
Geo-casting of Queries Combined with Coverage Area

Reporting for Wireless Sensor Networks

L.F.W. van Hoesela,∗, A. Erman-Tüysüzb, A. Dilob, P.J.M. Havingab

aAmbient Systems B.V., Coloseum 15d, NL-7521 PV Enschede, the Netherlands
bFaculty of Electrical Engineering, Computer Science and Mathematics, University of

Twente, Postbus 217, NL-7500 AE Enschede, the Netherlands

Abstract

In order to efficiently deal with queries or other location dependent infor-

mation, it is key that the wireless sensor network informs gateways what

geographical area is serviced by which gateway. The gateways are then able

to e.g. efficiently route queries which are only valid in particular regions of

the deployment. The proposed algorithms combine coverage area reporting

and geographical routing of queries which are injected by gateways. The

combined solution is evaluated in terms of computational complexity and

performance compared with existing geo-casting protocols.

Keywords: Wireless sensor networks, Geo-casting, Geographical routing,

incremental convex hull

1. Introduction

During the lifetime of a wireless sensor network (WSN), the interest in

collected data may change. For example, this is likely in environmental

∗Corresponding author
Email addresses: lodewijk.vanhoesel@ambient-systems.net

(L.F.W. van Hoesel), a.tuysuz@ewi.utwente.nl (A. Erman-Tüysüz),
a.dilo@ewi.utwente.nl (A. Dilo), p.j.m.havinga@ewi.utwente.nl (P.J.M. Havinga)

Preprint submitted to Elsevier Ad Hoc Networks June 14, 2011

monitoring applications where the sensor network is used as data collection

tool by many researchers, who each might be interested in different data

sets [1]. Therefore, it is useful to be able to specify to the network, which

measurement type (e.g. averaged results) should be used, from which sensors

and at what rate data should be collected. The sensor nodes then adjust their

operation accordingly.

One way to adjust the data set that a sensor node reports to a central

gateway is to reprogram the nodes with updated firmware code. Levis et

al. [2] let nodes transmit the version number of their firmware at a slow pace.

When they (locally) detect that a neighbouring node has old firmware, neigh-

bours with more recent firmware automatically start update procedures. A

similar scheme, Deluge, is presented by Hui et al. [3]. However, in most cases

complete reprogramming is too expensive in terms of energy consumption.

Reijers et al. [4] propose a reprogramming mechanism based upon efficiently

transferring code changes. The program code on the node is basically patched

by a change script, executed on the nodes.

It is questionable whether reprogramming is a good strategy to specify

a change in sensor data that needs to be reported to a central gateway,

especially when this changes frequently. Instead of thinking of the network as

executing pre-programmed tasks, one might also consider the sensor network

as a distributed database, which can be queried for sensor readings. In this

setting, the nodes are pre-programmed with a query interpreter, which stores

and parses incoming queries, and changes the node’s behaviour accordingly

[5]. Madden et al. provide in [6] a detailed description of TinyDB, the format

of TinyDB queries and filtering functions that can be established with these

2

queries.

This work is in particular focused on the routing of queries (or other mes-

sage types) in the wireless sensor network that contain filtering on location

i.e. the query is only valid in particular regions in the wireless sensor network.

Higher efficiency can be achieved when the geographical filtering is applied

during the message routing process, instead of flooding queries to all nodes in

the network and then let the nodes apply the wished geographical filtering.

Obviously, the latter may involve much more communication between nodes,

which is typically a large source of energy expenditure for wireless sensor

nodes [7].

Higher efficiency may not only be achieved in the wireless sensor network,

but potentially also in a powerful mobile ad-hoc network (MANET), which

interconnects gateways that each communicate with a subset of wireless sen-

sors. Gateways collaborate with other MANET enabled devices to extract

contextual information from the sensor network by inserting queries. These

queries inform the wireless sensors which information needs to be delivered

to the gateways and are only inserted into the (local) sensor network if rele-

vant. The proposed geographical routing mechanism delivers as side product

a coverage area description of the wireless sensor network. This description

provides context information to applications of the WSN and can potentially

lead to more efficient control and use of the wireless sensor network and

e.g. the generation of sensible queries by the application.

In this paper, a mechanism is proposed in which (1) the wireless sensor

network provides an accurate and up-to-date coverage area description to

gateways and (2) the wireless sensor network re-uses the collected coverage

3

area information to enable geo-casting of location dependent queries and

other messages. The latter has a focus on routing of messages injected from

a gateway to nodes in the region of interest.

In short, the distributed mechanism works as follows. Sensor readings

are generated by sensor nodes according to queries and are —together with

position information of the node– encapsulated into messages. These mes-

sages are sent to a gateway in the wireless sensor network. The messages

potentially need to travel multiple hops in the network before they reach

the gateway. Sensor nodes, through which the messages flow, inspect the

position information inside the message and use this information to create

a local coverage area description, which is stored in the sensor node itself.

The local description represents the area which is covered by the sensor node

itself and all other nodes from which messages flow through the node on

their way to the gateway. At the gateway, the local coverage area description

represents the covered area of the subnet served by this gateway. The lo-

cal coverage area descriptions are continuously updated when nodes receive

position information.

When the application injects a location dependent query or other message

into the network, the gateway checks if there is a match between the area

covered by the sensor network and the area specified in the query. If so, the

gateway forwards the query to its child nodes. In their turn, these nodes

check if there is a match between their local coverage area descriptions and

the query’s specified area. If a node finds a match, it again forwards the

query to its child nodes. If not, the query is simply not propagated. In this

way, the query is routed to the area where it needs to be executed.

4

This paper is organized as follows. Related work is presented in Section 2.

Section 3 discusses the design of distributed coverage area reporting function-

ality. The section also provides general assumptions used in this work. In

Section 4, the geo-casting of location dependent queries is discussed. The pro-

posed combination of coverage area and geographical routing is called GEO-

CAST. Section 5 focuses on implementation aspects on resource-constrained

sensor nodes. Throughout this work, the limitations of sensor nodes in terms

of computational capabilities and energy reserves are considered. The per-

formance of the proposed routing mechanism is compared with existing work

in Section 6. Section 7 provides conclusions.

2. Related work

In traditional (computer) networks, routing of messages is most com-

monly based on logical addresses of devices. A different routing strategy for

wireless sensor networks is described in [8]: geographical routing. Instead of

advertising an interest for data, or requesting to establish a route to a certain

destination device, nodes use a routing technique based on node coordinates.

Nodes are assumed to know their own position and the position of the des-

tination node (i.e. the node where the data needs to be delivered). The idea

is that nodes advertise data along with the coordinates where it must be

delivered. Nodes closer to the destination node consider themselves candi-

dates for relaying the message. In this section, previous work in geographical

routing and geo-casting is discussed.

Face Routing [9, 10] routes packets along faces of planar network graphs

by using simple right hand rule and proceeds along the line connecting the

5

source and the sink. Although it guarantees to reach the destination, it does

so with O(n) messages, where n is the number of network nodes, and a sim-

ple flooding algorithm already reaches the destination with O(n) messages.

Also, it is not competitive with the shortest path algorithm in terms of cost

depending on the number of hops between the source and the destination.

Adaptive Face Routing (AFR) [11] is the first algorithm competitive with

the shortest path between the source and the destination. It basically en-

hances Face Routing by the concept of an ellipse-bounding region restricting

the searchable area. With a lower bound argument AFR was shown to be

asymptotically optimal. On the other hand, AFR is not practical due to its

pure face routing concept. For practical purposes there have been attempts to

combine Greedy approaches (always send the message to the neighbor closest

to the destination) and face routing; for example Greedy Perimeter Stateless

Routing (GPSR) [12], however, without competitive worst-case guarantees.

There have been some other proposals to combine Greedy routing with face

routing like the GOAFR and GOAFR+ algorithms by Kuhn et al. [13, 14],

which remain worst-case optimal.

In most of these protocols, the packets are sent from source to a destina-

tion position. For some other scenarios like general position-based publish-

and-subscribe services, it is also sufficient for some packets (e.g. subscrip-

tions, queries, etc.) to reach any destination currently located in a given

area (i.e. geo-casting). Yu et al. propose Geographical and Energy-Aware

Routing (GEAR) algorithm [15], which shows how to broadcast a message

to all the nodes in a target region. GEAR uses greedy forwarding to forward

packets to the nodes that are progressively closer to the centroid of the target

6

region, whilst trying to balance the energy consumption at the intermediate

nodes. Once the message is delivered to the centroid of the target region, it

then uses restricted flooding, namely Recursive Geographic Forwarding, to

broadcast the message to all remaining nodes in the given region. Instead of

using geographical forwarding, GeoTORA [16] uses a unicast (ad-hoc) rout-

ing protocol (TORA [17]) to deliver the packet to the region and then floods

within the target region.

There are some other protocols based on window spanning infrastructure

(WSI) for routing to the specified message window (i.e. destination region).

In this approach, the message first is forwarded towards the message window

by an end-to-end routing protocol. Once the message reaches the window,

an infrastructure within the message window is built along with the mes-

sage propagation. The method in [18] uses a Greedy technique to find a

routing path from message originator to a node Nc located at the center

of the messages spatial window. This first part of the routing is similar

with the approach used in GEAR. For the routing inside the window, the

framework proposed in [18] uses two different approaches namely WinFlood

and WinDepth. The WinFlood algorithm consists of a constrained paral-

lel flooding, where a node broadcasts the message to its neighbors only if its

own location is inside the messages spatial window. The alternative solution,

WinDepth, is based on depth first search policy.

As we have seen from the related works given above, the first step of

geocasting is generally based on Greedy approach which cannot guarantee

that a routing path to a node in the messages spatial window will be found.

Stojmenovic [19] reviews the existing approaches for message delivery to a

7

destination region, i.e. geocasting. Three approaches that guarantee deliv-

ery in static sensor networks are discussed in detail: (i) face traversal scheme

based on depth-first search of the face tree, (ii) traversal of all faces that

intersect the border of the geocasting region, and (iii) entrance zone (i.e.

the set of points that are at smaller distance than the transmission radius

R from the destination region) multicasting-based geocasting. These algo-

rithms mainly solve the routing hole problem in sparse networks in order to

guarantee the delivery of messages to the target region. However, face traver-

sal has considerable communication overhead as we discussed previously, so

these approaches cause unnecessary overhead in dense networks. An adap-

tation to traversal of faces intersecting the target region (called GFPG∗),

which achieves delivery guarantee in sparse networks and reduces the ad-

ditional overhead of face traversal scheme in dense networks, is discussed

in [20]. In the GFPG∗ algorithm, each node inside the geocasting region di-

vides it radio range into four equal partitions. If there is at least one neighbor

in each partition, it is assumed that there is no gap around this node. Thus,

this node will not send perimeter packets (i.e. initiate face traversal) and

will send only the geocast message inside the target region. If a node has

no neighbor in a partition, it enters the perimeter mode and uses right-hand

rule to send perimeter packets.

