmatch represents the number of true positives.

3.3 Results
Multiple experiments were performed using the annotated reference data. The reference data was divided in
a training set containing 6 stent pieces (400 edges in total) obtained from 6 different patients, and a test set
containing 12 stent pieces (946 edges in total) obtained from 8 different patients. The sets were divided such
that in each set the amount of edges for each stent type is approximately the same. The training set was used for
parameter tuning and the test set for measuring the accuracy of the algorithm. The experiments and their results
are described in the next paragraphs.
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Figure 6: Illustration of an example of the different steps in the graph processing. For the sake of the example,
the dark nodes at the image boundaries are fixed. Changes are highlighted with red ellipsoids. In (a) the weak
(β < vquality) edge e12 is removed because it is found not-expected by both end-nodes. Edge e68 is also not
expected, but its β is high enough to support evidence of a wire, and the edge is thus not (yet) removed. In
(b) e68 is removed because it is redundant and e67 and e78 are apparently stronger. Further the tail at node 3
is removed, as well as a few tails in the bottom-left cluster. The bottom-right cluster is removed because it is
too small. In (c) new nodes are placed at corners, and nodes with only two edges are “dissolved". In (d) the
bottom-left cluster is removed. In (e) a node is placed at a crossing. In (f) node 9 is removed because it is now
on a tail.

9



φ

Figure 7: Illustration of how the path’s curvature is calculated to be able to insert nodes where the curvature is
maximal. The black dots represent voxel positions. The algorithm selects the voxel for which the angle φ is the
smallest.

(a) 2D image and annotations (b) Reference graph

Figure 8: Illustration of an example image used for the manual annotations (a), obtained using radial raycasting,
and the resulting 3D reference graph (b).

3.3.1 Parameter tuning

To choose suitable values for the parameters of the algorithm and to study the algorithm’s sensitivity to the
chosen parameter values, tuning experiments were performed on the training set. To tune each parameter
(nphases, vseed , dmax, va f f and vquality ), the algorithm was applied multiple times using a range of different values
for the parameter. Accuracy plots were generated by comparing the resulting models against the annotated
reference data, resulting in one plot per annotator. The resulting accuracy plots are shown in Figure 9. The
plots show the optimal value for each parameter, and also give an idea of how sensitive the algorithm is for the
parameter value. The parameters (and their found optimal values) are listed in Table 1. Although the removal
of tails and small clusters has a positive effect on the resulting geometric model, this cannot be measured in the
experiments; because the nodes/edges of tails and erroneous clusters are in general not inside the cylinder that
is compared with the reference data, removing these edges has no effect on the accuracy measure.

3.3.2 Accuracy

An experiment to evaluate the accuracy of the algorithm was performed with the test set. Using the optimal
parameter values found in the tuning experiments, the algorithm’s results were compared with the results of the
three annotators. The resulting values for Nmatch,Nwrong and Nmiss are given in Table 2, and the matching scores
are illustrated in Figure 10a. It can be seen that the accuracy is approximately 95% and 92% for the AneuRx
and Zenith respectively. In order to assess the quality of the used reference data, the graphs produced by the
annotators were also compared with each-other (Figure 10b).

Figure 11 and Figure 12 give an impression of the different steps of the algorithm and provide a way to
visually assess the quality of the algorithm for the AneuRx and Zenith stent graft, respectively. In Figure 13
and Figure 14 surface rendered images of the geometric models of both stent types is shown. 1 For the purpose
of visualization, clusters of edges not attached to the stent were manually removed; because the topology of the
graph is known, clusters of interconnected nodes are easily identified and can be removed using an interactive
process with just a few mouse clicks.

1Interactive flash movies of two examples are available at: http://www.sas.el.utwente.nl/home/almar/stents.html
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Figure 9: Results for the parameter tuning experiments. Shown are three lines (corresponding to the three
annotators) for each type of stent graft, and a thick line indicating the total accuracy.

Parameter Optimal value Description
nphases 7 Number of phases to average
vseed 650 Threshold to detect seed points
dmax 0.06 MCP evolution threshold
va f f 100 High intensity affinity

vquality 1200 Threshold for edge quality
ncluster 8 Minimum cluster size

ntail 3 Maximum tail length

Table 1: List of the algorithm’s parameters and the resulting optimal values.
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Stent type Annotator Nmatch Nwrong Nmiss DSC
AneuRx 1 448 16 19 96.2%

2 448 16 26 95.5%
3 442 22 19 95.6%

Zenith 1 470 53 21 92.7%
2 466 57 27 91.7%
3 470 53 23 92.5%

Table 2: List of the number of true positives, false positives, false negatives and the resulting scores in the
accuracy experiment.

(a) (b)

Figure 10: Illustration of the accuracy of the proposed algorithm (a) and the inter-observer agreement of the
annotators (b), measured using the 12 stent pieces from the test set. (“alg" stands for the proposed algorithm,
“obs" stands for observer.)

