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a b s t r a c t

A cooperative bin packing game is an N-person game, where the player set N consists of k bins of capacity
1 each and n items of sizes a1, . . . , an. The value v(S) of a coalition S of players is defined to be the
maximum total size of items in S that can be packed into the bins of S. We analyze the integrality gap
of the corresponding 0–1 integer program of the value v(N), thereby presenting an alternative proof for
the non-emptiness of the 1/3-core for all bin packing games. Further, we showhow to improve this bound
ϵ ≤ 1/3 (slightly) and point out that the conclusion inMatsui (2000) [9] iswrong (claiming that the bound
1/3was tight).We conjecture that the true best possible value is ϵ = 1/7. The results are obtained using a
new ‘‘rounding technique’’ that we develop to derive good (integral) packings from given fractional ones.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, as online shopping has become so popular, deliver-
ing goods by means of transport firms is a steadily growing busi-
ness. The question therefore arises how transport costs should be
compensated in a ‘‘fair way’’. Currently, usually weight and/or vol-
ume are used as indicators for transport costs. Motivated by this
observation, it seems natural, to study such allocation problems
under the framework of cooperative games. Studying allocation
rules for bin packing games (as defined below) is a first step to-
wards analyzing allocation problems of this kind.

Formally, a cooperative game is defined by a tuple ⟨N, v⟩, where
N is a set of players and v : 2N

→ R is a value function satisfying
v(∅) = 0. A subset S ⊆ N is called a coalition and N itself is the
grand coalition. The usual goal in cooperative games is to ‘‘fairly’’
allocate the total gain v(N) of the grand coalition N among the in-
dividual players. A well known concept is the core of a cooperative
game, defined by all vectors x ∈ RN satisfying

(i) x(N) ≤ v(N),
(ii) x(S) ≥ v(S) for all S ⊆ N .

As usual, we abbreviate x(S) =


i∈S xi.
We say a game is balanced if it possesses a nonempty core.

Unfortunately, many games are not balanced. Players in a non-
balanced game may not cooperate because no matter how the
total gain is distributed, there will always be some coalition S with
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x(S) < v(S), i.e., it gets paid less thanwhat it could earn on its own.
For this case, one naturally seeks to relax the condition (ii) above
in such a way that the modified core becomes nonempty. Faigle
and Kern [3] introduced themultiplicative ϵ-core as follows. Given
ϵ > 0, the ϵ-core consists of all vectors x ∈ RN satisfying condition
(i) above together with

(ii
′

) x(S) ≥ (1 − ϵ)v(S) for all S ⊆ N .

We can interpret ϵ as a tax rate in the sense that coalition S is
allowed to keep only (1 − ϵ)v(S) on its own. If the value function
v is nonnegative, the 1-core is obviously nonempty. In order to
approximate the core as close as possible, one would like to have
the taxation rate ϵ as small as possible while keeping the ϵ-core
nonempty.

As motivated at the beginning of this paper, we study specific
games of the following kind: there are two disjoint sets of players,
say, A and B. Each player i ∈ A possesses an item of value/size ai,
for i = 1, . . . , n, and each player j ∈ B possesses a truck/bin of
capacity bj. The items produce a profit proportional to their size
ai if they are brought to the market place. The value v(N) of the
grand coalition thus represents the maximum profit achievable.
How should v(N) be allocated to the owners of the items and the
owners of the trucks?

We start with some definitions and notations. A bin packing
game is defined by a set of k bins, of capacity 1 each, and n items
1, 2, . . . , n of sizes a1, a2, . . . , an, where we assume, w.l.o.g, 0 ≤

ai ≤ 1.
LetAbe the set of items andBbe the set of bins. A feasible packing

of an item set A′
⊆ A into a set of bins B′

⊆ B is an assignment of
some (or all) elements in A′ to the bins in B′ such that the total size
of items assigned to any bin does not exceed the bin capacity (=1).
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Items that are assigned to a bin are called packed and items that are
not assigned are called not packed. The value of a feasible packing
is the total size of packed items.