The geocast routing protocols discussed above are non-flooding based

approaches, meaning other routing protocols are used to reach the target

region instead of flooding, e.g. greedy forwarding, ad-hoc routing. Regional

flooding may still be used inside the target region. The authors in [21] also

discuss directed flooding based geocast routing protocols. Directed flooding

8

tries to limit the message overhead and network congestion of naive flooding

by defining a forwarding zone, which consists of a subset of all network nodes.

The forwarding zone includes at least the sender of the geocast message and

the target region of the message. It should also include a routing path be-

tween source node and target region. Otherwise, protocols either have to

increase the size of the forwarding zone or fall back to simple flooding. An

intermediate node forwards a message only if it belongs to the forwarding

zone. Directed flooding based geocast protocols [22, 23, 24] differ in how they

define the forwarding zone. In Location-Aided Routing (LAR) [22], the for-

warding zone is the smallest rectangle that includes the sender node and the

target region. Voronoi diagram approach in [23] defines the forwarding zone

as follows: a neighbor of a sender node belongs to the forwarding zone if and

only if it is closest in the direction of the destination region. GeoGRID [24]

partitions the network into logical grid cells and a single elected node close

to the center of each grid cell is responsible for propagating geocast packets

to neighboring cells.

Recently there are also proposals for geocasting of a message to several

geocast regions. The authors in [25] combine clustering and multi-geocasting

for delivery guarantee to multiple target regions in WSN. In this work we

assume that each query packet specifies only one target region. We do not

consider multiple target regions (i.e. multi-geocasting) for a single query

packet in this work. It is assumed that when a sink node needs to send

the same query to different target region, it has to generate separate query

packets for each target region.

Table 1 presents a comparison of all discussed geocasting protocols. The

9

Table 1: Comparison of geocasting protocols (TR: Target Region, FZ: Forwarding Zone)

Protocol Path Routing Routing FZ

Strategy towards TR inside TR

GEAR (2001) Unicast Greedy Forwarding Flooding -

GeoTORA (2003) Unicast TORA ad-hoc routing Flooding -

WSI (2004) Unicast FullFlood/GreedyDF WinFlood/WinDepth -

GFPG∗ (2006) Unicast Greedy Forwarding Traversal of faces -

wih face routing intersecting TR

LAR (1998) Multicast Directed Flooding Regional Flooding Rectangle

GeoGRID (2000) Multicast Directed Flooding Regional Flooding Rectangle

Voronoi (2003) Multicast Directed Flooding Regional Flooding Polygon

main differences between the protocols are observed either in the first phase,

which is flooding based or non-flooding based for routing towards target re-

gion, or in the second phase that is the routing inside the specified message

window. However, our approach uses a different technique, which does not

make a distinction between approaches on two phases. Coverage area de-

scriptions are used in the first phase of routing to forward the packets from

source to the given area. It is again the coverage area description that is used

in the second phase, transmitting packets to nodes inside the target region.

In the performance evaluations we compare our approach with GEAR [15].

All the non-flooding based geocasting approaches take GEAR as a basis. The

other group of geocasting approaches, based on directed flooding, perform

worse compared to GEAR [21]: GEAR achieves higher delivery success ratio

and lower message overhead than the other directed flooding protocols with

10

rectangle and cone forwarding zones. The following sections describe our

approach in detail.

3. Coverage area reporting

The first step in the geographical routing of location dependent queries is

to establish a notion of what area is covered by the WSN. Then, the actual

geographic situation is compared with the target geographical zone in queries

and routing decisions are executed accordingly. In this section we discuss the

design for distributed coverage area reporting. In the distributed approach

of establishing a description of WSN coverage area per gateway, nodes keep

track of partial information of the coverage area. In this way, gateways are

efficiently informed of the coverage areas, while the amount of information

each node needs to store, transmit and receive is limited. Throughout this

work, the limitations of sensor nodes in terms of resources (Section 5) are a

driving force behind design choices.

3.1. Approach and assumptions

We assume that each of the nodes in the wireless sensor network has the

ability to obtain an estimate of its position. This can be either by localization

mechanisms [26, 27, 28, 29, 30], GPS or by other means (e.g. [31]). Whenever

a node publishes information, it is augmented with the current position of

the node.

By the term coverage area, we understand the geographical area in which

the sensor nodes are deployed. It is important to note that this is not equal

to information coverage as defined by Wang et al. [32]: the coverage area

indicates points where events are detected, but it does not define where

11

events can be located to get detected. Although information coverage is

important, it is not considered in the proposed routing mechanism, to keep

the proposed routing generic and independent of sensor types. In general,

sensor horizons are different for each sensor type or sensor implementation.

It may be dependent on the orientation of the sensor and sensor nodes may

be equipped with multiple different types of sensors [33].

The coverage area description, which the proposed mechanism delivers

as context information to the application of the wireless sensor network, is

actually only a approximate description: it provides the convex hull of the

locations where nodes are deployed. Edelsbrunner et al. present so called α-

shapes [34, 35], which construct an intuitive shape based on a set of points,

where the parameter α determines the crudeness of the resulting shape. This

class of shapes is a good candidate for representation of the wireless sensor

network coverage area, if the α-parameter is correctly tuned with respect to

the transmission range of nodes.

In this work coverage areas are represented by convex hulls of the node

locations (the convex hull is an α-shape with α approximating 0). With this

‘crude’ coverage area description detail is lost, e.g. holes in the wireless sensor

network deployment. Many geographical routing protocols (Section 2) need

to take special precautions to ensure that messages are not stuck at holes in

the deployment. However, the coverage area information collection described

in this section is tightly related to information flow from sensors towards

the gateways. The information flow in this direction is defined by routing

trees, one for each gateway, which implicit connectivity assures avoidance of

networks holes. We assume that links between nodes are bi-directional.

12

Throughout this work, the following is assumed in the wireless sensor

network. One or more gateways are deployed with the wireless sensors and

a wireless sensor node is logically grouped with one gateway to balance the

load across the gateways e.g. using [38, 39, 40]. Topology constraints, such

as connectivity, and load balancing are taken into consideration. Basically,

the routing strategy of the wireless sensor network determines which node

reports to which gateway. This work assumes that a routing tree is present

to route information efficiently to a selected group gateway e.g. the work

in [41]. We use the definitions parent node and child node to indicate node

positions in the routing tree. A child node has selected the parent node as

intermediate node in order to get messages towards a gateway. Nodes store

the logical address of their parent node, but do not need to keep track of

their (possibly many) child nodes. The reason for this is to keep the minimal

necessary information for routing in order to minimize storage of a sensor

node. The protocol that we propose for routing of queries is independent of

the mechanism used to partition the network between the different gateways,

and the way the routing trees are built. In our implementation we use Voronoi

decomposition based on hop-count metric for network partitioning, and the

shortest path routing metric to create the trees.

An overview of the presented approach of establishing coverage area de-

scriptions is depicted in Figure 1. Nodes keep track of coordinates that are

either included in messages carrying sensor data, or are explicitly transmit-

ted as described in Section 3.4. Using the received coordinate information,

a node creates its local coverage area description, represented as a convex

hull. Periodically, the local convex hull is transmitted to the parent node

13

Coverage area
of Gateway

Sensor node

Gateway

Local convex hull of node x

Sensor node x

Figure 1: Example network with coverage area (i.e. local convex hull stored in the gateway)

and a local convex hull stored in a sensor node

that merges the received convex hull with its local coverage area description.

A parent node maintains a convex hull that envelopes the node itself and

all its descendant nodes in the tree (see the local convex hull of node x in

Figure 1). The coverage area of a gateway is the convex hull of all the sen-

sor nodes served by this gateway (see Figure 1). Optionally, a convex hull

is reduced using some form of compressing before transmitting in order to

limit memory usage by the algorithm and energy consumption by reducing

the size of transmitted/received coordinate list.

3.2. Definitions

Let C0 = {c0, c1, . . . , ci} be a set of locations, where each location c is a

two dimensional coordinate (c(x), c(y)). Let the function CH(C0) = H create

14

a minimal (ordered) set of coordinates H ⊆ C0 that envelops the coordinates

in set C0. H is called the convex hull of the coordinate set C0. We assume

that the coordinates in H are ordered such that the convex hull encompasses

the coordinate set C0 counter clockwise. We denote |H| as the number of

elements in the set H. Note that |H| ≤ |C0|.

Many methods are proposed in literature to create the convex hull of

a set of locations e.g. [42]. Typically, these algorithms operate on a set of

locations and produce a convex hull, but do not consider addition of locations

once the convex hull has been created. In the following section, we present

an algorithm that constructs and maintains the (local) convex hull of a node

when sensor readings with coordinate information or periodically transmitted

local convex hulls are received by the node. In fact, the algorithm implements

a merge function CH(H,C) = H′, where C can be a single location, a set of

locations or a convex hull, with H′ ⊆ C∪H. The presented algorithm relies

on the fact that the convex hull H is stored as a counter clockwise ordered

set and, when merging, the ordering is kept.

Let
−−−−→
hkhk+1 be the vector connecting location hk with hk+1 of the convex

hull H. When the indices are larger than the size of the set e.g. when

k + 1 > |H|, the modulo with the set size is meant. To determine if the

coordinate c is on the left side of a vector, we make use of the right hand-

rule, by checking the orientation of the cross product
−−−−→
hkhk+1 ×

−→
hkc. In the

two-dimensional case, the cross product
−−−−→
hkhk+1 ×

−→
hkc is equivalent to

d = (h
(y)
k − h

(y)
k+1)c

(x) + (h
(x)
k+1 − h

(x)
k)c(y) + h

(x)
k h

(y)
k+1 − h

(y)
k h

(x)
k+1 (1)

Then, the coordinate c is on the left of line segment
−−−−→
hkhk+1 if the result of

Equation (1) is positive: d > 0. This check will later on be used to see if a

15

coordinate is inside a convex hull.

Finally, we define pi to be the position of node i in the wireless sensor

network.

3.3. Constructing local coverage area descriptions

In this section, we discuss how a node constructs a local coverage area that

describes the area covered by the node itself, its child nodes and other de-

scendant nodes. To create a local coverage area description, a node inspects

all messages that ‘flow’ through the node towards the designated gateway.

The location information inside these messages is used as input for the con-

struction algorithm.

Let Hi be a convex hull representing the (local) coverage area description

of a wireless sensor node or gateway i. The coordinate set Hi is always

ordered such that it describes the convex hull counter clockwise. Initially,

Hi = {pi} contains the coordinate of the node itself, however, during the

update process described below, the coordinate of the node itself might be

removed from Hi.

Let C be the set of coordinates that a node or gateway receives (C is

either a single coordinate which is extracted from a sensor reading flowing

through the node or a received convex hull from a child node). If C is an

empty set, our algorithm applies no changes to Hi. Otherwise, per coordinate

in the set C the following procedure is executed:

1. Define cj as current coordinate to investigate from the set C (0 ≤ j ≤

|C|− 1). If this coordinate is already present in the set Hi, move on to

the next coordinate. We investigate per coordinate if it is inside Hi. If

not, Hi is adjusted such that it envelops the coordinate as well.

16

2. Let n = |Hi| be the number of coordinates in the local convex hull:

• One coordinate (n = 1) — Add the coordinate to Hi and order

the coordinates such that the coordinate with lowest y-value is

first in the set.

