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Abstract A volume-penalizing immersed boundary method is presented for the sim-
ulation of laminar incompressible flow inside geometrically complex blood vessels in
the human brain. We concentrate on cerebral aneurysms and compute flow in curved
brain vessels with and without spherical aneurysm cavities attached. We approximate
blood as an incompressible Newtonian fluid and simulate the flow with the use of a
skew-symmetric finite-volume discretization and explicit time-stepping. A key ele-
ment of the immersed boundary method is the so-called masking function. This is
a binary function with which we identify at any location in the domain whether it
is ‘solid” or ‘fluid’, allowing to represent objects immersed in a Cartesian grid. We
compare three definitions of the masking function for geometries that are non-aligned
with the grid. In each case a ‘staircase’ representation is used in which a grid cell is
either ‘solid’ or ‘fluid’. Reliable findings are obtained with our immersed boundary
method, even at fairly coarse meshes with about 16 grid cells across a velocity profile.
The validation of the immersed boundary method is provided on the basis of classical
Poiseuille flow in a cylindrical pipe. We obtain first order convergence for the velocity
and the shear stress, reflecting the fact that in our approach the solid-fluid interface is
localized with an accuracy on the order of a grid cell. Simulations for curved vessels
and aneurysms are done for different flow regimes, characterized by different values of
the Reynolds number (Re). The validation is performed for laminar flow at Re = 250,
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while the flow in more complex geometries is studied at Re = 100 and Re = 250,
as suggested by physiological conditions pertaining to flow of blood in the circle of
Willis.

Keywords Immersed boundary method - Cerebral aneurysm - Incompressible flow -
Shear stress

Mathematics Subject Classification (2000) 76D05 - 76M12 - 65M12

1 Introduction

There is a growing medical need to understand and predict the behavior of blood flow
inside the human brain (Ku 1997; Wiebers et al. 1998). Healthy blood circulation
depends on many factors among which are the properties of blood itself and the
condition of the vessels through which blood flows. The walls of the blood vessels
may become hard or weak over time, injured or infected and this can lead to different
diseases such as atherosclerosis, the formation of aneurysms, thrombosis, stroke and
others. Forces on vessel walls play arole in the progress of the disease, especially in the
injured vessels (Castro et al. 2009). The prediction of the flow and stresses in the course
of a gradually developing disease constitutes a challenging multiscale problem. This
ranges from an analysis of short-time pulsatile flow to long-term medical prognosis. We
are interested particularly in flow inside small cerebral vessels and aneurysms which
may gradually develop due to weakening of the vessel walls. In this paper we show
the use of an immersed boundary method to simulate incompressible Newtonian flow
in complex vessels and aneurysm models. Numerically reliable results are obtained
for a range of physiologically relevant conditions.

Understanding flow patterns inside an aneurysm may help to describe long-term
effects such as the likelihood of the growth (Boussel et al. 2008) or even rupture
(Shojima et al. 2004) of the aneurysm, or the accelerated deterioration of the vessel
wall due to low shear stress (Doenitz et al. 2010). Such capability would allow a more
complete planning of surgery and predict the effectiveness of certain procedures, and
compare different options. Treatment of cerebral aneurysms often involves insertion
of a slender coil. This procedure represents considerable risk and uncertainty about
the long-term stability of coiled aneurysms (Sprengers et al. 2008; van Rooij et al.
2007). Numerical simulation could support decisions regarding, whether, which and
how much coil to insert. It could also help in a follow-up monitoring of a patient.

A significant amount of work has been done on computational fluid dynamics
(CFD) of flow in the human brain and in the cardiovascular system (Bernsdorf and
Wang 2009; Cebral et al. 2005a; Gijsen et al. 1999; Janela et al. 2010; Ku 1997; Perk-
told et al. 1989; Quarteroni and Formaggia 2004). As a numerical approach, the finite
element method is most commonly used to represent geometries of blood vessels.
Often, the data are obtained from rather coarse biomedical imagery. The highly com-
plex geometry is defined with some uncertainty by this imagery, and some smoothing
and interface approximation need to be included to allow simulation with a body-fitted
approach (Bernsdorf and Wang 2009; Cebral et al. 2005b; Gambaruto et al. 2011). As
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an alternative approach the immersed boundary (IB) method was designed primarily
for capturing viscous flow in domains of realistic complexity (Peskin 2002). In par-
ticular, we consider a volume penalization method. In this method, fluid is penalized
from entering a solid part of a domain of interest by adding a suitable forcing term to
the equations governing the fluid flow (Khadra et al. 2000). This method is also known
as ‘fictitious domain’ method (Angot et al. 1999) and physically resembles the Darcy
penalty method (Sarthou et al. 2007) or the Navier—Stokes/Brinkmann equations for
flow in porous domains (Vasilyev and Kevlahan 2002). Here, we consider in particu-
lar the limit in which the porous domain becomes impenetrable and flow in complex
solid domains can be represented. This method is discussed as one of the ‘immersed
boundary’ methods in the recent review paper by Mittal and Iaccarino (2005), and in
the sequel will be referred to as ‘volume penalization immersed boundary method’, a
label that was also adopted in (Keetels et al. 2007).

Originally, the main motivation and application for IB methods was in simula-
tion of the human heart by Peskin (a complete review is in (Peskin 2002)). Further,
the IB method was widely applied in the bio-medical area. Among such applica-
tions are the modeling of sbiofilm processes (Dillon et al. 1996), arteriolar flow
(Arthurs et al. 1998), swimming organisms (Cortez et al. 2004) and cell growth
(Lietal. 2011). Another main sector of application of the IB method is in engineering,
where classical problems are flow around a cylinder and around a road vehicle, flow in
a wavy channel or inside a stirred tank (Iaccarino and Verzicco 2003), aerodynamics
and parachute simulation by Kim and Peskin (2006), acoustic waves by Seo and Mittal
(2011), and many others.

We present the development and application of an IB method for computing flow
and shear stresses in cerebral aneurysms. As a numerical method we use the finite-
volume discretization with a skew-symmetric treatment of the nonlinear convective
fluxes. Flow is simulated at various flow conditions in several vessel geometries with
and without aneurysm attached and shown to yield reliable results already at modest
resolution. We concentrate on a generic model aneurysm with which the flow and
forces are studied at a range of physiologically relevant Reynolds numbers.

