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Magnetic Resonance (MR) white matter hyperintensities have been shown to predict an increased risk of
developing cognitive decline. However, their actual role in the conversion to dementia is still not fully
understood. Automatic segmentation methods can help in the screening and monitoring of Mild Cognitive
Impairment patients who take part in large population-based studies. Most existing segmentation approaches
use multimodal MR images. However, multiple acquisitions represent a limitation in terms of both patient
comfort and computational complexity of the algorithms. In this work, we propose an automatic lesion
segmentation method that uses only three-dimensional fluid-attenuation inversion recovery (FLAIR) images.
We use a modified context-sensitive Gaussian mixture model to determine voxel class probabilities, followed
by correction of FLAIR artifacts. We evaluate the method against the manual segmentation performed by an
experienced neuroradiologist and compare the results with other unimodal segmentation approaches. Finally,
we apply our method to the segmentation of multiple sclerosis lesions by using a publicly available
benchmark dataset. Results show a similar performance to other state-of-the-art multimodalmethods, as well
as to the human rater.
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1. Introduction

White matter hyperintensities (WMHs) are diffuse white matter
abnormalities that appear with high intensities in T2-weighted
magnetic resonance (MR) images. Although the pathogenesis of
WMHs is not yet completely understood, these lesions are often
associated with chronic cerebral ischemia, in particular with micro-
vascular lesions originated by small vessel atherosclerosis [1]. They
occur often in the elderly [2–5] and have been shown to predict an
increased risk of stroke, cognitive decline and death [6].

The analysis of the real influence of WMHs on the development of
dementia requires clinical studies involving large patient cohorts.
Also, an accurate description of the location, shape and volume of the
WMHs is necessary. Typically, WMHs are classified according to
visual scales, such as the Scheltens scale or the Fazekas scale [7].
However, the results obtained by these visual scales are seldom
comparable [8]. In addition, they have been shown to be little
sensitive to clinical group differences [9]. Finally, they offer only a
qualitative description of the WMHs, originating high intra- and
inter-subject variabilities [10].

A quantitative and more reliable way of assessing WMHs is by
manually determining the lesion volumes. However, for three-
dimensional data this typically requires a slice-by-slice analysis,
making the whole process cumbersome and time-consuming for the
neuroradiologist. Also, the intra- and inter-rater variability have been
reported to be high [11]. Clinical studies with hundreds of patients
require, therefore, automated and robust segmentation methods.

Several methods have been proposed to automatically segment
WMHs from MRI images, most of them using various types of MRI
modalities [12–14]. The use of multimodal data presents several
disadvantages. Namely, the acquired datasets must be coregistered,
making the segmentations computationally intensive and more
prone to errors. In particular, motion artifacts are seen frequently
in the MRI data from elderly patients, who are often not able to lie
still during the whole acquisition period. This represents a serious
limitation for the registration algorithms and can negatively
influence the outcomes [15,16].

Other methods have been specifically designed to segment
multiple sclerosis (MS) lesions [17,18]. Although MS lesions look
similar to vascular-related WMHs in MR images, the spatial
atter hyperintensities using only 3D FLAIR images,
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distribution of the lesions is often very different, with MS lesions
occurring commonly in the corpus callosum and being symmetrically
distributed in the brain, unlike the vascular WMHs [19].

WMHs are characterized by a larger T2 relaxation rate due to
increased tissue water content and degradation of myelin [15]. Fast
fluid-attenuated inversion-recovery (FLAIR) is a T2-weighted MR
modality inwhich the cerebrospinal fluid (CSF) signal is attenuated. In
FLAIR images,WMHs are characterized by an intensity range that only
partially overlaps with that of normal brain regions, making this MRI
modality well suited for lesion segmentation purposes [20].

Despite being the preferred imaging modality used by neuroradi-
ologists to assess WMHs in the clinical setting, FLAIR has seldom been
used alone in the automatic detection of these lesions [15,16].

In [15], the authors determined an optimal FLAIR intensity
threshold to separate WMHs from normal brain tissue, based on the
analysis of the image histograms on a training set. More recently, Ong
et al. [21] have applied an outlier detection approach to find this
optimal threshold, followed by a false positive correction step that
uses the co-registered T1-weighted image. Similarly, de Boer et al.
[14] determined the optimal intensity threshold on a training set and
used the T1-weighted image to ensure the detected lesions were all
within the white matter.