The player set N consists of all items and all bins. The value
v(S) of a coalition S ⊆ N , where S = AS ∪ BS with AS ⊆ A and
BS ⊆ B, is the maximum value of all feasible packings of AS into BS .
A corresponding feasible packing is called an optimum packing.

An intriguing problem is to find the ‘minimal’ taxation rate ϵmin
such that the ϵmin-core is nonempty for all bin packing games.
It was shown by Faigle and Kern [3] that 1/7 ≤ ϵmin ≤ 1/2.
Woeginger [12] improved this result to ϵmin ≤ 1/3. Kuipers [8]
showed that ϵmin = 1/7 if all item sizes are strictly larger than 1/3.

This is a revised version of our conference paper [7] and the rest
part is organized as follows. In Section 2, we introduce an integer
linear program for computing v = v(N) and the corresponding
fractional packing value v′

= v′(N). In Section 3, based on a
greedy heuristic, we introduce a new rounding technique to derive
integral packings from given fractional ones. As a consequence, we
obtain an upper bound on the (relative) integrality gap (v′

−v)/v′,
thereby reproving the known result ϵmin ≤ 1/3. In Section 4,
we apply the same greedy heuristic w.r.t. modified (‘‘virtual’’)
item sizes to derive a slightly better bound, disproving the result
presented in [9]. In Section 5, we conjecture that ϵmin = 1/7
and mention the connection with the well-known 3-PARTITION
problem.

2. Fractional packings

We start with some definitions and notations. A set F of items
is called a feasible set if its total size does not exceed 1. Denote by
F the set of all feasible sets. Let σF be the size of a feasible set and
let σ = (σF ) ∈ RF for all F ∈ F , then the total earning v(N) of the
grand coalition N equals

max σ Ty

s.t.

F∈F

yF ≤ k,
F∋i

yF ≤ 1 (i = 1, 2, . . . , n),

y ∈ {0, 1}F .

(2.1)

The value v′(N) of an optimum fractional packing is defined by the
relaxation of (2.1), i.e.,

max σ Ty

s.t.

F∈F

yF ≤ k,
F∋i

yF ≤ 1 (i = 1, 2, . . . , n),

y ∈ [0, 1]F .

(2.2)

A fractional packing of our bin packing problem is a vector y
satisfying the constraints of the linear program (2.2). Accordingly,
we refer to the original ‘‘feasible packing’’ as the integral packing,
which meets the constraints of (2.1). We call item i fully packed if

F∋i yF = 1. Observe that for an optimal basic solution y of (2.2)
the number of non-zero components yF > 0 can be bounded by
|supp y| ≤ 1+ number of fully packed items.

Faigle and Kern [4] have given a sufficient and necessary
condition for the non-emptiness of the ϵ-core of a bin packing
game (with v = v(N) and v′

= v′(N)).

Lemma 1 (See [4] a Short Proof). The ϵ-core is nonempty if and only
if ϵ ≥ 1 − v/v′.
If all items are packed in a feasible integral packing, we
obviously have v′

= v, thus the core is nonempty. For convenience
of description in later sections,we always ignore this trivial case. As
a consequence, v > v′/2 can always be achieved by filling each bin
to at least 1/2 as follows: for a given bin, if there is a yet unpacked
item of size ai > 1/2, assign this item to the bin. If all yet unpacked
items have size ai ≤ 1/2, assign as many such items to the bin as
possible in a greedy manner. By our assumption that not all items
are packed in any feasible packing, this must result in a packing
with all bins filled to at least 1/2. So the 1/2-core is nonempty for
all bin packing games.

Denote by ϵN = 1 − v(N)/v′(N) the minimal taxation rate
of a bin packing game N . We thus seek for good lower bounds
on v(N)/v′(N). The first step in [12] is to reduce the analysis to
item sizes ai > 1/3. Similarly, if we aim for a bound ϵN ≤ ϵ with
ϵ ∈ [1/4, 1/3), it suffices to investigate instances with item sizes
ai > 1/4, as can be seen from the following two lemmas.