The shape of cerebral aneurysms developing in patients can be inferred by using
three-dimensional rotational angiography (Moret et al. 1998). In this procedure a small
volume of brain tissue can be scanned, and aneurysms even of a size less than 3 mm
can be depicted (van Rooij et al. 2008). This technique allows a reconstruction of
three-dimensional arteries and aneurysms and hence an approximate identification
of the fluid and the solid parts in the scanned volume. A volume-penalization IB
method is applied to represent the aneurysm geometry. In the IB approach the domain
is characterized by a so-called masking function, which takes the value ‘0’ in the
fluid part and ‘1’ in solid parts of the domain. The raw angiography data allows for
a simple ‘staircase approximation’ of the solid-fluid interface that defines the vessel
and aneurysm shape. Individual voxels in the digital data form the smallest unit of
localization of the solid-fluid interface. This raw information specifies the masking
function in the sense that a computational cell is assigned to be ‘solid’ or ‘fluid’ on
the basis of the digital imagery. We will adopt the ‘staircase’ geometry representation
in this paper and do not incorporate any additional smoothing of the geometry or
sophisticated reconstruction methods.
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For a more complete modeling of the dynamics in the vessel system, flow-structure
interaction often plays a role (Quarteroni and Formaggia 2004). In that case also
parameters and models that characterize, e.g., mechanical properties of arterial tissue,
influence of brain tissue and the influence of the cerebrospinal fluid are required. The
amplitude of the wall motion in intracranial aneurysms was found to be less than
10 % of an artery diameter. Despite the rather modest motion of the vessel, over long
time effects may accumulate. Even modest movement can affect the vessel walls,
which might play a role in possible aneurysm rupture as was hypothesized in (Oubel
et al. 2007). For realistic pulsatile flows some movement of the aneurysm walls was
observed during a cardiac cycle (Oubel et al. 2010). In this paper we take a first step
and restrict to developing the IB approach for rigid geometries. This allows to obtain
the main flow characteristics inside relatively large cerebral aneurysms for which the
relative wall movement can be neglected (Ku 1997).

The type of blood flow and the resulting forces on vessel walls depend largely on the
shape of the vessel and on the viscosity of blood. These elements vary from one person
to another, which makes the precise blood flow per heart beat a patient-specific charac-
teristic that is hard to obtain. Rather, the patient’s main flow structures that characterize
the general type of blood motion and associated forces appear accessible by simula-
tion and modeling. These are computational predictions, leading to patient-specific
results of clinical value as suggested by (Cebral et al. 2005a,b; Hendrikse et al. 2005;
Kamath 1981). The distribution of shear stresses at the vessel wall and the flow pat-
tern inside the aneurysm are considered to be relevant to characterizing the general
quality of circulation. Regions of high and low shear stress are often visualized as
potential markers for aneurysm growth. High shear stress levels were reported near
the ‘neck’ of a saccular aneurysm, and may be relevant during the initiating phase
(Shojima et al. 2004). Low Wall Shear Stress has been reported to have a negative
effect on endothelial cells and may be important to local remodeling of an arterial wall
and to aneurysm growth and rupture (Boussel et al. 2008). A low wall shear stress may
facilitate the growing phase and may trigger the rupture of a cerebral aneurysm by
causing degenerative changes in the aneurysm wall. The situation is, however, more
complex, as illustrated by the phenomenon of spontaneous stabilization of aneurysms
after an initial phase of growth (Koffijberg et al. 2008). It is still very much an open
issue what the precise correlation is between shear stress patterns and general circu-
lation on the one hand, and developing medical risks such as aneurysm rupture, on
the other hand. In this complex problem, haemodynamic stimuli are but one of many
factors.

Cerebral aneurysms are most often located in the circle of Willis—the central vessel
network for the supply of blood to the human brain. Common risk-areas are at “T” and
“Y’-shaped junctions in the vessels (Hendrikse et al. 2005). This motivates to analyze
the flow in basic vessels and aneurysms by modeling them as curved cylindrical tubes
to which spherical cavities are attached. This choice is not restrictive for the devel-
opment of the computational approach; rather it constitutes a stepping stone problem
toward simulation of actual patient-based geometries. The computational model for the
simulation of blood flow through the larger vessels in the human brain is based on the
incompressible Navier—Stokes equations. In this paper we illustrate the IB approach
by predicting flow in basic curved cylindrical and spherical geometries.
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A primary challenge for any CFD method, whether it is a body-fitted method (Hirsch
1988) or an IB method (Peskin 2002; Mittal and Iaccarino 2005; Iaccarino and Verzicco
2003), is to capture the flow near solid-fluid interfaces. In this region the highest veloc-
ity gradients may occur, leading to correspondingly highest levels of shear stress, but
also potentially highest levels of numerical error. In methods employing body-fitted
grids, the quality of predictions is directly linked to the degree to which grid-lines
can be nearly orthogonal to the solid-fluid interface and to each other. Also, variation
in local grid sizes is a factor determining numerical error. Since the generation of
a suitable grid is often very challenging, the raw data defining the actual aneurysm
geometry often require considerable smoothing, segmentation and geometric opera-
tions eliminating small side vessels that are felt not to be too important for the flow. On
the positive side, the main benefit of a body-fitted approach is that discrete variables
are situated also at the solid-fluid interface, which makes implementation of no-slip
boundary conditions quite straightforward. Hence, in body-fitted approaches the no-
slip property can be accurately imposed, but only on a ‘pre-processed’ smoothed and
often somewhat altered geometry (Gambaruto et al. 2011; Cebral et al. 2005b).

Capturing flow near complex shaped solid-fluid interfaces is equally challenging
in an IB method. In our IB approach, the actual geometry of the aneurysm can be
extracted directly from the voxel information in the raw medical imagery, without the
need for smoothing of the geometry. Grid generation is no issue for IB methods since
the geometry of the flow domain is directly immersed in a Cartesian grid. The location
of the solid-fluid interface is known only up to the size of a grid cell, and the shape
of the interface is approximated using a ‘staircase’ representation, stemming from the
fact that any grid cell is labeled either entirely ‘solid’ or entirely ‘fluid’. Refinements in
which a fraction between 0 and 1 of a cell can be fluid-filled (Cheny and Botella 2010)
are not taken into consideration here. In fact, the medical imagery from which we start
has a high, but still quite limiting spatial resolution arranged in voxels. This calls more
for a systematic assessment of the sensitivity of predictions to uncertainties in the flow
domain (Mikhal and Geurts 2011) than for adaptations of the domain by smoothing
and interface reconstruction as would be considered in higher-order methods (Gao
et al. 2007). Without relaxing the staircase approximation, the problem of capturing
near-interface properties can only be addressed by increasing the spatial resolution. In
this paper we study for curved vessels and model aneurysms the error-reduction upon
increasing the spatial resolution. We establish first order convergence of both the veloc-
ity field and its spatial derivatives for Poiseuille flow. Convergence is also assessed
more qualitatively by systematic grid-refinement for flow in complex geometries.

Numerical accuracy was investigated extensively for a second-order IB method in
(Lai and Peskin 2000; Griffith and Peskin 2005). Simulation results for sufficiently
smooth solutions were analyzed and actual second order convergence for the velocity
and pressure fields was observed. No results were included for convergence of the
gradient of the velocity. For a volume penalizing IB method applied to Stokes flow,
i.e., very viscous, smooth flow, it was shown rigorously in (Mori 2008) that first-order
convergence of the velocity field can be expected, which was actually achieved in
test simulations. In case the solid-fluid interface is allowed to be smoothed, or if it is
already sufficiently smooth by itself, a so-called ghost-cell IB method can be shown to
yield first order (Berthelsen and Faltinsen 2008) or in selected situations second order
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(Gao et al. 2007) converging velocity fields for flow over an undulating channel (Tseng
and Ferziger 2003). In this reference, a direct comparison between a body-fitted and
an IB method was also made for the shear stress at a selected flow condition - the
results were found to be nearly identical. A comparable result may be found in (Kang
et al. 2009) where a study is made of the accuracy with which turbulent wall pres-
sure fluctuations can be predicted for sufficiently smooth surfaces. In this paper we
extend the convergence study and show first-order convergence of velocity and shear
stress in complex domains also in combination with the staircase approximation of
the interfaces.