• Two coordinates (n = 2) — Use Equation (1) to check if cj is on

the left of the line segment
−−→
h0h1 (see Section 3.2). If so, put the

coordinate at the third position in the convex hull Hi, otherwise

insert the coordinate between h0 and h1 in Hi.

• More coordinates (n > 2) — Check for each line segment
−−→
h0h1,

−−→
h1h2, . . .,

−−−−→
hn−1hn,

−−→
hnh0 if the coordinate cj is on the left of the

line segment. If so, the coordinate is enveloped by the convex hull

Hi; continue with the next line segment.

If cj is not on the left of a line segment, then record the starting

coordinate of the line segment as begin point b. Continue with

the next line segments until cj is left of the line again. Remove

all coordinates from b until the current line segment and insert cj

instead.

The above procedure is applied when a node receives sensor readings aug-

mented with position information or when local convex hulls are explicitly

propagated from child nodes. Next, we describe tasks that nodes need to

execute periodically to keep their local coverage area up to date in dynamic

networks.

17

3.4. Removing coordinates from local coverage area descriptions

Due to dynamics in network topology, the local convex hull maintained in

a node can contain coordinates that do no longer reflect the actual coverage

area of the node, its children and other descendants e.g. this might be the

case when a node dies/fails or nodes are mobile. To keep the local convex

hull accurate, a time out mechanism is required to remove old coordinates

from the local convex hull. Also, significant changes in the routing tree may

be used as trigger to recreate a local coverage area description. The latter

topic is left for future work.

Nodes store a timestamp for each individual coordinate in their local

convex hull Hi. The timestamp of a particular coordinate is reset when a

node receives a message containing the coordinate. But when a coordinate

has not been reinforced within the time out interval, it is removed from the

local convex hull and is therefore also not propagated to the parent node.

The time out information is never propagated to parent nodes.

A suitable time-out interval needs to be determined according to the level

of mobility in the network, however, it must not be shorter than the interval

at which nodes produce sensor readings, otherwise coordinates are removed

from the local convex hulls before they are reinforced. If topology changes are

frequent, the time-out interval should be short to ensure up-to-date coverage

area descriptions. The effects of node mobility are discussed in Section 6.

Periodically i.e. once per time-out interval, a node applies the algorithm

described in Section 3.3 to check if its own position pi must be added to

the local coverage area description. This action also ensures that a potential

time out on the own coordinate is prevented. Note that pi is always either

18

inside the area bounded by Hi, or a coordinate in the set Hi or on one of the

line segments represented by the convex hull Hi.

3.5. Compression of coverage area descriptions

The proposed mechanism for distributed coverage area reporting requires

that nodes (periodically) propagate the convex hull that describes the lo-

cal coverage area to parent nodes. Obviously, message sizes grow with the

number of coordinates that are part of the convex hull. Consequently, more

accurate, but larger coverage area descriptions result in higher energy expen-

diture of the nodes. Therefore, compression (i.e. approximation of the convex

hull with a smaller coordinate set) is an attractive option to limit resource

consumption, such as energy and bandwidth. It is important to note that a

convex hull is already a minimum set by itself.

x

y

hm-1

hm

hm+1

hm+2

c
a

b

d ĥ

Shortest line segment

Figure 2: Compression of the convex hull removes short line segments from H by adding

coordinates at the intersection of segments before and after the short segments

19

The compression algorithm accepts as input a convex hull and a maxi-

mum convex hull size nmax > 3. Until the convex hull has been reduced to

maximum size nmax, the algorithm finds two coordinates hm and hm+1 which

represent the shortest line segment in the convex hull with rm 6= 0 (Equa-

tion 4). These two coordinates are then removed from the convex hull H and

are replaced with one coordinate ĥ, such that hm and hm+1 are both on the

line segments
−−−−→
hm−1ĥ and

−−−−→
ĥhm+2, respectively (Figure 2). The coordinate ĥ

is positioned at the intersection of the line passing through hm−1, hm and the

line through hm+1, hm+2. It is calculated as follows [43]:

ĥ(x) =
1

rm

∣∣∣∣∣∣ h
(x)
m−1h

(y)
m − h(y)m−1h

(x)
m h

(x)
m−1 − h

(x)
m

h
(x)
m+1h

(y)
m+2 − h

(y)
m+1h

(x)
m+2 h

(x)
m+1 − h

(x)
m+2

∣∣∣∣∣∣ (2)

ĥ(y) =
1

rm

∣∣∣∣∣∣ h
(x)
m−1h

(y)
m − h(y)m−1h

(x)
m h

(y)
m−1 − h

(y)
m

h
(x)
m+1h

(y)
m+2 − h

(y)
m+1h

(x)
m+2 h

(y)
m+1 − h

(y)
m+2

∣∣∣∣∣∣ (3)

with

rm =

∣∣∣∣∣∣ h
(x)
m−1 − h

(x)
m h

(y)
m−1 − h

(y)
m

h
(x)
m+1 − h

(x)
m+2 h

(y)
m+1 − h

(y)
m+2

∣∣∣∣∣∣ (4)

Note that rm = ad − bc according to the definitions in Figure 2. If

the intersection point ĥ does not exist i.e. the two lines hm−1 ↔ hm and

hm+1 ↔ hm+2 are parallel and hence have equal slopes b : a = d : c, then

follows rm = 0. When this is the case for a shortest line segment, it is skipped

by the compression algorithm. Consequently, convex hulls with |H| = 4

having parallel opposite line segments, cannot be further reduced. However,

a reduction to a triangle is possible in other cases. Hence, we limit nmax > 3.

Since ĥ is on the exact intersection point of the line segments before and after

the line segment which is removed, the substituted coordinates are both on

20

the new line segments originating from ĥ. As a result, the coordinates hm

and hm+1 are never added to the compressed convex hull by the algorithm

described in Section 3.3, because Equation (1) results in d = 0, while d > 0

is the criterion to add a coordinate to the local convex hull.

In this work, reduction is only applied when a copy of the local convex

hull is forwarded to parent nodes. Nodes maintain the actual convex hull in

memory to use detailed information for the geographical routing decisions

(Section 4). Obviously, the larger the local coverage area descriptions, the

more memory is consumed by the uncompressed convex hull, more processing

is needed to apply the merging of coordinates (Section 3.3) and the energy

expenditure of nodes will be larger. Therefore, it could be a trade-off to

apply compression also to the local convex hull. However, when reduction is

only applied on copies forwarded to parent nodes, the time out mechanism

of coordinates remains functional without having to e.g. match coordinates

to substituted coordinates. In any case, the parent node works with the

compressed version. This implies that compressed local convex hulls need to

be forwarded to parent nodes within the retention period of coordinates to

ensure that substituted coordinates are not removed due to time out.

4. Geographical routing based on local coverage area descriptions

With the above described algorithms, the WSN gateways are informed of

a ‘crude’ description of their coverage area. Next, this information can be

used to optimize handling of position dependent information e.g. gateways

can use the information whether a certain query is relevant for their coverage

area. If not, the gateway can decide to discard the query without inserting

21

it in the WSN, which in the end saves energy and prolongs the lifetime of

the wireless sensor network. Geographical routing of location dependent

queries is discussed in this section. Gateways and sensor nodes implement

identical functionality regarding the forwarding of queries. Queries are always

forwarded from parent nodes to child nodes to get delivered to the area that

is specified in the query.

First, we have a closer look at the structure of location dependent queries.

We assume that these queries consist of two parts: (1) a description of the

area in which the query must be executed, and (2) a command sequence

(e.g. sensor types, sample rates, critical thresholds, aggregate functions

etc). This work is mainly concerned with the first part of the query. Let

R = {r0, r1, . . . , rn} be the coordinate set describing the region of interest

extracted from the query, Hi the local coverage area description of node i

and pi the (estimated) position of node i.

Upon receiving a query, a node analyses R and takes two decisions: (1)

execute decision (to find out if the node is within the region of interest and

needs to execute the query) and (2) forwarding decision (to find out if the

node has child nodes or further descendants in the region of interest). Both

decisions use R as input together with pi and Hi, respectively (Figure 3). If

these decisions are translated to addressed based routing, the execute decision

is analogous to check if the node is the final destination of the data packet

—and the data is handed over to higher layers in the OSI model– and the

forwarding decision is analogous to finding a path to the final destination.

However, there are slight differences, as we describe in the next sections.

22

Hi

R

pi

Hi

R

pi

(a) (b)

Figure 3: Routing decisions: (a) node i executes query if pi inside R and (b) node i

forwards query to children if Hi overlaps with R

4.1. Execute decision

When a node receives a query, it decides if the query is valid for it and,

if so, the query is stored and executed until it expires. The execute decision

basically checks if the node is inside the region of interest i.e. if point pi is

inside the polygon R.

The point-in-polygon problem is a well known problem in computational

geometry and many solutions and implementations have been proposed [44,

45]. In general, these algorithms need complex geometrical operations [44].

Looking from a node implementation perspective, it is beneficial to make the

assumption that the region of interest in the query R is a convex polygon.

This assumption is not strictly necessary, but it reduces the complexity of the

implementation, because of properties of a convex polygon [44]. Also, note

that in the case of a convex polygon R, parts of the algorithm in Section 3.3

can be reused to check if the coordinate pi is inside R: the node needs to

23

check for every line segment if the coordinate pi is left of the line. The query

needs to be executed when pi is left of all the line segments of R.

When the area of interest cannot be captured with a convex polygon,

we assume that multiple queries are generated to cover the complete area

e.g. according to the algorithms presented in [46, 47] to decompose polygons

into multiple convex parts. This functionality can be realized e.g. within the

different gateways, which are likely to be more computational powerful than

sensor nodes.

4.2. Forwarding decision

With the forwarding/halting decision a device determines if there might

be child nodes or nodes further down the routing tree that are within the

area of interest specified in the query. If there are, the node should forward

the query to its child nodes, which in their turn decide if the query needs to

be propagated.

Due to our choice to represent the coverage area by a convex hull, a

node cannot determine with certainty that there is indeed a node within the

polygon R, because details on node positions are lost for those located within

the convex hull. However, a node is able to decide with certainty that further

in its part of the routing tree no node is present within the region R. In the

later case, the node does not forward the query and consequently does not

spend energy on transmitting. In this way it saves resources from its child

nodes i.e. receiving the query by radio and processing it as described in this

section.

The forwarding decision is taken based upon R extracted from the query

and the local coverage area description Hi. The local convex hull describes

24

the area from which data messages flow through a node towards a gateway.

Our geographical routing, which performs routing of query messages in the

opposite direction, exploits the data flow routing paths summarized in convex

hulls. A certain region of interest can be reached by a node, if the region

overlaps with the local convex hull of the node.

To check if R overlaps with Hi, at least one of the following must be true:

• Any of the coordinates r0, r1, . . . , rn form R is inside the area repre-

sented by Hi. Section 4.1 describes how to verify if a point is in a

convex polygon;

• Any of the coordinates h0, h1, . . . , hk form Hi is inside the area repre-

sented by R;

• Any of the line segments represented by the convex polygon R intersects

with any of the line segments from the convex hull Hi. Section 3.5

describes how to calculate the intersection coordinate of two lines. The

operation can be used to verify if line segments intersect by adding a

check if the intersection point is within the x and y bounds of both line

segments.