Applying a threshold allows only for crisp segmentation and does
not account for the Partial Volume Effect (PVE) that is present in MR
images. Having that in mind, Khademi et al. have proposed a
segmentation method that allows for fuzzy segmentation and is
based on a PVE model in FLAIR images [16].

In the methods described above, only the voxel intensity
information is considered. However, it has been recognized that this
makes methods highly sensitive to noise. In particular, boundary
detection becomes problematic in noisy images. Furthermore, the
common assumption that the voxel intensities are independent does
not hold in practice. In reality, and intuitively, we can expect a certain
voxel's value to be affected by those in its neighborhood [22,23].

In this work, we propose a WMH segmentation method that uses
solely FLAIR images. It is based on a modified Gaussian mixture model
(GMM) that incorporates neighborhood information, followed by a
false positive correction step, where common FLAIR artifacts [24] are
eliminated from the segmentation.

Gaussian mixture models (GMM), estimated by the expectation-
maximization (EM) algorithm, have been widely used in brain image
segmentation [25,26]. They provide a statistical description of the
voxels' intensities and allow for fuzzy classification [27]. Because the
traditional GMM-EM method is based only on intensity information,
we use a modified GMM-EM method, initially proposed in [23], that
considers additional contextual information. All initialization param-
eters are derived from the FLAIR image histogram.
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We compare the performance of the proposed method with other
unimodal approaches. For each method, the optimal parameters are
determined using a training set that is retrieved randomly from our
patient database. Evaluation is performed using the remaining patient
datasets against the manual segmentation performed by an experi-
enced neuroradiologist. Finally, we apply the method to a publicly
available dataset of MS patients and compare the obtained perfor-
mance results with those by multimodal segmentation methods and
with the human expert.

2. Methods

Fig. 1 shows the general overview of our method.
The raw FLAIR image is first preprocessed to remove the skull and

to correct for bias field inhomogeneities. Subsequently, a context-
sensitive GMM is applied to the brain image and the resulting WMH
probability class is thresholded. Finally, the existing FLAIR artifacts
(located at the interface between the cerebrospinal fluid and the gray
matter and inside the ventricles – red pixels in the last figure) are
eliminated by morphological processing of the cerebrospinal fluid
segmentation mask, resulting in the final segmentation of the WMH
(blue pixels in Fig. 1D)). In the following subsections we will describe
these steps in detail.

2.1. Gaussian mixture model

Fig. 2 shows the histograms of the FLAIR images of two patients.
Two peaks can be easily distinguished: the one at lower intensities
corresponds to cerebrospinal fluid voxels; the highest peak refers to
white and gray matter voxels. Additionally, in Fig. 2B a low and broad
peak is present at the right-end tail of the histogram. This peak is
especially prominent in patients with a large lesion load and
corresponds to WMH intensities.

We assume that the data can be modelled by a Gaussian mixture
model (GMM) and that each voxel belongs to one of three distinct
classes – cerebrospinal fluid (CSF), white and gray matter (WM/GM),
or white matter hyperintensity (WMH). The probability density
function (pdf) of a gray-level x can then be described by:

pðx π; μ;σj Þ ¼
X3
k¼1

πkN x μk ;σ k

�� Þ� ð1Þ

with k=1,2,3 respectively corresponding to the CSF, WM/GM and
WMH classes. Each Gaussian component N is characterized by a
mixing weight πk, a mean value μk and a standard deviation σk.
C D
300

tripped and bias field-corrected FLAIR image and B) fit a 3-class context-sensitive GMM
n initial lesion segmentation. Finally, we apply a post-processing step that corrects for
tation. (For interpretation of the color references, we refer the reader to the web version
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Fig. 2. FLAIR image and respective histogram from a patient: A) with a low WMH load; B) with a high WMH load.
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We use the expectation-maximization (EM) algorithm to find
these parameters.

2.1.1. Traditional expectation-maximization
The EM algorithm is an iterative procedure thatmaximizes the log-

likelihood of the parameters [28,29]. It alternates between two
consecutive steps: the Expectation (E)-step and the Maximization
(M)-step. In the E-step, the parameters at the current iteration are
used to compute the log-likelihood. In the M-step, the computed log-
likelihood is maximized to determine the new parameters.