The quality of predictions depends strongly on the spatial resolution that can be
adopted. From a study of Poiseuille flow we will show that about 16 grid points across
a velocity profile suffice to obtain reliable flow predictions, e.g., yielding an L-norm
of the error with respect to the exact solution less than 0.1. For general geometries that
are not aligned with the underlying Cartesian grid, first order convergence upon grid-
refinement is established. This convergence order is associated with the non-alignment
of the geometry with the underlying Cartesian grid. Using an energy-conserving skew-
symmetric discretization by Verstappen and Veldman (2003) the IB approach was
found to provide the main flow structure and associated stress levels. Flow emerging
from a steady pressure drop was investigated and the laminar velocity field and shear
stress distribution were computed. Flow in curved vessels and model aneurysms is
considered at Re = 100 and Re = 250 to comply with clinical data in (Kamath 1981;
Quarteroni and Formaggia 2004). At the higher Reynolds number the flow displays
some unsteadiness, consistent with findings of Gambaruto et al. (2011), associated
with the nonlinearity in the Navier—Stokes equations, even at constant flow rate.

The organization of this paper is as follows. In Sect. 2 we present the computational
model, based on the IB method and we discuss the strategies to generate the masking
function. We validate the IB method for Poiseuille flow in Sect. 3 and discuss the con-
vergence of numerical predictions. An analysis of shear stress levels in model vessels
and aneurysms is given in Sect. 4. Concluding remarks are in Sect. 5.

2 Computational model for flow inside cerebral aneurysms

In this section we first present the incompressible Navier—Stokes equations as the
mathematical model describing the flow of blood inside the human brain (Sect. 2.1).
Then we describe the numerical method to perform simulations of the flow (Sect. 2.2).
A key element of the adopted IB method is the ‘masking function’, which identifies
for each point in space whether it is ‘solid material’ or ‘fluid domain’. In Sect. 2.3 we
look into how masking functions are generated and introduce the model geometries.

2.1 Incompressible flow in complex domains

There are various approaches to model flow of blood in the human brain. A compre-
hensive overview is given by Quarteroni and Formaggia (2004). In one approach, the
blood is approximated as a Newtonian fluid (Cebral et al. 2005a). More refined models,
e.g., the Carreau—Yasuda model, include the shear-thinning behavior of blood and
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allow to capture non-Newtonian rheology (Bernsdorf and Wang 2009; Gijsen et al.
1999; Janela et al. 2010). Under physiological flow conditions in sufficiently large
arteries the non-Newtonian corrections were found to be quite small (Cebral et al.
2005b; Gijsen et al. 1999; Janela et al. 2010; Perktold et al. 1989). The main flow
characteristics appeared to be the same as for a Newtonian fluid at somewhat different
stress and velocity levels.

In this paper we concentrate on arteries of the circle of Willis. Typical fine-scale
structures in the blood are on the order of 10~®m. A length-scale that characterizes
the cross section of a typical cerebral vessel inside the circle of Willis is on the order of
1073 m (Kamath 1981). This difference in length-scale of three orders of magnitude
motivates to approximate blood as an incompressible Newtonian fluid (Quarteroni and
Formaggia 2004).

A common location of cerebral aneurysms within the circle of Willis is on the
internal carotid artery (ICA), where a typical volumetric flow-rate is reported to be
QFf = 245 £ 65ml/min (Hendrikse et al. 2005), while the diameter of the ICA is
approximately D* = 0.42 £ 0.09 cm (Kamath 1981), leading to a reference velocity
U¥ = 0.2947m/s and a corresponding Reynolds number estimated as Re = 177
computed by Re = UL’ /v in which we used as reference length the radius of the
artery L¥ = R* = D*/2 and a kinematic viscosity v} = 3.5 - 107% m? /s (Quarteroni
and Formaggia 2004). The Reynolds number Re is the only parameter which is required
to specify the flow conditions. It quantifies the ratio between the magnitude of the
(destabilizing) convective transport and the (stabilizing) viscous processes. It is well
known that for relatively low Reynolds numbers flow is laminar and steady (Young et al.
1997), which implies a smooth velocity and pressure field. With increasing Reynolds
number the flow can develop more detailed vortical structures, e.g., associated with
separated flow near abrupt changes in the shape of a vessel. A further increase in
Re usually implies that the flow becomes unsteady and the range of vortices becomes
much wider (Young et al. 1997). The range of Reynolds numbers arising in the flow in
the circle of Willis, as estimated above, corresponds to laminar, possibly unsteady flow.

The Navier—Stokes equations provide a full representation of Newtonian fluid
mechanics, expressing conservation of mass and momentum. The total physical
domain 2, consists of a fluid part £2y and a solid part £2;. The interface between
the two will be identified as 92 at which no-slip conditions apply. The governing
equations are given in dimensional form by:

*

ot*

k

*

£

+ut v = —vi) et e )
p p

VE.ut =0 2)

Here u* is the velocity of the fluid, p* is mass density, p* the pressure and f* a forcing
term that will play a central role in this paper as itis used to represent the impenetrability
of complex shaped solid vessel walls, i.e., the no-slip condition. By choosing reference
velocity U and reference length L we can express in a standard way reference time
as t7 = L}/U}. Using reference density p = p* we find a reference pressure as
p; = (U})?p}. For the forcing term we select a direct volume penalization in which
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1

where ¢* is a forcing time scale and H is the masking function: H(x) = 1 if x € £2
and H(x) = 0if x € 2. Based on the reference velocity and length we set the
reference forcing time scale as ¢ = L*/U = t¥, which suggests that by wishing
& < 1 the dimensional control parameter £* = ¢fe < &f = ¢, i.e., much smaller
than the reference time scale.

After choosing all reference parameters we obtain the non-dimensional form of the
Navier—Stokes equations:

9 1 1
M u-Vu=-Vp+—VPu—-Hu @)
Re €

a1
V.ou=0 5)

In this paper we will consider only stationary, i.e., non moving walls. By adding the
forcing to the incompressible momentum equations we formally arrive at the Brinkman
equation for flow in a porous medium with permeability related to the parameter
& (Liu and Vasilyev 2007). Note that, with the inclusion of f as in (3) we arrive at a
one-velocity field model for the flow in the entire domain §2.