If any of the checks results true, the area of interest and the local coverage

area overlap (Figure 3(b)). In that case the device forwards the query, and

the other checks are omitted. In none of the checks result true, the area of

interest does not overlap with the local coverage area. The forwarding of the

query is halted.

When a node decides to forward the query, it propagates the query to

its child nodes. For this purpose, we introduce a special multicast address

25

in the wireless sensor that represents restricted flooding to child nodes of a

node: a node decides to receive a packet if it carries the multicast address

and the packet originates from its parent node. A potential optimization step

concerning this aspect is to keep track as parent node which area is covered

by which child and only forward the query to relevant child nodes. However,

it must be noted that this requires nodes to store more information, and

makes the forwarding decision more resource consuming because it must be

repeated for all stored local convex hulls of children. We leave this trade-off

to our future work.

Note that if a node decides to execute a query (Section 4.1), the node also

automatically forwards the query, because of the relation of node’s location pi

and its local convex hull (Section 3.4). Of course, the query is only forwarded

when a node has reason to i.e. it is not a leaf node in the routing tree. This

can easily be verified without maintaining a list of child nodes by inspecting

the size of the local coverage area description, |Hi| > 1.

The fact that detail of the convex hulls are reduced by compression does

not affect the certainty with which nodes can decide to halt the propagation

of a query. However, it is expected that forwarding of queries happens more

frequently without nodes being present in the region R, simply because the

compression scheme of the convex hulls results in larger areas represented by

lesser coordinates in H.

5. Implementation aspects for resource-constrained senor nodes

The presented algorithms to obtain coverage area descriptions and the

geo-casting of location dependent queries using coverage areas, have been

26

designed with resource-constrained sensor nodes in mind. Typically, these

platforms use microcontrollers running at 4 to 8 MHz with on-chip RAM and

program memory. The non-volatile program memory ranges between 32 kB

and 128 kB, while the volatile memory is considerably smaller, ranging from

2 kB to 10 kB. Usually the nodes can access external non-volatile memory to

store arbitrary data. In [48] an overview is provided of common sensor node

hardware platforms. In this section, we dive into the implications it has to

implement the presented algorithms on resource-constrained sensor nodes in

terms of computational complexity and memory usage.

Let denote with sc and sct, respectively the number of bytes required to

store a single coordinate (c(x), c(y)) and a single coordinate with time out

information.

5.1. Computational resources

The computational complexity of the algorithms —discussed in the previ-

ous sections– have been well studied in literature. In [49], the computational

complexity is discussed of incremental construction of a convex hull: O(n2)

for the construction of the complete convex hull. O’Rourke discusses in [50]

a method of merging convex hulls with computational complexity O(n+m).

The computational complexity of point in convex polygon is O(n) accoording

to [51]. In [52], the complexity of determining if two convex hulls overlap is

given as O(log(n+m)).

In this section, we discuss what (computational) functions and resources

are required to maintain the local coverage area description and to make the

execute and forwarding decisions. Table 2 summarizes geometrical functions

that are required and gives their computational complexity in terms of mul-

27

tiplications, additions and inversions. Table 3 provides a mapping of the

functionality discussed in Sections 3 and 4 to these functions.

The Distance function calculates the distance between two coordinates.

This function is only used in the compression of the local coverage area

description before it is forwarded to parent nodes. Since the function is

used in the context of finding a minimum distance, it suffices to calculate

squared distance as follows (a(x) − b(x))2 + (a(y) − b(y))2. The next geometric

function Left is used to determine if a coordinate is left of a line segment.

This function is repeatedly used to find if a point is inside a convex polygon

and the function is used at several stages of the combined coverage area

reporting and geo-casting. The most computational intensive function is the

Intersect function, which calculates the intersection point of two lines of

which two coordinates per line are provided as inputs. This function is used

in the compression of the local convex hull and in the halt forwarding decision

to determine if two areas overlap.

The three functions Distance, Left and Intersect have been imple-

mented on a sensor node testbed [53] with a Texas Instruments MSP430

microcontroller, which has a clock frequency of 4.6 MHz. Timing informa-

tion of the three functions has been collected in terms of cycles required

on the microcontroller and time to complete the operation (Table 2). The

implementation uses sc = 4 bytes to represent coordinates.

Table 3 presents the computational complexity of the functionality re-

quired for the combined coverage area and geo-casting in terms of the func-

tions Distance, Left and Intersect. When a node receives a coordinate set

C from a child node to update its local coverage area description, it checks

28

Table 2: Overview of basic geometrical functions required and their computational com-

plexity

Function Equation ∗ +/− 1/. Cycles

Distance(a, b) 2 3 93 (0.20 ms)

Left(a, b, c) (1) 4 5 135 (0.29 ms)

Intersect(a, b, c, d) (2), (3), (4) 16 15 1 821 (1.78 ms)

(in worst case) for each of the coordinates in C if it is left of any of the line

segments in Hi (Section 3.3). Hence, at most |Hi||C| times the function Left

is used.

Less trivial is the compressing of the local coverage area description before

it is forwarded to a parent node. Note that in every compression round the

local convex hull size is reduced with at most one and that |Hi| − nmax

rounds take place. Per round, the intersection point of two lines is calculated

using Intersect and the length of all line segments in the working copy of

the convex hull Hi is calculated using Distance. In the first round, there

are |Hi| line segments in the working copy and in the next round |Hi| − 1,

until nmax line segments are reached. Hence, the Distance function is used∑|Hi|−nmax

n=1 |Hi|−n+1 times. The computational complexities of the routing

decisions in terms of the functions Distance, Left and Intersect follow

straightforward from their description (Section 4).

5.2. Memory requirements

Obviously, node requires |Hi|sct bytes to store its local convex hull, |C|sc
bytes to store temporarily coordinates received from a child node and, at

29

Table 3: Worst case computational complexity in terms of Distance, Left and Intersect

functions

Functionality Section Distance Left Intersect

Constructing

local coverage

area

3.3 |Hi||C|

Compressing

local convex

hull

3.5
∑|Hi|−nmax

n=1 |Hi| − n+ 1 |Hi| − nmax

Execute deci-

sion

4.1 |Hi|

Halt forward-

ing decision

4.2 2|Hi||R| |Hi||R|

30

most, |Hi|sc bytes to use as working copy of its local convex hull to create a

compressed version. Obviously, storage is also required for a received query

and its area of interest R. We consider here only the temporary storage

space to analyze the query i.e. |R|sc bytes. After analyzing the query, we

assume that it is either purged from memory or it will not account to memory

consumption in the routing layer, since it is handled by a higher layer. In

conclusion, the total memory requirements for the presented routing scheme

are |Hi|(sct +sc)+ |C|sc + |R|sc bytes of which |Hi|sct bytes are permanently

required.

5.3. Discussion

The sizes of the coordinate sets C, R and Hi determine to a large extend

the computational complexity and the memory requirements of the coverage

area reporting and geo-casting (Table 3).

For example, assume |C| = nmax = 8, |R| = 8 and |Hi| = 16, then the

memory requirements are at most 208 bytes, the merging of C and Hi takes

approximately 38 ms, compressing Hi to eight coordinates takes ≈35 ms,

while the execute decision takes approximately ≈5 ms and the halt forward-

ing decision (at most) ≈305 ms, assuming the sensor node platform described

in Section 5.1 and sct = 5.

The maximum size of the coordinate set C can be controlled by the

compression parameter nmax, however, its effect has two sides. Note that

when sensor samples flow through a node towards the gateway, |C| = 1.

When setting nmax to a low value (i.e. high loss of details in the transmitted

local coverage area descriptions), (1) the computational requirements of a

child node increase due to the compressing, but (2) the energy-expenditure

31

Sibling node

Compression of local
convex hull

Hj → C

Parent node

Merging with local
convex hull
CH(Hi, C)

Transmit Receive

C

Figure 4: Trade-off between compression of local convex hull in energy consumption per-

spective

for transmissions of local coverage areas and the time required to update a

local coverage area description in the parent node are reduced (Figure 4).

The question is: can compression be justified in terms of total calculation

time (and the associated energy-expenditure) of parent and child? Obviously,

a smaller size of C results in lesser energy consumption of the parent and

child nodes to wirelessly transfer the coordinate set C.

The total time to compress the child’s local convex hull Hj and to merge

it with the parents convex hull Hi is given by (see Table 3)

|Hi|nmax ∗ tl +
1

2

(
|Hj|2 + |Hj| − nmax − n2

max

)
∗ td + (|Hj| − nmax) ∗ ti (5)

where 3 < nmax ≤ |Hj| and tl, td and ti the computation times for the

functions Distance, Left and Intersect.

To minimise the computation time, we need to find out where the min-

imum of Equation (5) lays with respect to the interval 3 < nmax ≤ |Hj|.

Because Equation (5) is a hat-shaped parabolic function, we need to find the

minimum computation time by finding the position of the maximum of the

function. Denote nw as size of C where the computation time is longest. Due

to the symmetrical shape of the parabolic function, there are two relevant

cases:

32

1. The maximum of Equation (5) is located before half of the interval

i.e. nw <
1
2
(|Hj|+4). In this case, the minimum combined parent/child

computation time is located at nmax = |Hj|.

2. The maximum is at or after the middle of the interval 3 < nmax ≤ |Hj|.

In this case, the minimum total computation time is located at nmax =

4. Hence, compression with nmax = 4 is most energy-efficient.

To find the maximum total computation time, the derivative of Equa-

tion (5) is taken with respect to nmax and the root is determined. This

results in nw = tl
td
|Hi| − ti

td
− 1

2
. Next, we find nw is beyond or at the half of

the interval 3 < nmax ≤ |Hj| i.e. nw ≥ 1
2
(|Hj|+ 4). This is the case, when

|Hi| >
5
2
td + ti

tl − 1
2
td

(6)

Hence, when Equation (6) is satisfied, compression with nmax = 4 is most

energy-efficient.

For the sensor node platform described earlier in this section the max-

imum computation time is when the child’s convex hull is compressed to

nw = 1.45∗|Hi|−9.4 coordinates (for a given size of the parent’s local convex

hull). Then, for |Hi| > 12, compression to nmax = 4 results in best perfor-

mance in terms of calculation time and transmit/receive energy-expenditure.

From the above, we conclude that applying compression in child nodes

before transmission is beneficial if Equation (6) is met. However, to make

this trade-off effectively in a child node, it must know the size of its parent’s

coverage area description.

33

6. Comparative performance evaluation

A comparative performance evaluation of GEOCAST versus GEAR [15]

is presented in this section. In [21], the performance of different geocasting

protocols is compared and GEAR shows the best performance over all the

others. Therefore, we choose GEAR for our comparative performance eval-

uation. First, we define what metrics are used to compare both protocols in

simulation. Then, the details of simulation setup are discussed. We compare

the routing performance in different set-ups: static networks, mobile net-

works, high density and low density. The evaluation results of the different

scenarios are presented and discussed.