Assuming that the data, X=(x1,…,xN), are independent and
identically distributed variables, the log-likelihood of the parameters
given the data is defined as:

l ðπ; μ;σ Xj Þ ¼ log∏
N

n¼1
pðxn π; μ;σj Þ ¼

XN
n¼1

log p xn π; μ;σj Þð �½ ð2Þ

The M-step parameter estimates are derived by maximizing
Eq. (2):

μ iþ1ð Þ
k ¼ 1

N

XN
n¼1

xnT
ið Þ
k;n

σ iþ1ð Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

n¼1 xn−μ iþ1ð Þ
k

� �2
T

ið Þ
k;n

∑N
n¼1T

ið Þ
k;n

vuuut

π iþ1ð Þ
k ¼ 1

N

XN
n¼1

T
ið Þ
k;n

ð3Þ

where Tk,n
(i) is determined at the E-step by:

T
ið Þ
k;n ¼ π ið Þ

k Nðxn jμ ið Þ
k ;σ ið Þ

k Þ
p xn π ið Þ; μ ið Þ;σ ið Þ�� �� ð4Þ

The initial parameters are computed from the histogram as
follows: μWM/GM

(0) and μCSF
(0) correspond to the first and second highest

peaks in the histogram, respectively; μWMH
(0) is taken as the local

histogrammaximum between μWM/GM
(0) and the maximum intensity (if

no local maxima are found, we take this value as the average between
μWM/GM
(0) and the maximum intensity); all standard deviations are

initialized with the same value: the standard deviation of the voxel
intensities in the CSF class (with the threshold for this class being the
local minimum between μWM/GM

(0) and μCSF
(0) ); finally, the initial class

weights are selected based on the relative ratios between μWM/GM
(0) , μ CSF

(0)

and μWMH
(0) . These weights can take values in the interval [0,1]. This

means that if there are no lesions in the brain the outcome will be a
two-class segmentation (CSF and WM/GM).
Please cite this article as: Simões R, et al, Automatic segmentation of c
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The algorithm has converged when the absolute normalized
difference between the log-likelihood values at two consecutive
iterations is lower than tolerance T=10−3.

Although it may be sufficient to obtain a first rough approximation
of the voxels' statistical distributions, the traditional GMM-EM
algorithm has the disadvantage of taking only intensity information
into account. We therefore apply a previously proposed [23]
adaptation to the E-step. The difference between the performance of
the normal and the modified GMM-EM approaches is particularly
significant in images with low WMH loads, as we will show in
Section 3.

2.1.2. Context-sensitive expectation-maximization
In [23], the authors introduced contextual information into the

traditional GMM-EM method as follows. At each iteration, the
posterior probability (Eq. (4)) is substituted by:

T
ið ÞCC
k;n ¼ π ið Þ

k C
ið Þ
k;nNðxn jμ ið Þ

k ;σ ið Þ
k Þ

p xn π ið Þ; μ ið Þ;σ ið Þ�� �
;

� ð5Þ

which incorporates a context-sensitive penalty term Ck,n
(i). This term

imposes that, at each iteration, the probability that a voxel belongs
to class k depends not only on the voxel's intensity, but also on its
neighbors' current class probabilities. We define the penalty term
as follows:

C
ið Þ
k;n ¼ Φ I

ið Þ
k

n o
xnð Þ ð6Þ

with Ik
(i) being the membership image which, at each brain voxel

xn, represents the probability that the voxel belongs to class k.
Φ{⋅} represents the filter used to take the voxel's neighborhood
into account.

We initialize the context-sensitive (CS-) EM method with the
parameters that result from applying the traditional GMM-EM
method to the dataset. After convergence, we apply thresholds
tWMH and tCSF to the resulting WMH and CSF membership
images, respectively.

2.2. False positive correction

After applying the threshold to the WMH probability map, we still
obtain some false positives – voxels that are initially considered to be
lesions but are in reality FLAIR artifacts. We apply a postprocessing
step that consists of eliminating these voxels from the segmentation.

A common location of false positives is in the interface between
the CSF and the cortical gray matter. To eliminate these voxels from
our initial segmentation, we use the CSF mask obtained after
thresholding the CSF class membership image that results from the
segmentation method described above. We perform binary dilation of
erebral white matter hyperintensities using only 3D FLAIR images,
4
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this mask with a three-dimensional cubic structure with size S×S×S.
Wemask our first WMH segmentation obtained after applying the EM
method with the dilated CSF mask.