The basis of the volume penalization method is the masking function which dis-
tinguishes fluid parts from solid parts of the domain. In regions where H = 0 the
Navier—Stokes system is solved. In the solid regions H = 1 and the forcing is dom-
inant if the non-dimensional parameter ¢ is very small. As a result, the governing
equation reduces to d;u ~ —u/¢ if [u| > ¢ in the solid domain. Hence, any nonzero u
is exponentially sent back to 0 on a time-scale €. If |u| < ¢ the forcing is not dominant
in the solid, but control over |u| is already obtained, i.e., |u| takes on negligible values
in the solid. We take ¢ = 10719 relative to the dimensionless time-scale L, /Uy in
the sequel. Such low values of the control parameter ¢ imply that the forcing term
effectively yields a Brinkman equation in which ‘porous’ regions are virtually impen-
etrable, i.e., solid material. The detailed specification and the ways of generating the
masking function are presented later in Sect. 2.3.

2.2 Numerical method for simulating incompressible flow with
an immersed boundary approach

In this subsection we sketch the numerical method used for the simulation of flow
through complex shaped domains. First, we describe the direct numerical simulation
approach and specify the volume penalization IB method afterwards.

We employ a staggered allocation of the flow variables (u, p) = (u, v, w, p) as
basis for our flow solver (Geurts 2003). In two dimensions this is sketched in Fig. 1,
where a primary grid cell with the pressure defined in the center and the Cartesian
velocity components at the cell surfaces is presented. The locations at which the
velocities and the pressure are stored are referred to as the velocity- and the pressure-
points, respectively. In addition, we introduce the corner-points of the primary grid
cells as relevant locations for the definition of the IB method later on.
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Fig. 1 Sketch of a primary grid

cell in 2d with staggered .
allocation of the variables. The Yj
pressure p is in the middle of the

grid cell, while the velocities

(u and v) are defined at the

centers of the faces

Y1

The principles of conservation of mass and momentum as expressed in (4) and
(5), form the basis for the discrete computational model that is used for the actual
simulations. In the Navier—Stokes equations (4) the rate of change of momentum is
obtained from the nonlinear convective flux, the linear viscous flux, the gradient of the
pressure and the contribution from the forcing term. These contributions to the total
flux each have a particular physical character that needs to be represented properly in
the discrete formulation. In particular, the convective flux is skew-symmetric, imply-
ing that this flux only contributes to the transport of kinetic energy of the solution in
physical space; it does not generate nor dissipate this energy. An important contri-
bution to second-order skew-symmetric discretization of the convective terms in the
Navier—Stokes equations is in the work of Morinishi et al. (1998), which motivated
later work of Verstappen and Veldman (2003) upon which we rely here. These are
examples of a more general philosophy of developing discretization schemes which
‘respect’ basic properties of the underlying system of equations, knows as mimetic
discretization (Shashkov and Steinberg 1995). Likewise, the viscous flux contributes
only to dissipation of energy, which has to be strictly maintained in a numerical
method.

In this paper we employ symmetry preserving finite volume discretization and use
central differencing of second order accuracy, which maintains explicitly the skew-
symmetry in the discrete equations. Since the energy is preserved under the convec-
tive operator the skew symmetric discretization allows to obtain a stable solution on
any grid. For proper capturing of the solenoidal property (5) of the velocity field
we approximate the gradient operator by the transpose of the numerical divergence
operator and a positive definite discretization of the viscous terms, closely following
Verstappen and Veldman (2003). The contributions of the convective, viscous and
pressure-gradient fluxes are integrated in time using a generalization of the explicit
second order accurate Adams-Bashforth method. Care is taken of accurately rep-
resenting the skew-symmetry also in the time-integration. Full incorporation would
require an implicit time-stepping, which, however, is computationally too demand-
ing. Instead, time-integration starts from a modification of the leapfrog method with
linear inter/extrapolations of the required ‘off-step’ velocities and an implicit treat-
ment of the incompressibility constraint. Optimization for largest stability region of
the resulting scheme yields a particular so-called ‘one-leg’ time-integration method,
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with a mathematical structure that is akin to the well-known Adams-Bashforth scheme.
More details can be found in (Verstappen and Veldman 2003).

A special role is played by the forcing term in the Navier—Stokes equations (4),
which represents the volume penalization accounting for solid objects inside and at
the boundaries of the flow domain. The role of the forcing term is to yield an accurate
approximation of the no-slip condition at solid boundaries. In conventional compu-
tational fluid dynamics such a forcing term is not needed since the flow domain is
endowed with a body-fitted grid on which the equations are discretized. The grid-lines
in such cases are defined such that they either closely follow the contours of the solid
boundaries, or they are (preferably) at right angles with them. In such a discrete for-
mulation the no-slip boundary condition can be imposed easily. The body-fitted grid
is efficient if the fluid domain §2 is not too complex and does not contain too many
separate objects around which the fluid should flow (Kovalev 2005). For considerably
more complex flow domains or in case the location of the solid-fluid interface is not
perfectly known, as in case of medical imagery, the body-fitted grid approach is lim-
ited by the generation of suitable meshes. These should not only align with the solid
boundaries, but also be sufficiently smooth near these boundaries to allow an accurate
solution in the boundary layers (Lohner 2007). In our discrete model the forcing term
contributes strongly to the stiffness of the equations. When an explicit time-stepping
method would be adopted for the forcing term, as is done for the other dynamic contri-
butions, this would result in extremely small time-steps in view of numerical stability.
Therefore, the linear forcing term is integrated in time using the implicit Euler scheme
(Lopez Penha et al. 2011).

2.3 Masking function strategy

In this subsection, we first consider three options for creating a general masking
function and illustrate these for a circle on a 2d Cartesian grid. We also present the
procedure with which the specification of the masking function of any curved cylin-
drical 3d-tube was taken up. The validation and comparison of the masking strategies
will be presented in Sect. 3.

The masking function technique is a simple and fast way to indicate the location
of an object. Illustration of the masking function for a flow domain is given in Fig. 2.
A simple approach to distinguish which grid cells are inside the solid domain and which
are outside is the following: if the center of the grid cell is of type ‘solid’ or ‘fluid’, then
that entire grid cell is taken to be of that type. Fig. 2(b) illustrates how, based on this rule,
some cells become internal (hatched) and others are outside the fluid part of the domain.

In three-dimensional domains we formulate the problem in a rectangular block
of size Ly x Ly x L; that is large enough to contain the flow domain of interest.
A uniform Cartesian grid with mesh-spacings hy y ., = Ly y ;/Ny,y , for the three
coordinate directions is defined, using Ny y . grid cells in each direction. In our basic
method, if the center of a cell is solid (fluid) then we take the whole cell to be solid
(fluid) and H = 1 (H = 0) (Fig. 3a). Next to this basic method we can introduce two
closely related methods based on the corner-nodes of a grid cell. We consider 3d cells
and first determine the solid or fluid property for every corner point of the cell. Then,

@ Springer



Development of an IB method for simulating blood flow inside cerebral neurysms 1857

7

7777
Yo %

N
N

7 24 77

0% 7
/////ﬁf
4

42

—
S
N\
N\

__

WY

7
(a) W (b)