6.1. Evaluation metrics

The geographical routing protocols are compared in terms of routing ac-

curacy i.e. how well the proposed mechanisms deliver messages to the region

of interest defined in a query and in terms of networking performance. Op-

posite to GEAR, GEOCAST also provides a description of coverage area per

gateway in the network. This aspect is left out of the comparison, although

it enables more efficient use of a WSN from an application point of view.

We define the following metrics to compare the protocols in terms of

routing accuracy :

• Execution ratio (ER) — The ratio of nodes that are within the region

of interest and execute the query with the total number of nodes within

the region of interest. This metric measures how well the routing is able

to deliver the query to the region of interest.

34

• False execution ratio (FER) — The ratio between the data sinks that

inject the query while none of the nodes in their partitions execute the

query and the total number of data sinks. Since there is no partitioning

in GEAR protocol, FIR is redefined for GEAR as the ratio between

the number of data sinks that inject the query while none of the nodes

inside the target region execute the query injected by these sinks and

the total number of data sinks. Irrelevant query lead to higher energy

expenditure in the WSN partition when injected. We measure this

effect with the false injection ratio.

• False injection ratio (FIR) — The ratio of data sinks that inject the

query while none of the nodes in its partition executes the query with

the total number of data sinks. Irrelevant query lead to higher energy

expenditure in the WSN partition when injected. We measure this

effect with the false injection ratio.

We define the following metrics to compare the protocols in terms of

networking performance:

• Average query delivery delay (AQDD) — The total time elapsed

between the query generation by a gateway and its reception by a

sensor node inside the target region, averaged over all gateway-target

node pairs.

• Network load (NL) — The total number of query packets that are

sent from gateways. If more messages need to be transmitted to reach

the region of interest, the energy expenditure in the WSN is likely to

increase. We measure this effect with network load.

35

Table 4: Simulation parameters

Parameters Values for GEOCAST Values for GEAR

MAC protocol IEEE 802.11 DCF IEEE 802.11 DCF

Routing protocol for

coverage area reporting

Shortest path routing -

Routing protocol for

queries

Geo-casting Greedy forwarding +

restricted flooding

Tranmission range 250 m 250 m

Target region shape Circle - radius from

250 m to 800 m

Circle - radius from

250 m to 800 m

Mobility Model Linear mobility Linear mobility

6.2. Evaluation setup

We evaluate how our GEOCAST algorithm compares with GEAR, which

also handles geographical routing of messages to a region of interest. The

details of GEAR are given in Section 2. Table 4 presents the simulation

parameters.

Our simulations are based on the network simulator NS-2 [54] version

2.33. NS-2 allows us to run wireless simulations in realistic scenarios to

validate the design choices of GEOCAST. We use 802.11 as the MAC protocol

for our NS simulations.

The simulation scenarios use network sizes from 100 to 1000 nodes, which

are randomly distributed in a square deployment area. The nodes are con-

figured to have 250m transmission range. We generate random topologies,

36

however, only use connected network topologies (i.e. all nodes can reach each

other in one or more hops).

For both GEOCAST and GEAR, the target region is set to a circle cen-

tered at the middle of the deployment area. The radius of the circular tar-

get region is selected between 250m and 800m, scaled according to network

dimensions. The routing decisions of GEOCAST based on point in con-

vex polygon (Section 4) have been adapted to point in circle to match the

methodology used in GEAR to describe the region of interest.

In the different scenarios, 3 to 30 gateways are randomly selected in each

of the varying network sizes. For GEOCAST, sensor to gateway routing is

based on a shortest path algorithm. Sensor nodes send their convex hull def-

initions to their associated gateway, via parent nodes selected using shortest

path routing.

In mobile simulation scenarios, node movement follows the linear mo-

bility model. Node velocities are up to 20m/s (72 km/h), which includes

walking/running person and vehicular movements. Each data point in the

graphs are averaged over 50 simulation runs of different topologies, and we

show the mean and 95% confidence interval for the evaluation metrics. The

GEOCAST compression of local coverage area descriptions is not used in any

of the scenarios.

Average query delivery delay (AQDD) of both protocols is first recorded

as the end-to-end delay (the time between query generation and reception

of the query in the target region). However, AQDD results show that there

is a large difference between the query delivery delays of GEAR and GEO-

CAST. This is mainly due to the current NS2 implementation of GEAR as

37

an extension to existing directed diffusion algorithm [55]. Because an inter-

est message in GEAR passes through a series of filters and agents, a query

spends a lot of time between agents resulting in high end-to-end delay. As a

result, GEAR delay data is not directly comparable with our protocol’s delay

data. Therefore, we record the hop-based transmission delays of a message

(i.e. sum of the times between sending the message by a node and receiving

the message by the next node for every hop of the routing path) for GEAR,

which excludes the time spent in the routing agents. Only in Figure 6(a),

we show also the end-to-end delay of GEAR to present its difference with

hop-based delay.

6.3. Static network scenarios

In this section, we evaluate the proposed geographical routing GEOCAST

in static networks without any disturbing factors (scenarios 1 to 3). We

introduce errors in the position estimates of nodes in scenario 4. Simulations

of all scenarios show that the FER of queries in static networks is zero for

both GEAR and our protocol GEOCAST. Therefore, FER results are not

shown in the graphs.

6.3.1. Scenario 1: Effects of network density

Scenario 1 evaluates the effect of varying network density by varying edge

length of the (square) deployment area from 1000m to 2000m. The number

of nodes and gateways is fixed, 100 nodes and 3 gateways. Figure 5 shows

the routing accuracy performance of this scenario.

In Figure 5(a), we compare the ER of GEAR and GEOCAST for varying

network density. Note that an execution ratio of 1 means that every node

38

inside the target region has received and executed the corresponding query

packet. GEAR protocol, which has a higher redundancy than GEOCAST,

has a lower execution ratio in sparse networks. This is mainly due to the

unicast nature of the GEAR protocol. Its Greedy forwarding may not be able

to find a path between a gateway and the target region when the network

is sparse. On the other hand, even in sparse networks, in GEOCAST, the

gateways can form their coverage areas including all sensors in the network.

Therefore, nodes in the target region are accessible at least from one of the

sinks in the network.

Some false injections exist even in static networks. Figure 5(b) compares

the FIR of the two protocols. FIR of GEOCAST is constant because the pro-

tocol eliminates the unnecessary query injections from sinks both in dense

and sparse networks. GEOCAST has always a small number of false injec-

tions due to the fact that the convex hull of a sink can overlap with the region

of interest although no node from its partition is present in the target area.

This effect is due to our choice of describing the coverage area with a convex

hull. In dense networks, FIR of GEAR is less than FIR of GEOCAST. How-

ever, when the network is getting more sparse, FIR of GEAR increases. This

is because all the sinks send the query packet, and the Greedy forwarding it

uses for routing to the region of interest fails more often in sparse networks.

39

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1000 1200 1400 1600 1800 2000

E
x
e
c
u
t
i
o
n

R
a
t
i
o

Edge Length of Network Square (m)

GEOCAST
GEAR

(a) Execution Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1200 1400 1600 1800 2000

F
a
l
s
e

I
n
j
e
c
t
i
o
n

R
a
t
i
o

Edge Length of Network Square (m)

GEOCAST
GEAR

(b) False Injection Ratio

Figure 5: Scenario 1 – Routing accuracy performance for varying network density

40

 0

 50

 100

 150

 200

 250

 1000 1200 1400 1600 1800 2000

A
v
e
r
a
g
e

Q
u
e
r
y

D
e
l
i
v
e
r
y

D
e
l
a
y

(
m
s
e
c
)

Edge Length of Network Square (m)

GEOCAST
GEAR hop-based
GEAR end-to-end

(a) Average Query Delivery Delay (msec)

 0

 10

 20

 30

 40

 50

 1000 1200 1400 1600 1800 2000

A
v
e
r
a
g
e

Q
u
e
r
y

D
e
l
i
v
e
r
y

D
e
l
a
y

(
m
s
e
c
)

Edge Length of Network Square (m)

GEOCAST
GEAR hop-based

(b) Average Query Delivery Delay (msec)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1000 1200 1400 1600 1800 2000

N
e
t
w
o
r
k

L
o
a
d

[
t
o
t
a
l

#

o
f

s
e
n
t

p
a
c
k
e
t
s
]

Edge Length of Network Square (m)

GEOCAST
GEAR

(c) Network Load (number of sent packets)

Figure 6: Scenario 1 – Networking performance for varying network density

41

Figure 6 shows the networking performance of Scenario 1. Figure 6(a)

shows the delay of GEOCAST, end-to-end delay of GEAR and hop-based

delay of GEAR. Due to many agents called in GEAR (as explained in Sec-

tion 6.2) the difference between GEAR end-to-end delay and hop-based delay

is very big.

Figure 6(b) presents the hop-based delay of GEAR and end-to-end delay

of GEOCAST. The end-to-end delay of GEOCAST is around 2 msec for a

network of 1000x1000m2 and 4 msec for a network of 2000x2000m2. The

delay of GEOCAST increases slightly with the increase of the network area.

GEOCAST delay is smaller than GEAR delay because GEOCAST discards

the queries of sinks which coverage area does not intersect with the region of

interest. Only the sinks with overlapping coverage area with the target region

inject their queries. These sinks are often closer to the region of interest than

the other sinks. This keeps the average query delay low. In GEAR all the

sinks inject the query, therefore the average query delivery delay gets higher.

Another reason of this difference in delays of GEAR and GEOCAST is their

different forwarding mechanisms. GEAR uses unicasting to reach next hop,

and GEOCAST uses a special restricted broadcasting, which is quicker in the

delivery of the message to the next node. Also, in the GEAR’s delay graph,

the 95% confidence range is very large, which shows a different response for

different topology configurations.

Figure 6(c) shows the network load of both protocols. GEAR generates

more network load than GEOCAST, since all of the sinks in GEAR try to

reach the target region and inject a query packet into the network. The

multiple forwarding paths also result in higher network load in GEAR. On

42

the other hand, GEOCAST checks the coverage areas of sinks and a sink

sends a query packet only if its coverage area overlaps with the region of

interest. Therefore, GEOCAST sends less query packets towards the target

region. We can also say that GEOCAST is more energy efficient that GEAR

because it sends less query packets, while having a very high query execution

ratio.

6.3.2. Scenario 2: Effect of varying network size

This scenario evaluates the effect of varying network size (from 100 to

1000 nodes), while the mean node density and the mean gateway load are

kept constant. The average node density is set to 6 neighbors per node and

the average gateway load —number of nodes connected to a gateway– is set

to 33 nodes per gateway. In this scenario, the network area is increased with

the number of nodes. For 100 nodes, the network size is 1800x1800m2; for

1000 nodes, it is 5700x5700m2. To keep the sink load constant we increase

the number of sinks: 3 sinks in the network with 100 nodes, 30 sinks in the

network with 1000 nodes. Figure 7 shows the routing accuracy performance

of this scenario.