Lemma 2. Let A be a set of items disjoint fromN and let σA =


i∈A ai
be the total size of A. Thus, v(N) + σ(A) = v(N ∪ A) implies
ϵN∪A ≤ ϵN .

Proof. From Lemma 1, we know ϵN = 1 − v(N)/v′(N). Thus,

ϵN∪A = 1 −
v(N ∪ A)

v′(N ∪ A)
≤ 1 −

v(N) + σ(A)

v′(N) + σ(A)

≤ 1 −
v(N)

v′(N)
= ϵN . �

For δ ∈ (0, 1), let Nδ denote the restriction of N to items of size
ai > δ.

Lemma 3. If δ, ϵNδ
≤ ϵ, then ϵN ≤ ϵ.

Proof. Assume ϵNδ
≤ ϵ, i.e., there exists an integral packing of

Nδ with value v(Nδ) ≥ (1 − ϵ)v′(Nδ). Let A = N \ Nδ be the
set of ‘‘small’’ items. If we can put all of A on top of the already
packed Nδ-items, we have v(N) = v(Nδ ∪ A) and ϵN ≤ ϵ follows
from Lemma 2. Else, i.e. if some of the small items remain not
packed, then each bin must be filled to at least 1 − δ ≥ 1 − ϵ
and v(N) ≥ (1 − ϵ)v′(N) must hold. �

Thus in what follows, when seeking for an upper bound ϵN ≤ ϵ
with ϵ ∈ [1/4, 1/3), we may assume that all item sizes are at least
ai > 1/4. (This is actually a rather interesting class anyway, as it
contains all instances of 3-PARTITION, c.f. Section 5).

3. Alternative proof of non-emptiness of the 1/3-core

We present an alternative proof for the fact that the 1/3-core of
any bin packing game is nonempty. Consider any bin packing game
with k bins and item sizes a1, . . . , an with all ai > 1/4 (although,
for the purpose of this section, it would suffice to assume ai > 1

3 ).
Let y = (yF ) be an optimal fractional packing. LetF = {F | yF > 0}
denote the support of y. First note that if σF ≤

2
3 for all F ∈ F then

v′
≤

2
3k and hence any integral packing filling each bin to at least 1

2
would achieve a value v ≥

k
2 ≥

3
4v

′, proving non-emptiness even
for the 1

4 -core. More generally, as we will see below, to extract a
reasonably good integral packing from the fractional packing y, we
may focus on F̄ := {F ∈ F | σF > 2

3 }, the ‘‘interesting part’’
of the support of y. So assume F̄ ≠ ∅, i.e., it has nonzero length
l =


F∈F̄ yF . Let F̄ = {F1, . . . , Fm} and

σF1 ≥ σF2 ≥ · · · ≥ σFm >
2
3
.

Note that the number of fully packed items is at most 3k (3 items
per bin), so that m ≤ |supp y| ≤ 3k + 1. The basic idea is to
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construct an integral solution ‘‘greedily’’ i.e., starting with F1, we
construct a sequence of feasible sets by choosing in each step the
largest size Fi in F̄ that is disjoint from all previously chosen ones.
Formally: start with s = 1 and do the following while F̄ ≠ ∅: let
Fis be the largest size set in F̄ and F̄is :=


F ∈ F̄ | F ∩ Fis ≠ ∅


.

Replace F̄ by F̄ \ F̄is and s by s + 1. Let Fi1 , . . . , Fir denote the
sequence constructed thisway. As each Fis contains atmost 3 items,
we find that
F∈F̄is

yF ≤


F∩Fis ≠∅

yF ≤ 3. (3.1)

Define the length of F̄is to be lis :=


F∈F̄is
yF and the value to

be vis :=


F∈F̄is
yFσF . Hence in each step, when removing F̄is , we

remove at most 3 from the total length l =


F∈F̄ yF , so that our
construction yields Fi1 , . . . , Fir with r ≥ l/3. By the greedy choice
of Fis we have lisσFis ≥ vis . Hence

σFis =
lis
3

σFis +


1 −

lis
3


σFis ≥

1
3
vis +


1 −

lis
3


2
3
.