Fig. 2 Sketch of complex flow domain (a) (grey area). On a Cartesian grid the definition of the masking
function can be based, e.g., on the ‘material’ (‘solid’ or ‘fluid”) found at the cell center (b)
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Fig. 3 Strategies to define a masking function for a grid cell on a Cartesian grid. For convenience we
illustrate here 2d grid cells. We propose three ways to define fluid cells (hatched) and thus the fluid domain.
The ‘basic’ strategy (a) is the one where the property at the center of the cell defines that of the whole cell.
The two other strategies differ in the number of corner points that are inside the fluid domain. Thus we
obtain the so-called ‘inner’ strategy (b) when the cell is denoted to be ‘fluid’ if all its corners are inside the
fluid domain and the ‘outer’ strategy (¢) when we call the cell ‘“fluid’ if at least one of its corners belongs
to the fluid domain

in one strategy we denote a grid cell as fluid if all eight of its nodes are fluid. This
is illustrated for 2d-cells in Fig. 3b (fluid cell is hatched). Another strategy assigns
for the whole cell the value ‘fluid’ if at least one of its corners is in the fluid part of
the domain (Fig. 3c). In the sequel, we will refer to these three strategies as ‘basic’,
‘inner’ and ‘outer’ respectively. The ‘inner’ strategy has the tendency to produce flow
domains that are slightly smaller than the ‘basic’ approach while the ‘outer’ strategy
is likely to yield slightly larger flow domains. In the next section we will validate these
three masking function strategies for Poiseuille flow in a straight cylindrical pipe,
showing the sensitivity of predictions to details of the geometry definition. The possi-
ble application of the ‘inner’ and ‘outer’ masking strategies was presented in (Mikhal
and Geurts 2011), where ‘inner’ and ‘outer’ solutions were considered as numerically
bounding the ‘basic’ solution and some of its important flow characteristics.

The masking strategies define the masking function in the middle of the grid cell, i.e.,
in H), points of a staggered grid. Given H),, we can extract H,, H, and H,, for the stag-
gered grid. We assign the value of the masking function at a cell face as the maximum
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of the H), values of the neighboring grid cells. In Fig. 4 we illustrate for 2d grid cells the
mechanism of extracting staggered masking values at the grid faces. Thus, H, (i, j) =
max(H,(i, j), H,(i + 1, j)) and H, (i, j — 1) = max(H,(, j), Hp(, j — 1)).

To obtain a masking function according to one of the above strategies for a smoothly
curved cylindrical tube we use the smallest distance approach to specify for every point
in the computational domain its ‘type’, i.e., solid or fluid. In fact, we determine the
minimum distance to the centerline of the curved vessel and then check the condition
whether this distance is smaller or greater than the radius of the desired cylindrical
tube. We apply the smallest distance approach to the centers of the cells in the ‘basic’
strategy and to all eight nodes of the 3d-cell in the ‘inner’ and ‘outer’ strategies.

We consider the centerline of the tube in parametric form, as (x(s), y(s), z(s))
where 0 < s < 1. For every point (X, Y, Z) in the computational domain we may
determine whether or not the minimal distance to the centerline is smaller than the
radius of the desired cylindrical tube. If so, then the point is in the fluid domain,
otherwise it is in the solid domain. Specifically, we consider the distance vector

d=(X—x(). ¥ = y(5). Z - 25)) ©)
and obtain the square of the Euclidean distance as the inner product
D=d-d=|dJ (7

For every (X, Y, Z), D is a function of the parameter s only. We require the global
minimum of the function D, which implies at least the first order condition

D'=2d-d =0 3
where the prime indicates differentiation with respect to s. This optimality condition

specifies that in the optima the distance vector d is perpendicular to the tangential vec-
tor d’ at the centerline, which has an obvious geometric interpretation. The equation
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(a) ¥ (b)

Fig. 5 Basic geometries in 3d. The curved vessel (a) is a cylindrical tube with a sinusoidal centerline,
while the model aneurysm is composed of a curved vessel and a sphere attached to it (b)

for an extremum is
(X - x(s))x/(s) n (Y — y(s))y/(s) n (z - z(s))z/(s) -0 )

which can be solved numerically to obtain local (and global) extrema for) < s < 1.In
the sequel we consider planar curves as centerline. In that case y’ = Oand x(s) = L,s
so that

~ L35+ (2 - 29))7 @) = XL, (10)
As a particular case we take y(s) = L, /2 and choose the centerline to be sinusoidal
z2(s) = L;/2 4 CsinQa(s — 1/4)) (11)

where C is called the ‘curve-parameter’, for simplicity.

In order to specify the ‘type’, i.e., solid or fluid, of a given point (X, Y, Z) we
need first to determine the parameter-value s at which the global minimum of (9) is
attained. Numerically, this can be implemented in two stages: first, we coarsely sam-
ple the square distance function (7) in 2¥ steps to obtain a ‘candidate’ interval and
second, we refine this interval to obtain the global minimum using simple bisection.
After some experimentation we found that coarse sampling at k = 6 is suitable for
mildly curved vessels. Once the optimal s* is determined for a given (X, Y, Z), we can
compute the smallest distance d at s*. If this smallest distance d < R then (X, Y, Z)
is of type ‘fluid’, and it is of type ‘solid’ otherwise.

In this paper we consider two basic geometries motivated by medical application:
curved vessels and model aneurysms. Three dimensional shapes are illustrated in
Fig. 5. The curved vessel is a cylindrical tube, with a sinusoidal centerline (Fig. 5a)
where the curve-parameter C = 2 in (11). The model aneurysm (Fig. 5b) is the ‘exten-
sion’ of this curved vessel by merging it with a sphere, with radius Rsppere = 3 Ryegsel
(Fig. 5b).
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3 Validation of the IB method

In this section we analyze the capabilities of the IB method in capturing steady flow
in non-aligned geometries and show the results of computations for a number of basic
geometrical shapes such as a straight cylindrical vessel and smoothly curved cylin-
drical vessels. In the first subsection we focus on Poiseuille flow in a straight vessel
and provide an assessment of the accuracy of the IB method. The total IB method is
shown to have first order convergence. Subsequently, we propose a qualitative view
of the flow inside curved vessels, showing the flexibility of the IB approach in pre-
dicting flow in more complex flow domains, and quantify the level of convergence by
monitoring the pressure drop over the vessel at a range of resolutions.

3.1 Flow in straight vessels

A fully developed, incompressible, laminar flow through a straight circular tube of
constant cross section is known as Poiseuille flow (Batchelor 2007). The exact ana-
lytical solution for this type of flow can be written as (u, v, w) = (u, 0, 0), where
u(ry=1- r2 in terms of the radial coordinate r. This corresponds to a volumetric
flow rate Q = 7.

The IB method is validated by comparing the numerical results with the analytical
solution for cylindrical pipe flow. We consider flow at Re = 250 and assume that the
x-domain is from —L /2 to L /2 with center of the tube at x = 0, and likewise for the
y and z-domain ranging from —3R /2 to 3R /2 with center at y = 0 and z = 0. Since
we adopt a non-dimensional formulation, the validation of the numerical method with
reference to laminar Poiseuille flow can be executed at any value of Re as long as the
parabolic velocity profile is stable. Identical results can be obtained when validation is
done at lower Reynolds numbers. To test the application of the method at physiologi-
cally relevant conditions, we set Re = 250; at this flow condition a longer simulation
time is required to reach the final steady state that we want to test against the analytical
solution. This provides as additional result a test of the time-stepping method under
realistic conditions.