In Figure 7(a) we compare ER of GEAR and GEOCAST for varying

number of network nodes. The ER of GEAR slightly outperforms the ER

of GEOCAST when the number of network nodes increases. GEOCAST

approach is less redundant than GEAR since in GEAR all sinks send the

query towards the target region. Therefore, queries in GEAR reach to the

target region via multiple paths, which results in higher ER.

Looking at the FIR of the two protocols, Figure 7(b), we see that FIR of

GEAR is getting higher when the number of network nodes increases. Since

43

we also increase the number of sink nodes, more sinks inject the query packets

in GEAR. Therefore, the network with more sinks has a higher probability

of query packets not reaching to the area of interest. On the other hand, the

FIR of GEOCAST decreases as the number of sink nodes increases because

more sinks mean more coverage areas that partition the network area, and

the probability of the target region overlapping a coverage area decreases.

In GEOCAST, gateways can decide to discard the query without inserting

it in the WSN. Thus, GEOCAST can eliminate more unnecessary query

injections in networks with more sinks and more nodes. FIR results show

that the ratio of unnecessary injections of queries is very low in GEOCAST

while GEAR has many unnecessary query insertions, which consume more

energy and shorten the lifetime of the WSN.

Figure 8 shows the networking performance for varying number of nodes.

As it can be seen in Figure 8(a), the query delivery delay of GEAR is in-

creasing excessively with the number of network nodes, while the delay of

GEOCAST is stable. the reasons are the same as for the previous scenario.

GEOCAST only injects the queries of sinks which coverage areas overlap

with the region of interest. These sinks are usually closer to the region of in-

terest, therefore the paths from sinks to the target region are shorter. GEAR

sends the queries of all sinks. When the network size increases, it results in

more hops between the farthest sink and the target region, therefore longer

delays for GEAR. Figure 8(b) presents the network load of the protocols. We

notice that in both protocols, the network load increases with the increase

of the number of nodes. However, the increase in network load of GEAR is

very large since more sinks generate more query packets and all these query

44

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500 600 700 800 900 1000

E
x
e
c
u
t
i
o
n

R
a
t
i
o

Number of Network Nodes

GEOCAST
GEAR

(a) Execution Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

F
a
l
s
e

I
n
j
e
c
t
i
o
n

R
a
t
i
o

Number of Network Nodes

GEOCAST
GEAR

(b) False Injection Ratio

Figure 7: Scenario 2 – Routing accuracy performance for varying network size

packets try to reach the area of interest. GEOCAST, on the other hand, elim-

inates most of the unnecessary query injections so has a very small increase

in the network load as the number of nodes and sinks increase. Summariz-

ing results of Figure 7 and Figure 8, we can conclude that GEOCAST has

a large energy saving even in big networks. Although GEAR uses multiple

paths to forward queries towards the area of interest, the query execution

ratio of GEOCAST is very close to the ER of GEAR.

45

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800 900 1000

A
v
e
r
a
g
e

Q
u
e
r
y

D
e
l
i
v
e
r
y

D
e
l
a
y

(
m
s
e
c
)

Number of Network Nodes

GEOCAST
GEAR hop-based

(a) Average Query Delivery Delay (msec)

 0

 100

 200

 300

 400

 500

 100 200 300 400 500 600 700 800 900 1000

N
e
t
w
o
r
k

L
o
a
d

[
t
o
t
a
l

#

o
f

s
e
n
t

p
a
c
k
e
t
s
]

Number of Network Nodes

GEOCAST
GEAR

(b) Network Load (number of sent packets)

Figure 8: Scenario 2 – Networking performance for varying network size

46

6.3.3. Scenario 3: Effects of gateway load

Scenario 3 evaluates the effect of the number of nodes associated per

gateway in the network. This measures how the performance changes with

the gateway load, which determines at the same time the average path

length in the network. The gateway load is varied between an average of

11 nodes/gateway and 110 nodes/gateway. The node density is kept on av-

erage at 6 neighbor nodes and 9 gateways are used in the network setup.

Both the deployment area and the number of nodes in the network vary in

order to tune the gateway load.

Figure 9 shows the routing accuracy performance of scenario 3 to see

the effect of varying sink load. As shown in Figure 9(a), ER of GEAR

and GEOCAST decrease when the load (the number of nodes) per gateway

increases. ER of GEAR and ER of GEOCAST are very close to each other.

False injection ratios of both protocols remain more or less constant as the

sink load increases, as shown in Figure 9(b). This is because the number of

sinks is constant. GEAR has a higher FIR than GEOCAST. This is mainly

due to the fact that GEOCAST eliminates unnecessary query injections by

checking if the coverage area of a sink intersects with the target region. On

the other hand, GEAR injects the queries from all sinks even though they

may be far from the target region. The transmission of a query packet

injected by the far away sinks may fail in the network due to the failure of

pure Greedy forwarding at dead ends.

Figure 10(a) presents how the query delivery delays of both protocols are

affected by the varying sink load. When we increase the sink load, the delay

of GEOCAST slightly increases but the delay of GEAR increases very much.

47

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500 600 700 800 900 1000

E
x
e
c
u
t
i
o
n

R
a
t
i
o

Number of Network Nodes

GEOCAST
GEAR

(a) Execution Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

F
a
l
s
e

I
n
j
e
c
t
i
o
n

R
a
t
i
o

Number of Network Nodes

GEOCAST
GEAR

(b) False Injection Ratio

Figure 9: Scenario 3 – Routing accuracy performance for varying sink load

Having a fix number of sinks but increasing number of network nodes in a

constant node density network, results in longer paths between sinks and

target region. This effect is seen more clearly in the delay graph of GEAR

because all sinks inject their queries into the network. Figure 10(b) shows the

network load of the protocols when we increase the sink load. For the same

reasons explained in previous scenarios, the network load of GEAR is very

high because all the sinks inject the query in the network. In GEOCAST

only few sinks inject the query into the WSN, usually those that are close

48

the region of interest. The longer paths are another reason for network load.

This is more visible in GEAR because all the sinks send a query towards the

target region, even those that are far away.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700 800 900 1000

A
v
e
r
a
g
e

Q
u
e
r
y

D
e
l
i
v
e
r
y

D
e
l
a
y

(
m
s
e
c
)

Number of Network Nodes

GEOCAST
GEAR hop-based

(a) Average query delivery delay (msec)

 0

 50

 100

 150

 200

 100 200 300 400 500 600 700 800 900 1000

N
e
t
w
o
r
k

L
o
a
d

[
t
o
t
a
l

#

o
f

s
e
n
t

p
a
c
k
e
t
s
]

Number of Network Nodes

GEOCAST
GEAR

(b) Network Load (number of sent packets)

Figure 10: Scenario 3 – Networking performance for varying sink load

49

6.4. Scenario 4: Sensitivity to position estimate error

In this section we simulate positioning errors in static networks. In GEO-

CAST and GEAR is assumed that nodes are able to estimate their positions.

However, most localization schemes introduce errors. As a consequence, in

GEOCAST the service areas do not match the reality exactly and the execute

decisions get less accurate, resulting in sub-optimal performance.

To investigate the sensitivity of both protocols to position estimate er-

rors, we examine the impact of random location errors for every node in the

network. The error in location was generated uniformly in the range [−error-

rate * transmission-range, error-rate * transmission-range]. For example, if

the error rate is 0.1 and the transmission range is 250m, the randomized

error is uniformly distributed in [-25, 25]. The following simulations are per-

formed in a 1000x1000m2 network having 100 nodes and 3 sinks. The error

rate varies between 0 (i.e. no positioning errors) to 0.6, thus the randomized

error is between −150m and 150m.

Figure 11 shows the routing accuracy performance of varying position es-

timate error rates. The results in Figure 11(a) show that ER decreases with

increasing position estimation errors. However, with relatively big location

error, both GEOCAST and GEAR protocols still achieve satisfying perfor-

mance. For example, when we introduce random error in the range [-25, 25]

for each node’s x- and y-coordinates (i.e. error rate of 0.1), the simulation

results show very small performance degradation: the ER is still 95% for

both protocols.

50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

E
x
e
c
u
t
i
o
n

R
a
t
i
o

Localization Error Rate

GEOCAST
GEAR

(a) Execution Ratio

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.1 0.2 0.3 0.4 0.5 0.6

F
a
l
s
e

E
x
e
c
u
t
i
o
n

R
a
t
i
o

Localization Error Rate

GEOCAST
GEAR

(b) False Execution Ratio

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6

F
a
l
s
e

I
n
j
e
c
t
i
o
n

R
a
t
i
o

Localization Error Rate

GEOCAST
GEAR

(c) False Injection Ratio

Figure 11: Scenario 4 – Routing accuracy performance for varying position estimate error

51

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
v
e
r
a
g
e

Q
u
e
r
y

D
e
l
i
v
e
r
y

D
e
l
a
y

(
m
s
e
c
)

Localization Error Rate

GEOCAST
GEAR hop-based

(a) Average query delivery delay (msec)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
e
t
w
o
r
k

L
o
a
d

[
t
o
t
a
l

#

o
f

s
e
n
t

p
a
c
k
e
t
s
]

Localization Error Rate

GEOCAST
GEAR

(b) Network Load (number of sent packets)

Figure 12: Scenario 4 – Networking performance for varying position estimate error

When we introduce a randomized error between [-150, 150] for each node’s

x- and y- coordinates (i.e. error rate of 0.6), the simulation results show

around 25% performance degradation in ER. The sensitivity of both proto-

cols to position estimate errors is very similar and ER of GEAR and GEO-

CAST are very close to each other. Since we introduce localization errors in

the network, some false query executions exist in the network as shown in

Figure 11(b). False execution ratios of the protocols are the same for a given

52

position estimate error rate. For an error rate of 0.15, i.e. around 37.5m error,

FER of GEAR and GEOCAST is still zero. If we introduce an error rate of

0.2, 1% of the nodes outside the region of interest are executing the queries

on average. FIR results shown in Figure 11(c) are not much affected from

the increase of the positioning error. FIR of GEOCAST is slightly higher

than FIR of GEAR. However, when we increase the localization error rate,

the FIRs of both protocols are more or less the same. Coverage region based

approach of GEOCAST allows better hiding of inaccuracy of node positions

for higher localization errors. On the other hand, using individual inaccurate

positions for geographical routing in GEAR results in more failures of query

forwarding for higher error rates.

Figure 12 shows the networking performance of varying position estimate

error. In Figure 12(a), query delivery delays of GEAR and GEOCAST are

shown. The query delivery delay of GEAR increases progressively when

the localization error rate increases. On the other hand, GEOCAST has a

constant delay with increasing localization error rate.

GEOCAST is based on convex hulls of sinks’ coverage areas and even

if we have localization errors in the nodes, the resulting convex hulls are

the approximation of the correct convex hulls. Since we have a hierarchical

structure in the definition of coverage areas in GEOCAST, a node has an

‘overview’ about the region between its position and the area of interest. This

‘overview’ is affected by localization errors, but is still a good approximation

of the correct coverage area. Therefore, the path between a sink and the area

of interest is also an approximation of the correct path between the sink and

the area of interest. As a results, the delay of GEOCAST is not affected by

53

increasing localization errors.