(a) MIP of the CT data (b) 2873 seed points (c) 9630 initial edges (d) 1496 final edges

Figure 11: Illustration of the different algorithm steps for an AneuRx stent graft. Shown are a Maximum
Intensity Projection (MIP) of the original data (a), the detected seed points (b), the found edges (c), the result
after processing the graph (d).
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(a) MIP of the CT data (b) 1732 seed points (c) 4963 initial edges (d) 531 final edges

Figure 12: Illustration of the different algorithm steps for a Zenith stent graft. Shown are a Maximum Intensity
Projection (MIP) of the original data (a), the detected seed points (b), the found edges (c), the result after
processing the graph (d).

4 Discussion

4.1 Parameters
From Figure 9 it can be seen that the plots for most parameters are relatively smooth, which implies that small
variations in the parameter values do not affect the accuracy of the algorithm. This means that finding the
(global) optimal parameter values is relatively easy, as there are no local maxima and the parameters have little
effect on each-other. Additionally, this suggests that the algorithm performs consistently on different data using
the same parameter values. However, the optimal parameter values can differ if a different scanner type or
different acquisition settings are used. All parameters—except for dmax—have a direct relation to a physical
quantity and are therefore relatively easy to choose.

The plot for nphases (Figure 9) shows that this parameter has little effect on the accuracy of the algorithm.
This suggests that the algorithm is relatively robust for noise. There is a slight decrease after nphases = 3, which
can probably be attributed by the increase in motion artifacts. Further, the plot shows a small peak at nphases = 7
. Whether this peak is significant remains uncertain, but it can be explained as follows. The pressure present
in the abdominal aorta first rises quickly after which it slowly declines (Hazer et al., 2009; Li and Kleinstreuer,
2006a; Swillens et al., 2008). The phases to average are selected primarily from the diastolic phase. As more
phases are selected for averaging, more phases are included that are not in the diastolic phase, and the increased
motion artifacts will negate the positive effect of the reduced noise. The peak at the seventh phase can be
explained by the fact that the seventh included phase is usually at the maximum of the pressure pulse, where
the amount of motion is low, and thus causes a relatively large accuracy increase. Naturally, when a different
number of phases are reconstructed, the optimal value of nphases will also change. The relative flatness of this
plot is an indication that the algorithm is relatively invariant to noise; the algorithm performs well even when
applied to a single phase.

The plot for vseed illustrates a clear maximum accuracy around 650 HU (Hounsfield units). While the
materials of which stents are made (stainless steel and nitinol) are usually expressed in much larger CT-values,
the partial volume effect causes the parts of the stent where the wire is thin to be represented by CT-values
around 650 HU. The accuracy for the AneuRx decays faster because its contrast (in the CT data) is lower than
for the Zenith stent graft. This difference can be explained by the difference in material or wire diameter. If
the value of vseed is chosen too high, too few seed points are detected in order to segment the stent completely.
If the value is chosen too low, many false seed points are introduced that cannot be cleaned up by the graph
processing algorithm, particularly when contrast fluid was applied during scanning.
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(a) (b)

(c) (d)

Figure 13: Illustration of lit surface renders of the resulting models for the 4 datasets containing the AneuRx
stent.
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(a) (b) (c)

(d) (e) (f)

Figure 14: Illustration of lit surface renders of the resulting models for the 6 datasets containing the Zenith stent.
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The plot for the MCP evolution threshold dmax shows the minimal value to use in order not to miss any con-
nections between nodes. While higher values will result in more edges being produced, these are successfully
cleaned up by the graph processing algorithm. The plot for the high intensity affinity parameter va f f shows a
broad optimum around 100 HU.

The plot for vquality illustrates that this parameter has no effect for the AneuRx stent graft. This suggests
that there are usually no extra edges found between nodes. Although the plot suggests that (for the Zenith stent
graft) there is no maximum for this parameter value, we chose a value of 1200; the situations in which this
parameter is applied (when there are more genuine edges than expected) are relatively rare and are probably
not represented sufficiently in the training data. Fortunately, the value can be chosen by considering what
it physically represents; an edge with a minimum CT-value of 1200 can only represent bone or a metallic
structure. The plot does show that using values lower than 1200 HU results in erroneous edges.

The values of ncluster and ntail could not be chosen based on experimental data (see section 3.3.1), and their
values might therefore not be optimal. Visual inspection of the results showed that most tails are successfully
removed, but some invalid clusters remain, specifically on the spinal cord (which were removed interactively).
Although increasing the value of ncluster might remove these false clusters of nodes, this will also result in
parts of the stent being removed (particularly for the Zenith stent graft, for which the graph consists of several
non-connected clusters).

In the brief discussion on the algorithm to calculate the curvature on the path Pi j, two parameter values were
mentioned. These were not tested in the experiments because it was found that the corners are placed in the
correct location even when the parameters were varied significantly.