Numerically, we define the flow to have reached the steady state once the pressure
drop over the computational domain needed to maintain the desired flow rate has con-
verged to within 10~8. During the simulations we verified that the flow is independent
of the axial coordinate, as required by the analytical solution.

We investigate numerical velocity profiles for a number of grid resolutions. We
use 4 x N x N grid cells in the x, y and z directions respectively, where N =
8,16, ...,256. As was already mentioned in Sect. 2.3 we may create masking func-
tions in three different ways. In order to investigate the accuracy and robustness of the
IB method we validate each of these masking strategies. Figure 6 illustrates velocity
profiles for all three masking strategies. The solid line denotes the analytical solu-
tion, all dashed lines are approaching this solution from above or below, depending on
whether the numerical representation of the circular cross section is slightly smaller or
slightly larger than the actual cross-section, respectively. Combination of the ‘inner’
and ‘outer’ masking strategies provides a practical manner to arrive at lower and
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Fig. 6 Velocity profiles for three different masking function strategies (‘basic’—(a), ‘inner’—(b),
‘outer’—(c¢)). The total flow domain ranges from —3/2 < y < 3/2, =3/2 < z < 3/2, of which the
profile at z = 0 and |y| < 1 is shown. Profiles are obtained at grid resolutions 4 x N x N in (x, y, z)
with N = 8, 16, ..., 256. Solutions at increasing resolutions are identified by the sequence of dashed lines
which converge to the solid line representing the analytical solution for Poiseuille flow

upper bounding solutions between which the analytical solution is contained. This
was exploited and presented in (Mikhal and Geurts 2011). The visual convergence
check will next be quantified and the order of accuracy of the IB method inferred.
There are several ways to define the difference between analytical and numerical
solutions. For estimating the convergence of the velocities we compare numerical
results with the analytical solution directly in the grid points and compute the discrete
Ly-norm along a line at z = 0 and x = 0, i.e., along a vertical line in the middle of the
domain. The difference between the analytical and a numerical solution appears as

1
= | Z_(uNX/z, joNj2 = Uex )2, (12)
J
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Fig. 7 Convergence of the numerical solution for velocities (a) and pressure differences (b) for Poiseuille
flow. The difference for the velocities is measured in terms of the discrete Ly-norm §,, while for the
pressure difference we consider the absolute difference between analytical and numerical solutions. Solid
lines without markers denote slopes —1 and —2 respectively. The line marked with circles corresponds to
the ‘inner’ strategy, the line with asterisks is for the ‘basic’ strategy, the line with squares is for the ‘outer’
strategy for generating the masking function

where uy, 2, j n.2 = u(%Nx, Js %NZ) and Uy, j = (1 —yj)2 for grid points |y;| < 1.
We also analyze the convergence of the pressure differences over the computational
domain, by computing the absolute value of the difference between the numerical and
analytical pressure differences. The reduction of the error for velocity and pressure
difference is presented in Fig. 7 for all the strategies. Solid lines show slopes at —1
and —2 as reference. The marked lines are for the three masking strategies. As we can
observe, for all masking strategies the numerical method converges to first order. This
basically reflects the non-alignment of the cylinder wall with the Cartesian grid, lead-
ing to inaccuracies in the solid-fluid interface definition. It appears in this case that the
‘inner’ masking strategy is most accurately representing Poiseuille flow closely fol-
lowed by the ‘basic’ strategy. For further computations we will use the ‘basic’ masking
function based on the pressure-points (Fig. 3a), as this is most straightforward.

3.2 Flow in curved vessels

In the previous subsection we assessed the numerical method for a basic case of flow
in a straight cylindrical tube. The validation shows first order convergence for laminar
Poiseuille flow. However, the geometry of blood vessels in a human brain is much more
complicated. The first step towards simulating flow in more realistic vessel shapes is
to consider smoothly curved geometries. In this subsection we show the flexibility of
the IB method to capture flow in curved vessels even at fairly modest resolutions. The
steady velocity field that develops at Re = 1 is shown in Fig. 8 for curved vessels
with curve-parameters C = 1,C =2, C = 5and C = 10 in (11). Simulations show
that the laminar flow closely follows the shape of the vessel. Near the vessel wall we
recognize the coarseness of the ‘staircase’ representation. This effect is seen to be only
very local and can be reduced by increasing the resolution.
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Fig. 8 Velocity vector fields at Re = 1 in middle cross-sections of sinusoidally curved cylindrical vessels
at increasing values of the curve-parameter in (11): C = 1 (a), C = 2 (b), C = 5 (¢) and C = 10 (d).
Simulations employed a resolution of 64 x 16 x 32 for (a), (b) and 64 x 32 x 64 for (c), (d)

The velocity profiles along the curved tubes depend on the actual shape of the ves-
sel. The profiles follow the contours of the vessel and at certain locations along the
centerline the local profiles differ considerably from the simple Poiseuille profile that
was considered earlier. This is shown in Fig. 9. Already at relatively coarse grids the
numerical solution appears to capture the flow quite reliably.

The convergence of the IB method for curved vessels and model aneurysms can
be further quantified. We consider the pressure difference over the flow domain in the
x-direction that is required to maintain the imposed volumetric flow rate. In Fig. 10
we display the development of this pressure difference for two flow regimes, i.e., at
Re = 1 (Fig. 10a) and Re = 100 (Fig. 10b) for a curved vessel at curve-parameter
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Fig. 9 Profiles of the streamwise velocity component u at Re = 1. Parameters as in Fig. 8

C = 2. We observe a clear convergence in the pressure evolution by comparing results
obtained upon doubling the resolution several times. At Re = 1 and Re = 100 we
quite closely recover first order convergence. In fact, we consider the convergence
ratio ¢ = ((Ap)an — (Ap)N)/((Ap)an — (Ap)an) for the three finest grids with
number of grid points N, 2N and 4N. At Re = 1 we find at 7 = 0.05; ¢ = 2.4 and at
Re = 100and t = 5; ¢ = 1.8. Both are quite close to the values that would imply first
order convergence. The flow at both Reynolds numbers approaches a steady state.

3.3 Flow in model aneurysm

In this subsection we present the velocity vector field and pressure differences for
the flow inside the model aneurysm. The simulations are performed at Reynolds
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Fig. 10 Convergence of the IB method for flow inside a curved cylindrical vessel, at curve-parameter
C = 2 in terms of the evolution of the pressure difference over the streamwise extent as a function of
time. Simulations are done at Re = 1 (a), Re = 100 (b) at several grid resolutions: 32 x 8 x 16 (dash),
64 x 16 x 32 (dot), 128 x 32 x 64 (dash-dot) and 256 x 64 x 128 (solid). With increasing resolution the
numerically obtained solution is seen to converge to a grid independent result
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Fig. 11 Snapshot of the developing flow inside a model aneurysm at Re = 100 (a) and Re = 250. The
flow is visualized in a cross section through the geometry, by plotting the in-plane velocity vectors. Results
are shown for grid resolution 64 x 32 x 64

numbers Re = 100 and Re = 250. The velocity field distributions inside these
model aneurysms are presented in Fig. 11. Previously, we showed the flow in a curved
vessel, which is laminar and steady at both Reynolds numbers. The addition of an
aneurysm cavity renders the flow slightly unsteady at Re = 250. Some vortical flow
structures are seen inside the aneurysm. We observe quite similar flow patterns albeit
with more pronounced vortices inside the flow field at Re = 250.