However, routing strategies such as GEAR, which carry the packet geo-

graphically closer to the destination in each hop, can result in different paths

with different localization errors. Since a node in GEAR only has a local

knowledge about its surrounding nodes (i.e. one hop neighbors’ positions)

and it forwards the message based on this local knowlegde, the path between

sink and the target region can be longer when nodes have position estimate

errors. In Figure 12(a), we observe higher delays with higher localization

errors in GEAR, and we expect that to be caused by longer paths between

the sinks and the nodes in the target region.

The network loads of both protocols are constant for varying error rates.

Even if we have position estimate errors in the network, both GEAR and

GEOCAST try to forward queries towards the area of interest. Therefore,

the network load is constant when we increase the error rate. The number of

packets the protocol sends when there is no positioning error in the network

is the same with the number of packets sent when there are positioning

errors. Although network load of GEAR and GEOCAST do not change with

the increase of error rate, the ER of both protocols is affected, because the

protocols cannot deliver the query packets to the correct locations due to

positioning errors.

6.5. Mobile networks

The effects of mobility on both protocols are evaluated in scenarios 5

and 6. The mobile network simulations are performed in a 2500x2500m2

deployment area with 200 sensor nodes and 6 gateways. Simulations of both

mobile scenarios show that the False Execution Ratio of queries in mobile

54

networks is zero for both GEAR and GEOCAST protocols, therefore not

shown in the graphs. This is due to the fact that when a mobile node that

was in the target region before starting to move, receives a query, it first

checks it current position and if it is not inside the area of interest anymore,

it does not execute the query.

6.6. Scenario 5: Effect of the number of mobile nodes

This scenario evaluates the effects of the different number of mobile nodes

in a network: 1% to 20% of the network nodes are moving. The average

speed of the mobile nodes is 5m/s. Figure 13 shows the routing accuracy

performance of this scenario.

Figure 13(a) shows the ER results for GEAR and GEOCAST. GEAR

slightly outperforms GEOCAST when we increase the mobility rate. This

is mainly due to the fact that we used tree-based shortest path routing to

connect nodes to sinks in GEOCAST simulations. As tree-based approaches

require frequent reconfigurations in mobile sensor networks, they may have

worse performance in mobile sensor networks.

Figure 13(b) presents the FIR results of GEAR and GEOCAST. As we

already observe in the previous simulations, the FIR of GEAR is higher

than the FIR of GEOCAST. When we increase the mobility rate in the

network, the FIR of GEAR slightly increases. GEOCAST also has a slight

increase in FIR when the mobility rate is increased. This means that although

convex hulls of sensors may be affected by mobile nodes, the coverage areas

of gateways are not much affected. Only the movement of nodes that are

close to the boundary of a gateway’s convex hull may change the coverage

area of this gateway when they pass this boundary.

55

Figure 14 shows the networking performance of this scenario. In Fig-

ure 14(a) we show the query delivery delays of both protocols. The delays

are not affected much by the increasing number of mobile nodes in the net-

work. The delay is still much higher in GEAR than in GEOCAST. The

network loads of GEAR and GEOCAST are shown in Figure 14(b). As we

already see in the previous simulations, the network load of GEAR is higher

than the network load of GEOCAST, also in this mobile scenario. The net-

work load of GEAR is slightly decreasing with the increase of the number

of mobile nodes. This is to be seen together with the ER of GEAR. The

probability of a neighborhood change is getting higher with the increase of

mobility rate. A query packet can get stuck at a node that does not have

anymore a neighbor closer to the region of interest. Therefore, the number

of sent query packets decreases in GEAR.

56

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

E
x
e
c
u
t
i
o
n

R
a
t
i
o

Mobility Rate (mobile nodes/all nodes)

GEOCAST
GEAR

(a) Execution Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

F
a
l
s
e

I
n
j
e
c
t
i
o
n

R
a
t
i
o

Mobility Rate (mobile nodes/all nodes)

GEOCAST
GEAR

(b) False Injection Ratio

Figure 13: Scenario 5 – Routing accuracy performance for varying mobility rate

57

 0

 5

 10

 15

 20

 25

 30

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
v
e
r
a
g
e

Q
u
e
r
y

D
e
l
i
v
e
r
y

D
e
l
a
y

(
m
s
e
c
)

Mobility Rate (mobile nodes/all nodes)

GEOCAST
GEAR hop-based

(a) Average Query Delivery Delay (msec)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

N
e
t
w
o
r
k

L
o
a
d

[
t
o
t
a
l

#

o
f

s
e
n
t

p
a
c
k
e
t
s
]

Mobility Rate (mobile nodes/all nodes)

GEOCAST
GEAR

(b) Network Load (number of sent packets)

Figure 14: Scenario 5 – Networking performance for varying mobility rate

58

6.7. Scenario 6: Effect of speed of mobile nodes

The speed of mobile nodes is varied in this scenario: 5% of the network

nodes are moving with a speed varying between 2m/s and 20m/s. Figure 15

shows the routing accuracy performance. The results in Figure 15(a) and

Figure 15(b) show the same behavior as the simulation results of scenario

5. Higher mobility speed requires more frequent reconfigurations in mobile

sensor networks in GEOCAST. Therefore, ER of GEOCAST is less than

ER of GEAR due to the tree-based structure used by GEOCAST, but the

difference is very small. FIR results of GEAR and GEOCAST in scenario 6

are also very similar to the results in scenario 5.

Figure 16 shows the networking performance of scenario 6. Figure 16(a)

presents the query delivery delays of both protocols when we increase the

speed of mobile sensors. The query delay of both protocols is affected very

little by the increase on nodes speed. GEOCAST is outperforming GEAR

considerably. Figure 16(b) shows the effect of nodes speed on the network

load. GEOCAST network load is unaffected by the change in mobile nodes

speed. It is again much lower than the network load of GEAR.

59

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

E
x
e
c
u
t
i
o
n

R
a
t
i
o

Speed of Sensors (m/sec)

GEOCAST
GEAR

(a) Execution Ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 4 6 8 10 12 14 16 18 20

F
a
l
s
e

I
n
j
e
c
t
i
o
n

R
a
t
i
o

Speed of Sensors (m/sec)

GEOCAST
GEAR

(b) False Injection Ratio

Figure 15: Scenario 6 – Routing accuracy performance for varying mobility speed

60

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18 20

A
v
e
r
a
g
e

Q
u
e
r
y

D
e
l
i
v
e
r
y

D
e
l
a
y

(
m
s
e
c
)

Speed of Sensors (m/sec)

GEOCAST
GEAR hop-based

(a) Average Query Delivery Delay (msec)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2 4 6 8 10 12 14 16 18 20

N
e
t
w
o
r
k

L
o
a
d

[
t
o
t
a
l

#

o
f

s
e
n
t

p
a
c
k
e
t
s
]

Speed of Sensors (m/sec)

GEOCAST
GEAR

(b) Network Load (number of sent packets)

Figure 16: Scenario 6 – Networking performance for varying mobility speed

61

7. Conclusions

In this paper we proposed the GEOCAST protocol for multi-sink WSNs,

which performs a geographical routing of queries to a region of interest. WSN

nodes are partitioned between different gateways and organized in trees, each

tree rooted at a gateway. The GEOCAST protocol creates a hierarchical

structure over a routing tree that consists of nested convex hulls. The convex

hull of the root is the coverage area of that gateway. The convex hull of

any other node in the tree encapsulates the area served by this node and

all its dependents in the rooting tree, forming a local coverage area. The

(local) coverage areas are used for the routing of queries that are valid for a

geographical region. Gateways check their coverage area against the region

of interest of the query. The query is injected from a gateway to the WSN

only if its coverage area overlaps with the region of interest. A node further

down in the tree executes the query if it is within the region of interest, or

it forwards it to its descendants if its local coverage area overlaps with the

region of interest. GEOCAST has been evaluated in terms of computational

complexity and memory requirements.

We compared our protocol with GEAR, which is one of the best per-

forming geocasting protocols. The comparison was done for both static and

mobile scenarios (i.e. WSN contain mobile nodes) in terms of routing accu-

racy and on networking. Three metrics were employed to test the routing

accuracy: execution ratio, false execution ration, and false injection ratio.

Two more metrics are used for the networking performance: average query

delay and network load. ... something on the results.

Both GEAR and GEOCAST assume that nodes have an estimate of their

62

position. We tested and compared the two protocols for the effect of position-

ing error. ... more on results GEOCAST experiences a slightly higher false

injection ratio. In mobile scenarios, GEOCAST experiences a lower execu-

tion ratio than GEAR, but again it needs less messages to deliver messages

and GEOCAST has a smaller false injection ratio. For applications that re-

quire mobility in the wireless sensor network, the trade-off should be made if

a potential lower energy-consumption of GEOCAST is more preferable than

the higher routing accuracy of GEAR.

Acknowledgements

We gratefully thank Yan Yu from the University of California, Los An-

geles, for the GEAR implementation in NS2. This work has been partly

sponsored by the FREE project (funded by the Dutch innovation programme

PointOne organized by AgentschapNL).

References

[1] S. Chatterjea, L. van Hoesel, and P. Havinga. AI-LMAC: An Adaptive,

Information-centric and Lightweight MAC Protocol for Wireless Sensor

Networks. In Proceedings of the Intelligent Sensors, Sensor Networks

and Information Processing Conference, pages 381–388, IEEE Computer

Society Press, 2004.

[2] P. Levis, N. Patel, D. Culler, and S. Shenker Trickle: A Self-Regulating

Algorithm for Code Propagation and Maintenance in Wireless Sensor

Networks In: Proceedings of the First Symposium on Networked Sys-

tems Design and Implementation March 29–31, 2004.

63

[3] J. Hui and D. Culler. The dynamic behavior of a data dissemination

protocol for network programming at scale. In 2nd ACM conf. on Em-

bedded Networked Sensor Systems, pages 81–94, November 2004.

[4] N. Reijers and K. Langendoen. Efficient Code Distribution in Wireless

Sensor Networks. In Proc. 2nd ACM Intl. Workshop on Wireless Sensor

Networks and Applications (WSNA), San Diego, CA, September 2003.

[5] S.R. Madden. The Design and Evaluation of a Query Processing Ar-

chitecture for Sensor Networks. PhD thesis, University Of California,

Berkeley, 2003.

[6] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. TinyDB:

an acquisitional query processing system for sensor networks. In ACM

Transactions on Database Systems (TODS), Vol. 30–1 March 2005,

pages 122–173, ISSN 0362-5915.

[7] T.van Dam and K. Langendoen. An Adaptive Energy-Efficient MAC

Protocol for Wireless Sensor Networks. In: 1st ACM Conf. on Embedded

Networked Sensor Systems (SenSys 2003), pages 171–180, November

2003.

[8] M. Zorzi and R.R. Rao. Geographic random forwarding (GERAF) for ad

hoc and sensor networks: Multihop performance. In: IEEE Transactions

on Mobile Computing, Vol. 2, No. 4, pages 337–348, 2003.