Summation yields

σFi1
+ · · · + σFir ≥

1
3


F∈F̄

yFσF +


r −

l
3


2
3
.

Extend this greedy selection by k−r bins, each filled to at least 1/2.
As r ≥

l
3 , the resulting packing implies

v ≥
1
3


F∈F̄

yFσF +


r −

l
3


2
3

+ (k − r)
1
2

≥
1
3


F∈F̄

yFσF +


k −

l
3


1
2

=
1
3


F∈F̄

yFσF +
1
3
l +

1
2
(k − l)

≥
2
3


F∈F̄

yFσF +
1
2
(k − l), (3.2)

whereas v′
≤


F∈F̄ yFσF +
2
3 (k − l). Hence v/v′

≥
2
3 , as claimed.

4. Modified greedy selection

A previous paper by Matsui [9] claims that the bound 1/3 for
ϵmin is tight. In his proof, a bin packing gameGα of 3 bins and5 items
of sizes 1/2, 1/2, 1/2, 1/2+α, 1/2+α (0 ≤ α ≤ 1/2) is considered.
He ‘‘showed’’ that for any given ϵ < 1/3, by properly choosing α,
the ϵ-core of Gα is always empty, based on the fact that items 1–3
(with size 1/2 each) cannot be packed all in an optimum integral
packing. Then he claims that an ϵ-core allocation must allocate 0
for each of the 3 players corresponding to items of size 1/2. This
implication is only true when one seeks for a core allocation (with
ϵ = 0) while obviously incorrect in case of the ϵ-core allocation.

In this section, we aim to improve the bound ϵmin ≤ 1/3 by
rounding the fractional packing w.r.t. a modified ordering of its
selected feasible sets. First note that actually the inequalities (3.1)
must be strict, since all 3 items occur together in yFis . Indeed, if Fis
contains three items, say, Fis = {j1, j2, j3}, then

lis =


F∈F̄is

yF ≤


F∋j1

yF +


F∋j2

yF +


F∋j3

yF − 2yFis

≤ 3 − 2yFis < 3. (4.1)

Note that when Fis contains less, say, only two items, the same
inequality


F∈F̄is

yF ≤ 2 − yFis ≤ 3 − 2yFis holds.
Summation thus yields

l =
r

s=1

lis ≤

r
s=1

(3 − 2yFis ) = 3r − 2
r

s=1

yFis . (4.2)

Thus, if α =
r

s=1 yFis , we find

r ≥
1
3
(l + 2α). (4.3)

The estimate in Section 3 can be (slightly) improved by
modifying the greedy selection so as to give higher priority to
feasible sets F ∈ F̄ with comparatively large yF —and thus
hopefully increasing α. To this end we modify the size of each
F ∈ F̄ to σ̃F := σF +

1
9yF ≥ σF . The sizes of F ∈ F \ F̄

remain unchanged. We then apply greedy selection to F̄ (ordered
according to the modified sizes) to obtain certain Fi1 , . . . , Fir ∈ F̄

and append k − r bins filled to at least 1
2 as before.

Now let us analyze the greedy selection w.r.t. the modified
ordering. Estimating the value ṽ (w.r.t. the modified sizes) of the
resulting integral packing as we did in Section 3 (now using r ≥
l
3 +

2
3α instead of r ≥

l
3 ), yields

ṽ ≥ σ̃Fi1
+ · · · + σ̃Fir +

1
2
(k − r)

≥
1
3


F̄

yF σ̃F +


r −

l
3


2
3

+ (k − r)
1
2

≥
1
3


F̄

yF σ̃F +


2
3
α


2
3

+


k −

l
3

−
2
3
α


1
2

=
1
3


F̄

yF σ̃F +
1
9
α +


k −

l
3


1
2

=
1
3


F̄

yFσF +
1
9


F̄

y2F


+

1
9
α +

l
3

+ (k − l)
1
2

≥
2
3


F̄

yFσF +
1
27


F̄

y2F +
1
9
α + (k − l)

1
2
.