Other hyperintense voxels, resulting from flow artifacts (located
mainly in the ventricular system) [24] are also eliminated in this step
by morphologically “closing the holes” [30] in the dilated CSF mask.

Finally, and because the lesion voxels adjacent to the ventricles are
also eliminated after this step, we perform binary propagation [30] to
the initial WMH segmentation in order to recover these wrongly
eliminated voxels.

2.3. Evaluation metrics

To evaluate the method, we compare our results with the manual
segmentation provided by an experienced neuroradiologist. We use
the following metrics for comparison: dice similarity coefficient
(DSC), overlap fraction (OF) and extra fraction (EF) [12]:

DSC ¼ 2� #TP
#ASþ #GT

ð7Þ

OF ¼ #TP
#GT

ð8Þ

EF ¼ #FP
#GT

ð9Þ

with TP and FP being the true and the false positives, respectively, AS
the automatic segmentation and GT the ground truth provided by
the expert.

Because the lesion load (LL) is often an important measure
in clinical studies, we finally determine the correlation coeffi-
cient between the obtained LL values with those from the
manual segmentations.

3. Experiments and results

3.1. Data

Forty datasets were retrieved from a large database of a cognition
study with MCI and control subjects carried out at the University
Hospital of Essen, Germany. From these 40 subjects, 15 correspond to
stable normal controls, 14 to stable amnestic-MCI subjects, 8 to MCI
subjects who have progressed to dementia and 3 to normal subjects
who have declined to amnestic-MCI. The age of the subjects is 74.7±
4.3 (range 62–82).

Three-dimensional isotropic FLAIR images are utilized in this study
(1.5 T Siemens Avanto, Germany); TR=6000ms; TE=308ms; TI=
2200ms; voxel size=1mm3). We apply the following preprocessing
steps to the raw FLAIR images:

- brain extraction using BET (FMRIB's brain extraction tool, http://
fsl.fmrib.ox.ac.uk/fsl/bet2/) [31];

- bias field correction using FAST (FMRIB's automated segmentation
tool, http://fsl.fmrib.ox.ac.uk/fsl/fast4/) [32].

For the evaluation of the method, we use as the ground truth the
manual segmentation performed on all 40 FLAIR images by an
experienced neuroradiologist using 3D Slicer (www.slicer.org).

The WMH lesion loads are typically divided into three groups: low
LL (less than 10 cm3), medium LL (between 10 and 30 cm3) and large
LL (more than 30 cm3). After manual labeling, we obtain 18 datasets
that are considered to have low LL, 13 datasets with medium LL and
only 9 datasets with high LL.

We randomly split our dataset into 30% training and 70% test. That
is, we use 12 datasets (four of each LL category) to learn our method's
optimal parameters, while the remaining 28 datasets are used as a test
set for an independent evaluation of the method.
Please cite this article as: Simões R, et al, Automatic segmentation of c
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3.2. Selection of the optimal parameters

3.2.1. First WMH segmentation
Two parameters influence the outcome of the first step of the

segmentation method: the threshold which is applied to the WMH
class membership to obtain a crisp segmentation and the neighbor-
hood filter type and size (Φ{⋅} in Eq. (6)).

We use the training set to find the optimal joint parameters.
Fig. 3 shows the joint parameter analysis - on the horizontal axes,
we plot the threshold values and the filter types. The z-direction
shows the corresponding DSC values averaged across the training
set. We observe that the DSC index is most sensitive to tWMH, with
very little variability across the various neighborhood types. At the
optimal threshold (10−5), the average DSC values vary less than 5%
across the considered neighborhood types. The exception is the case
where no neighborhood information is used. This approach, as we
will also show in Section 3, performs considerably worse than the
contextual methods.

We then select the first neighborhood (the 3×3×3mean filter) for
further processing.

For this neighborhood filter, we plot each subject's DSC curve and
the average across all training set subjects. The broader curve, with a
lower optimal threshold, corresponds to a low LL dataset. On the
other hand, the datasets with higher LL have higher optimal
thresholds (Fig. 4).
3.2.2. False positive correction
Finally, we correct for the presence of FLAIR artifacts. This step

takes also two parameters: the threshold of the CSF membership
image and the size of the structuring element used to create the FP
mask from the CSF segmentation (Fig. 5).