4.2 Accuracy
Figure 10a show that the correspondence of the algorithm with the experienced human annotators is 95% and
92% for the AneuRx and Zenith, respectively. This is currently (to the best of our knowledge) the only published
algorithm to segment stent grafts is such a precise way. The fact that the accuracy is slightly lower for the Zenith
can be explained by the occasional sharp corners in its wire frame, which are sometimes cut in the MCP method.

Figure 10b shows that the consensus between the different annotators is high. This means that the process
of annotating provides consistent reference data and suggests that the reference data is a good approximation
of the real topology of the stent. In the future the reference data can be used to perform similar experiments to
compare different algorithms that perform the same task.

From Figure 13 and Figure 14 it can be verified that the overall accuracy is good, but some errors are clearly
visible. Most errors are located at "difficult situations" such as the parts where the wire frame has relatively
sharp corners (Zenith), small mesh size (AneuRx), or bifurcations (AneuRx and Zenith). Further it can be seen
that for the AneuRx the frame contains holes, and that nearby structures are sometimes attached to the stent
(such as the coil in Figure 14f).

Figure 13 and Figure 14 show that there is still room for improvement. We expect to gain the most by
improving the graph processing, for example by more explicitly incorporating information about the known
topology of the stent. Nevertheless, we believe that the current results are good enough to enable studying the
motion of stent grafts in vivo. However, it should be noted that small errors in the topology of the found model
can lead to significant errors when calculating the forces present in the stent. The extent to which the errors
affect such calculations should be investigated.

Currently the algorithm requires approximately 65 seconds for the AneuRx and 30 second for the Zenith on
a Pentium 4 with 2.4 GHz (using a single thread). This difference can be explained by the different number of
edges between the stent types.

4.3 Limitations
In this study we focused on two different stent types—the AneuRx and Zenith—which are made of nitinol (a
nickel titanium alloy) and stainless steel, respectively. We expect that the proposed algorithm can be used to
segment other stent types as well, provided that the contrast is high enough. This should be the case if such
a device is made of a similar material and has the same (or larger) wire diameter. In initial tests (not shown
in this work) we have seen positive results for the Talent stent graft (Medtronic, Minneapolis, USA), while the
Excluder stent graft (Gore, Flagstaff, USA) seemed too ill-defined in the resulting CT data when scanned with
our scanner settings. More research is needed to determine the cause for these differences.

While the optimal parameter values are the same for both stent types under consideration (except for the
expected number of edges per node), this is not necessarily true for other stent types.
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The annotated reference data does not contains parts of the stent with bifurcations. These are hard to annotate
for three reasons: firstly, a bifurcation cannot be unfolded in the way as proposed in this work. Secondly, the
topology of the frame can be relatively complex in these regions. Lastly, such regions can contain wires that
touch each-other, which are difficult to distinguish from wires that are physically attached. Since the algorithm
does not suffer from the first two limitations, we can expect the algorithm to produce accurate results in these
regions. This can, however, not be verified with the presented experimental method.

4.4 Implementation details
Most of the algorithm was implemented in the Python programming language2. A time-critical part of the
algorithm is the list L that stores the voxels of the “front” in the MCP method (Algorithm 1). Because at each
iteration the voxel with the minimum D must be selected, usually some form of a binary heap is employed
(Deschamps and Cohen, 2000), which enables obtaining the minimum value in O(log2(N)). For increased
speed, the detection of seed points, the binary heap, and a large part of the MCP method were implemented in
Cython (Seljebotn, 2009), a dialect of the Python programming language that is compiled to the C language.

The memory requirements of the algorithm depend mostly on the MCP method. Considering a dataset of
512× 512× 512 voxels, the memory requirements can be shown to be 2944 MB to store the volumetric maps
required by the MCP method. By cropping the data and selecting the region containing the stent, the data could
in our case be reduced to 256×256×256 voxels, implying a memory requirement of just 368 MB. The latter
requirement should not be a problem even for older (32 bit) personal computers.

Accuracy and speed improvements may be achieved by applying a method that detects the seed points in a
more reliable way, while reducing the amount of seed points found on bone. Further speed improvements may
be realized by using a different criterion to stop the evolution of the MCP algorithm, and by optimizing the
graph processing algorithms. Nevertheless, we believe that the algorithm in its current form is fast enough to be
used in the clinic.

5 Conclusions
We propose a method to segment stent grafts from CT data, consisting of three steps: the detection of seed
points, finding the connections between these points to produce a graph, and graph processing to obtain the final
geometric model. Using annotated reference data, the method was optimized and its accuracy evaluated. It was
found that the algorithm performs good for both types of stent grafts under consideration and is robust for noise
and small variations in the used parameter values. Additionally, the algorithm does not consume much memory
for modern standards and is fast enough to be used in a clinical setting.

The proposed algorithm produces an accurate geometric model of the stent in the form of an undirected
graph. This model allows incorporation of high level information and material properties. We can now use this
model to study the in vivo motions and forces that act on the frame of the stent. We believe that such studies will
provide new insights in the behavior of the stent in vivo, enables the detection and prediction of stent failure,
and by better understanding the reasons for stent failure can play a role in designing better stent grafts in the
future.
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