By definition of σ̃ , the true value of our packing equals ṽ −
1
9α.

Subtract 1
9α from both sides of the last inequality to conclude

v ≥ ṽ −
1
9
α ≥

2
3


F̄

yFσF +
1
27


F̄

y2F + (k − l)
1
2
. (4.4)

Now write l = βk with β ∈ (0, 1]. The number of feasible sets
F ∈ F̄ is bounded by m ≤ 3k + 1 ≤ 4k. Hence


F y

2
F can be

bounded from below by assuming that all yF have size l
4k =

β

4
(and their number is 4k), i.e.,


y2F ≥

β

4 l. Hence (4.4) yields

v ≥
2
3


F̄

yFσF +
β

108
l + (1 − β)

k
2

≥


2
3

+
β

108


F̄

yFσF + (1 − β)
k
2
, (4.5)

whereas

v′
≤


F̄

yFσF + (k − l)
2
3

=


F̄

yFσF + (1 − β)
2
3
k. (4.6)

Let p(β) and q(β) denote the right hand sides in (4.5) resp. (4.6),
so that v

v′ ≥
p(β)

q(β)
. The worst case occurs when β = 1 (as p

q
is easily seen to be decreasing), resulting in a slightly improved
bound ϵ ≤ 1/3−1/108 = 35/108 for theminimum taxation rate.

Remark. The factor 1/9 is due to the following: any increase ∆α
in α = yFi1 + · · · + yFir results in an increase of ∆r =

2
3∆α in the

lower bound for r (c.f. (4.3)). This in turn raises the lower bound for
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v by ∆r(2/3 − 1/2) (c.f. (3.2)). Thus any increase ∆α in the total
α-value of the selected Fi1 , . . . , Fir yields a gain (i.e., increase in the
lower bound for v) of ∆α/9. It can be shown that the factor 1/9
in the definition of modified sizes is optimal in the sense that any
alternative choice would lead to a weaker result in our analysis.
Yet our analysis is obviously not tight and we expect the true ratio
v/v′ achievedby the (modified) greedy approach to be significantly
better-though very complicated to analyze.

5. Remarks and open problems

Analyzing LP-relaxations and the resulting integrality gap
has been a standard issue in combinatorial optimization since
long. In recent years, the theoretical analysis of integrality gaps
combined with (randomized) rounding techniques has led to
interesting results in online algorithms (c.f. [1]) as well as approx
theory. In particular, the so-called configuration LP, investigated by
Verschae/Wiese [11] and Svensson [10] in the context ofmakespan
minimization turns out to be a generalization of our fractional
packing formulation, though the objective is different. Other
related work aims at approximating the optimum packing value
directly without regarding the fractional value. In particular, [2]
shows how to compute an integral solution of packing value ṽ ≥
3
4v in polynomial time. The relation to our results is rather unclear,
as ṽ ≥

3
4v does not even imply, say, ṽ ≥

2
3v

′ in general.
Clearly the most straightforward open problem is to determine

the smallest ϵ such that all bin packing games have non-empty ϵ-
core. We conjecture that 1/7 is best possible (c.f. [3] for an example
showing that ϵ < 1/7 is impossible and a proof that the ϵ-core
is non-empty for any sufficiently large (in terms of k) bin packing
game).

A further challenging conjecture due to Woeginger states that
v′

− v is bounded by a universal constant.
We finally would like to draw the attention of the reader to the

well-known 3-PARTITION problem (c.f. [5]): given a set of items of
sizes a1, . . . , a3k with 1/4 < ai < 1/2 and k bins, can we pack
all items? If the fractional optimum is less than k, the answer is
clearly ‘‘no’’. Note that the fractional optimum can be computed
efficiently as there are only O(k3) feasible sets. Thus if P ≠ NP ,
then there must be instances with fractional optimum equal to k
and integral optimum < k. Although we tried hard, we could not
exhibit a single such instance. Eventually, Joosten [6] succeeded in
computing (probably the smallest) such instances with k = 6 bins
and 18 items.
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