In Fig. 12 we consider the pressure drop required to maintain the flows at Re = 100
(Fig. 12a) and Re = 250 (Fig. 12b) through the model aneurysm. At Re = 250 the
result appears to indicate first signs of sustained unsteadiness while the solutions at
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Fig. 12 Convergence of the IB method for flow inside a model aneurysm in terms of the evolution of the

pressure difference over the streamwise extent as a function of time. Simulations are done at Re = 100

(a) and Re = 250 (b) at several grid resolutions: 16 x 8 x 16 (dash), 32 x 16 x 32 (dash-dot) and 64 x 32 x 64
(solid)

Re = 100 becomes steady after some time. For this case only three refinements were
included in view of computational time. With increasing grid resolution the computed
flow converges for both flow regimes, roughly expressing the first order convergence
shown previously for Poiseuille flow. The convergence rate ¢ was also computed for
both Reynolds numbers and it takes values ¢ = 1.86 at Re = 100 and ¢ = 3.05 at
Re =250 att = 50.

4 Shear stress in curved vessel and model aneurysm

In this section we focus on the shear stress which develops inside the flow domain
and at the vessel walls as a result of the blood flow inside. We first illustrate the IB
approach for the shear stress associated with Poiseuille flow in a straight cylindrical
pipe. This extends the validation study shown in the previous section by establishing
the accuracy with which also the gradient of the velocity can be obtained numerically.
Subsequently, we apply our method to compute shear stress in a curved ‘sinusoidal’
vessel and in a model aneurysm.

4.1 Validation of the IB computed shear stress

The main challenge for any IB method is to capture the flow near solid-fluid interfaces.
In this region the highest velocity gradients may occur, leading to correspondingly
highest levels of numerical error. During the initiating stages of an aneurysm, local
high pressure and shear stresses may contribute to the growth, while in developed
stages low shear stress levels may contribute to degenerative changes (Shojima et al.
2004; Boussel et al. 2008). This makes the shear stress, in particular regions of low
shear stress, a quantity of relevance for understanding the often slow growth of an
aneurysm (Castro et al. 2009), as well as a key component in mechanisms involved in
sometimes much more rapid aneurysm development (Doenitz et al. 2010).
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In the sequel we define the shear stress and clarify the method with which it was
extracted from the numerical solution.

We define the shear stress in terms of the gradient of the velocity as follows. The
rate-of-strain tensor S is given by

1 T
S = E(Vu—i— Vu') (13)

The shear stress t is a measure for the gradient of the velocity and we formulate it in
terms of the components of S as follows:

1
= —+25:S 14
TS o (14)

The normal stresses are contained on the diagonal elements of the tensor S and the
tangential (shear) stresses are defined by the off-diagonal elements of S (Pope 2003).
As point of reference for our numerical approach, we compute analytically the shear
stress that results from (14) for the classical cases of a channel flow and a pipe flow.
We obtain from (14)

_1
" Re

ou

‘L' JE—
dy

15)

for channel flow (in Cartesian coordinates) and for pipe flow in cylindrical coordinates
(Young et al. 1997). This demonstrates that (14) is a convenient form of expressing
the shear stress for more general cases.

In Sect. 3 we discussed laminar Poiseuille flow showing parabolic velocity profiles.
Here, we extend this validation to shear stress, and expect linear profiles for . Within
velocity field (u, v, w) = (1 —r2,0,0) we find S : § = 2r? and hence obtain

2|| (16)
T=—]r
Re

We validate the shear stresses for steady flow at Re = 250 and compare numerical
solutions for the three masking strategies with the analytical result in (16).

Profiles of the shear stress distribution inside the cylindrical tube are collected in
Fig. 13. The solid line is the analytical result for the cylindrical tube. With increas-
ing grid resolution the numerical solution is seen to converge to the analytical shear
stress. To assess the order of convergence we computed the difference in L, norm
(see Fig. 14). We observe that the convergence of the shear stress is similar to that of
the velocity predictions. For the ‘outer’ strategy the convergence appears somewhat
slower than for the ‘inner’ and ‘basic’ methods. The resolution beyond which first
order convergence is quite established appears to be higher than was required for the
velocity predictions (Fig. 7a).

The first order convergence of the shear stress, i.e., the derivative of the velocity, on
the basis of a numerical solution for the velocity that itself converges to first order may
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Fig. 13 Shear stress profiles for Poiseuille flow in a cylindrical tube for ‘basic’ (a), ‘inner’ (b) and ‘outer’
(c) masking strategies. Numerical solutions (dashed lines) converge to the exact solution (solid line) with
increasing grid resolution. Shear stress profiles are obtained for a number of different grid resolutions
4 x N x Nwith N =28, 16,...,256. Simulations are done for laminar flow at Re = 250

appear somewhat surprising. However, an argument why such first-order convergence
for the derivative should arise can briefly be sketched as follows. We use a 1d setting
for convenience and denote the approximation of the solution U in the point x; by u ;.
Assuming first-order convergence implies

uj=U(xj;)+ajh+... a7

where a; denotes the coefficient for the first order error term and & denotes the grid
spacing. Using a simple discretization §, for the first derivative, this implies

1 1
butty = 2 (ujir =) = { U0 = UG | + @ —ap +..

{U/(xj)+ O(h)} + (a4 —a) + ... (18)
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Fig. 14 Convergence of shear
stress for Poiseuille flow
measured in terms of the discrete
Ly norm 8. Solid lines without
markers denote slopes —1 and
—2 respectively. The line
marked with circles corresponds
to the ‘inner’ strategy, the line
with asterisks is for the ‘basic’
strategy, the line with squares is
for the ‘outer’ strategy for
generating the masking function

The term between brackets in (18) contains the exact derivative U’(x;) and a first
order correction O (h) associated with the use of the simple finite differencing 6, to
approximate the derivate. In addition, a term a ;41 — a; appears from the error term
in the approximation of the solution. This term seems to imply ‘zero-order’, i.e., no
convergence of the numerical derivative. However, if the error term is differentiable,
ie., if we assume a1 = a; + a}h + ... we obtain first-order convergence of the
derivative, also if the accuracy with which the solution itself is approximated is of
first order. For the Poiseuille case, the (slow) first order convergence as illustrated in
Fig. 14 appears to underpin the differentiability of the error term.

4.2 Analysis of the shear stress distribution inside curved vessel and model aneurysm

In this subsection we consider shear stresses in a curved vessel and a model aneurysm.
We present the distribution of the shear stress first in two-dimensional cross sections
of both geometries and later focus on the 1d shear stress profiles.