[9] E. Kranakis, H. Singh and J. Urrutia. Compass Routing on Geometric

Networks, In: Proceedings of 11th Canadian Conference on Computa-

tional Geometry (CCCG). Vancouver, August 1999, pp. 5154.

64

[10] Prosenjit Bose, Pat Morin, Ivan Stojmenovi and Jorge Urrutia. Rout-

ing with guaranteed delivery in ad hoc wireless networks. In: Wireless

Networks, 7(6):609–616, 2001.

[11] F. Kuhn, R. Wattenhofer and A. Zollinger. Asymptotically Optimal Ge-

ometric Mobile Ad-hoc Routing, In: Proceedings of the International

Workshop on Discrete Algorithms and Methods for Mobile Comput-

ing and Communications (DIAL-M), Atlanta, Georgia, USA, September

2002, pp. 24–33.

[12] B. Karp and H.T. Kung. GPSR: Greedy Perimeter Stateless Routing for

Wireless Networks. In: Proceedings of 6th Annual Int. Conf. on Mobile

Computing and Networking (MobiCom), Boston, Massachusetts, USA,

pages 243–254, 2000.

[13] F. Kuhn, R. Wattenhofer and A. Zollinger. Worst-Case Optimal and

Average-Case Efficient Geometric Ad-hoc Routing. In: Proceedings of

4th ACM Int. Symposium on Mobile Ad-Hoc Networking and Comput-

ing (MobiHoc), Annapolis, Maryland, pp.267–278, 2003.

[14] F. Kuhn, R. Wattenhofer, Y. Zhang and A. Zollinger. Geometric Ad-

Hoc Routing: Of Theory and Practice, In: Proceedings of the 22nd

ACM Symposium on the Principles of Distributed Computing (PODC),

2003.

[15] Y. Yu, R. Govindan and D. Estrin. Geographical and energy aware rout-

ing: a recursive data dissemination protocol for wireless sensor networks.

65

Technical Report UCLA/CSD-TR-01-0023, University of Southern Cal-

ifornia, 2001.

[16] Y. Ko and N. Vaidya. Anycasting-based Protocol for Geocast service in

Mobile Ad Hoc Networks. In: Computer Networks Journal, 2003.

[17] V. Park and M. Corson. A Highly Adaptive Distributed Routing Algo-

rithm for Mobile Wireless Networks. In: Proceedings of the 6th IEEE

INFOCOM, Kobe, Japan, 1997.

[18] A. Coman, M.A. Nascimento and J. Sander. A framework for spatio-

temporal query processing over wireless sensor networks, In: Proceed-

ings of the 1st international workshop on Data management for sensor

networks: in conjunction with VLDB 2004, Toronto, Canada, August

30-30, 2004.

[19] I. Stojmenovic. Geocasting with guaranteed delivery in sensor networks.

In: IEEE Wireless Communications Magazine, 11(6):2937, 2004.

[20] K. Seada and A. Helmy. Efficient and robust geocasting protocols for

sensor networks. In: Elsevier Computer Communications, 29(2):151-

161, 2006.

[21] C. Maihöfer. A survey of geocast routing protocols. In: IEEE Commu-

nications Surveys and Tutorials, Vol. 6, No. 2, pages 32–42, April 2004.

[22] Y.B. Ko and N.H. Vaidya. Location-aided routing (LAR) in mobile ad

hoc networks. In: Proceedings of 4th ACM/IEEE Int. Conf. Mobile

Computing (MobiCom), Dallas, USA, 1998.

66

[23] I. Stojmenovic, A. P. Ruhil and D.K. Lobiyal. Voronoi diagram and

convex hull based geocasting and routing in wireless networks. In:

IEEE Symposium on Computers and Communications (ISCC), Antalya,

Turkey, July 2003, pp.51–56.

[24] W.-H. Liao, Y.-C. Tseng, K.-L. Lo, J.-P. Sheu, GeoGRID: a geocasting

protocol for mobile ad hoc networks based on GRID. In: Journal of

Internet Technol. 1(2):23-32, 2000.

[25] A. B. Bomgni, J. F. Myoupo. An Energy-Efficient Clique-Based Geocast

Algorithm for Dense Sensor Networks. Communications and Network,

02(02):125-133, 2010.

[26] A. Baggio and K. Langendoen. Monte-Carlo Localization for Mobile

Wireless Sensor Networks. Elsevier’s Ad Hoc Networks Journal, vol. 6,

no. 5, July 2008.

[27] J. Hightower and G. Borriello. SPOTON: An indoor 3D location sensing

technology based on RF signal strength. Technical Report University of

Washington, February 2000.

[28] D. Niculescu and B. Nath. Ad hoc positioning system (APS).

IEEE Global Telecommunications Conference (GLOBECOM ’01), pp.

(5)2926–2931, 2001.

[29] T. He, C. Huang, B.M. Blum, J.A. Stankovic, T. Abdelza-her. Range-

free localization schemes for large scale sensor networks. In MobiCom

2003, San Diego, CA, USA, September 2003.

67

[30] B. Dil, S.O. Dulman, and P.J.M. Havinga. Range-Based Localization in

Mobile Sensor Networks. In: Proceedings of Third European Workshop

on Wireless Sensor Networks, 13-15 Feb 2006, Zurich, Switzerland. pp.

164–179. Lecture notes in computer science 3868. Springer Verlag, ISBN

3-540-32158-6, 2006.

[31] C. Fischer, K. Muthukrishnan, M. Hazas, and H. Gellersen. Ultrasound-

Aided Pedestrian Dead Reckoning for Indoor Navigation. In: Proceed-

ings of the first ACM international workshop on Mobile entity local-

ization and tracking in GPS-less environments, Co-located MOBICOM

2008, 15–19 September 2008, San Francisco, USA. pp. 31–36.

[32] Bang Wang, Wei Wang, Vikram Srinivasan, and Kee Chaing Chua.

Information Coverage for Wireless Sensor Networks. In: IEEE Com-

munications Letters, Vol. 9–11, pages 967–969, November 2005, ISSN

1089-7798.

[33] K. Römer and F. Mattern. The Design Space Wireless Sensor Networks.

In: IEEE Wireless Communication Magazine, Vol. 11, No. 6, pages 54–

61, 2004, ISSN 1536-1284.

[34] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a set

of points in the plane. In: IEEE Transactions on Information Theory,

IT-29(4):551–559, 1983.

[35] N. Akkiraju, H. Edelsbrunner, M. Facello, P. Fu, E.P. Mücke and C.

Varela. Alpha Shapes: Definition and Software. In: Proceedings of the

68

1st International Computational Geometry Software Workshop, pages

63–66, 1995.

[36] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless

sensor networks: a survey. Elsevier Computer Networks, Vol. 38, No. 4,

pages 393–422, 2002.

[37] H. Zimmermann. OSI Reference Model – The ISO model of architecture

for open systems interconnection. In: IEEE Transactions on Communi-

cations, Vol. 28, No. 4, April 1980.

[38] Y. Bejerano, S.J. Han and A. Kumar. Efficient Load-Balancing Routing

for Wireless Mesh Networks. In: Computer Networks, Vol. 51, No. 10,

pages 2450–2466, 2007, ISSN 1389-1286.

[39] Y. Zhang and Q. Huang. A Learning-based Adaptive Routing Tree for

Wireless Sensor Networks. In: Journal of Communications, Vol. 1, No.

2, pages 12–21. Academy Publisher, 2006, ISSN 1796-2021.

[40] A. Erman-Tüysüz, T. Mutter, L.F.W. van Hoesel, and P.J.M. Havinga.

A Cross-Layered Communication Protocol for Load Balancing in Large

Scale Multi-sink Wireless Sensor Networks. In: Proceedings of the

Nineth International Symposium on Autonomous Decentralized Systems

(ISADS), 23-25 March 2009, Athens, Greece. IEEE Computer Society.

[41] A. Erman-Tüysüz, L.F.W. van Hoesel, P.J.M. Havinga, and J. Wu. En-

abling Mobility in Heterogeneous Wireless Sensor Networks Cooperating

with UAVs for Mission-Critical Management. In: IEEE Wireless Com-

munications, Vol. 15, No. 6, pages 38–46, 2008, ISSN 1536-1284.

69

[42] M.T. de Berg et al. Computational geometry: algorithms and applica-

tions. Third edition, Springer, Berlin, 2008, ISBN 978-3-540-77973-5.

[43] E. W. Weisstein. Line-Line Intersection. From MathWorld–A

Wolfram Web Resource. http://mathworld.wolfram.com/Line-

LineIntersection.html. Last accessed: November 2009.

[44] E. Haines. Point in Polygon Strategies. In: Graphics Gems IV, editor P.

Heckbert, Academic Press, pages 24–46, 1994, ISBN 0-12-336155-9.

[45] S. Schirra. How Reliable Are Practical Point-in-Polygon Strategies? In:

Lecture Notes in Computer Science, Algorithms - ESA 2008, Springer

Berlin / Heidelberg, Vol. 5193, pages 744–755, 2008, ISBN 978-3-540-

87743-1.

[46] B. Chazelle and D. Dobkin. Decomposing a polygon into its convex

parts. In: Proceedings of the 11th annual ACM Symposium on Theory

of Computing, Atlanta, United States, pages 38–48, ACM, 1979.

[47] D. H. Greene. The decomposition of polygons into convex parts. In

Franco P. Preparata, editor, Computational Geometry, volume 1 of Adv.

Comput. Res., pages 235-259. JAI Press, Greenwich, Conn., 1983.

[48] L.F.W. van Hoesel. Sensors on speaking terms: Schedule-based medium

access control protocols for wireless sensor networks. PhD thesis, Univ.

of Twente, 2007, ISBN 978-90-365-2497-1.

[49] R.B. Muhammad. Incremental Convex Hull.

http://www.personal.kent.edu/˜rmuhamma/Compgeometry/MyCG/

ConvexHull/incrementCH.htm. Last accessed: June 2010.

70

[50] J. O’Rourke. Computational Geometry in C. Cambridge University

Press, 1998, ISBN 0-521-64010-5.

[51] C.W. Huang and T.Y. Shih. On the complexity of point-in-polygon algo-

rithms. In: Computers and Geosciences, Vol. 23, No. 1, pages 109–118,

Elsevier, February 1997, ISSN 0098-3004.

[52] B. Chazelle and D. Dobkin. Detection is easier than computation. In:

Proceedings of the 12th annual ACM Symposium on Theory of Com-

puting, Los Angeles, United States, pages 146–153, ACM, 1980.

[53] L.F.W. van Hoesel, S.O. Dulman, P.J.M. Havinga, and H.J. Kip. Design

of a low-power testbed for Wireless Sensor Networks and verification.

Technical Report TR-CTIT-03-45, Centre for Telematics and Informa-

tion Technology, University of Twente, Enschede, 2003, ISSN 1381-3625.

[54] The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/. Last ac-

cessed: June 2010.

[55] J. Heidemann, F. Silva, Y. Yu, D. Estrin and P. Haldar. Diffusion Fil-

ters as a Flexible Architecture for Event Notification in Wireless Sensor

Networks. In Technical Report of USC/ISI, ISI-TR-556, 2002.

71