In Fig. 15 the distribution of the shear stress is shown as a contour plot on a two-
dimensional cross section along the middle plane inside both geometries. We normal-
ize the shear stress field by its maximum value to emphasize the main patterns. High
shear stress values are represented as dark areas. We observe that inside the aneurysm
cavity a detached jet forms, which impinges on the wall to create a region of locally
intensified shear stress. The shear stress t is also quite large near ‘extremities’ of the
curved cylindrical tube that is connected to the sphere. At the higher Reynolds number
Re = 250 the results are qualitatively similar to the ones at Re = 100. In case of
the spherical aneurysm we observe a significant separated vortex which dominates the
stress distribution on the cavity wall (Fig. 15b).

To consider the accuracy with which 7 is predicted in more details, we perform a
grid-refinement study and present 1d shear stress profiles. In Fig. 16a characteristic
stress profile is presented as function of z taken at (x, y) = (Ly/2, L,/2) at various
resolutions. We plot the quantity (Re 7) in order to compare the convergence of the
shear stress quite independently of flow conditions.
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Fig. 15 Cross-sectional slices of the normalized shear-stress distribution inside a curved vessel (a) and a
model aneurysm (b). The shear stress at Re = 100 is shown. High shear stress values are found near the
walls of the vessel and near the rims of the attached spherical cavity (dark areas). The spatial resolution
that was adopted is 128 x 32 x 64 for the curved vessel (a) and 64 x 32 x 64 for the model aneurysm (b)

For each model geometry at both Reynolds numbers Re = 100 and Re = 250 we
notice better capturing of the shear stress profile with increasing grid resolution. Due
to the computational time the shear profiles for the model aneurysm are collected at
lower resolution (along x-axis) than for the curved vessel. Inside both geometries we
observe a complex spatial dependence with peaks near the walls. The value (Re 1)
stays approximately the same when the Reynolds number changes in the steady flow
regime. This means that with increasing Reynolds number, the shear stress t decreases,
as was also seen for Poiseuille flow in (16). We also notice that in the curved vessel
the maximum value of the shear stress is about twice as high compared to the model
aneurysm. This suggests that having an aneurysm leads to a decrease in the local shear
stresses inside the vessel; relocating local maxima partially into the aneurysm body.
This was also observed by (Shojima et al. 2004) who reported average wall-shear
stress levels about a factor of two lower in the aneurysm than in the nearby vessel
region. Although convergence is not complete with our current method, at the reso-
lutions studied, we obtain a reliable impression of t throughout the domain. Further
refinement of the grid was not practical at the adopted Reynolds numbers with the cur-
rent single-cpu implementation of the simulation software. In order to simulate long
enough until satisfactorily reaching the steady state at Re = 250, we face computing
times on the order of 100 hours on a modern cpu for a single geometry. Since we
employ explicit time-stepping, an increase in resolution by a factor of 2 in each direc-
tion, would increase the computing time by a factor of about 16, making the endeavor
unfeasible. Current efforts are in the direction of parallel implementation of the flow
solver. Linking to existing literature, we can further underpin the reliability of the
predictions. The work reported by Tseng and Ferziger (2003) showed that IB methods
are capable of capturing shear stresses throughout the domain with an accuracy that
is comparable to that of conventional body-fitted finite-volume discretizations. This
puts the results in Fig. 16 into perspective.
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Fig. 16 Shear stress profiles in a curved vessel (a, b) and a model aneurysm (¢, d). At Re = 100
(a, ¢) and Re = 250 (b, d) we show the shear stress profile at different grid resolutions: curved vessel
grid resolutions: 32 x 8 x 16 (dot), 64 x 16 x 32 (dash) and 128 x 32 x 64 (solid), model aneurysm
grid resolutions: 16 x 8 x 16 (dot), 32 x 16 x 32 (dash) and 64 x 32 x 64 (solid). For the curved vessel
(model aneurysm) we use as domain [Ly, Ly, L;] = [12,4, 8]([12, 8, 13]). Hence, the grid spacings for
both cases differs, although the number of grid points is equal

In Poiseuille flow we established first-order convergence of the shear stress, includ-
ing the value at the wall, with our method (cf. Fig. 13). We expect this level of con-
vergence to be maintained also in case of smoothly curved vessels and the model
aneurysms, although a strict underpinning with numerical results was not provided in
view of the limitations in the spatial resolution that could be employed.

5 Concluding remarks
In this paper we presented a basic immersed boundary (IB) method and its appli-

cation to the simulation of blood flow in models for cerebral aneurysms. We first
described the medical condition and possible ways of diagnostics and treatment of
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aneurysms. This motivates how mathematical modeling might be applied for sur-
gical support. We introduced a computational model, based on the incompressible
Navier—Stokes equations, in which an additional forcing term determines the com-
plex geometry in our IB method. The masking function assigns to every grid cell the
property ‘fluid’ or ‘solid’. Based on the property in the center of a cell, or associated
with the corner points, we arrive at three slightly different strategies, called ‘basic’,
‘inner’ and ‘outer’, to define complex-shaped fluid domains. On a 3D Cartesian grid,
for any non-aligned geometry we obtain a staircase representation of the fluid-solid
boundaries.

The IB method as developed here offers the potential of a more direct computational
chain from the raw, somewhat coarse biomedical imagery of cerebral vasculature to
a CFD analysis of the flow and shear stresses. In conventional body-fitted methods
a time-consuming process of segmentation has to be incorporated in order to pre-
pare the rough data for such a computational analysis. The IB approach could be
less user-intensive and offer the opportunity to develop an automated analysis of the
haemodynamics in diseased areas.

A detailed validation analysis of the IB method was provided for Poiseuille flow
in a tube with a circular cross section, showing first order global convergence of the
numerical solution as well as of its gradients. In particular, we showed the influence of
the masking function strategies on the level of accuracy of the numerical flow solution.
Based on the validation analysis we choose the ‘basic’ masking strategy for further
simulations.

We applied our method to different geometries, motivated by medical conditions.
We included a curved vessels and a model aneurysm. The curved vessel is a cylindrical
tube with a sinusoidal centerline, while the model aneurysm is simplified to a sphere
merged with the curved vessel. For these geometries we computed velocity fields to
understand the behavior of the flow. For different Reynolds numbers we presented a
grid refinement study for some flow characteristics and showed convergence of the
method.

We also presented shear stresses, as these are often associated with possible rup-
ture of aneurysms either directly or as indicator of the flow structure. The shear stress
distribution in curved vessels and model aneurysms was discussed on different lev-
els: general, 2d cross-section and 1d profiles to quantify the results. We observed the
locations of higher shear stresses near the walls as well as near the region where the
neck of the aneurysm where it is connected to the vessel. We noticed that the presence
of an aneurysm causes the shear stress levels to be reduced, compared to the situation
without spherical cavity. This is in line with findings reported by (Shojima et al. 2004),
who reported a reduction by a factor of two in the average shear stress in the aneurysm,
compared to the flow in the connecting vessels. Moreover, we noticed that the peak
values of the shear stress are relocated into the aneurysm cavity. Ongoing work deals
with the application of the IB method described in this paper to realistic geometries
and realistic pulsatile flows, which are obtained from real medical data. This will be
presented elsewhere.
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