Similarly to what was done in the previous subsection, we
analyze the joint parameters and select the combination that gives
the best results on the training set. In this case, we fix the WMH
threshold to 10−5 and the neighborhood filter to the mean in a
3×3×3 local window.

As in the previous case, the CSF threshold has the most influence
on the DSC value, with the best performance being achieved at
tCSF¼10−2 and with a structuring element size of 5×5×5. However, for
thresholds greater than 10−5, the mean DSC values also vary less than
5%, regardless of the structuring element size.
erebral white matter hyperintensities using only 3D FLAIR images,
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Table 1
Performance measures for the 28 patients in the test set.

LL category Subject ID DSC EF OF AS (cm3) GT (cm3)

Low 1 0.79 0.19 0.78 5.787 5.973
2 0.44 0.10 0.31 2.048 4.887
3 0.70 0.21 0.65 3.781 4.380
4 0.60 0.11 0.47 3.353 5.742
5 0.64 0.14 0.54 4.547 6.708
6 0.21 0.01 0.12 1.177 9.168
7 0.25 0.03 0.15 0.375 2.160
8 0.37 0.01 0.23 1.170 4.896
9 0.70 0.30 0.69 8.100 8.160

10 0.49 0.03 0.34 1.322 3.583
11 0.37 0.01 0.23 0.919 3.801
12 0.40 0.05 0.26 0.698 2.226
13 0.67 0.15 0.53 4.945 7.062
14 0.51 0.27 0.43 0.497 0.714

Medium 15 0.72 0.28 0.72 10.291 10.267
16 0.63 0.15 0.53 8.113 11.917
17 0.71 0.11 0.61 7.541 10.328
18 0.74 0.17 0.69 11.471 13.475
19 0.70 0.28 0.69 11.108 11.497
20 0.39 0.09 0.26 3.963 11.375
21 0.77 0.18 0.74 10.877 11.801
22 0.83 0.17 0.84 13.403 13.313
23 0.80 0.20 0.79 12.999 13.109

High 24 0.85 0.29 0.96 155.220 124.177
25 0.86 0.18 0.89 40.293 37.559
26 0.84 0.23 0.89 56.411 50.679
27 0.81 0.33 0.90 73.326 59.881
28 0.83 0.20 0.84 47.226 45.177
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3.3. Evaluation on the test set

We evaluate the method against the manual segmentation on the
remaining 28 datasets. Table 1 shows the final DSC, EF and OF values,
per lesion load, in the test set, as well as the resulting lesion loads in
the automatic segmentation (AS) and ground truth (GT).

The average DSC values are 0.51, 0.70 and 0.84 for the low LL,
medium LL and high LL, respectively. DSC values above 0.70 are
considered to represent a very good agreement between segmenta-
tions [33]. The lower similarity values for the low lesion loads are to be
expected, since errors in the segmentation have a greater impact on
the similarity score when the lesion load is lower. This has also been
reported in previous studies [13,12,34].

In Table 1 we can observe a systematic underestimation of the
lesion loads in the low LL cases and an overestimation for the high LL
datasets. The latter can be visualized on the first example of Fig. 6C)
and is also expressed on the relatively high EF values for the high LL
datasets (Table 2).

Finally, we plot the automatically obtained LL against the ground
truth LL (Fig. 7). The obtained correlation coefficient (R=0.9966)
indicates a strong correlation between the two measurements.

3.4. Comparison with other unimodal approaches

To further evaluate the performance of the proposed method, we
compare it with four other segmentation approaches which use only
FLAIR images. For each of these approaches, we search for the optimal
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Fig. 5. Search for the optimal parameters in the FP correction step.
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parameters in the training set and evaluate them in the test set. The
exception is the first method, in which a threshold is applied to the
FLAIR intensities (intensity thresholding, IT). In this case, because the
goal is not to evaluate any specific method that searches for an
optimal threshold, we take the optimal threshold value for each
subject individually. This way we ensure that the obtained DSC is the
highest that can be achieved with such approach.

The second comparison is with the traditional GMM, with
parameters determined by EM (simple GMM, sGMM). This method,
unlike the first one, yields a fuzzy segmentation. However, it is also
based only on intensity information.

The PVAmodel introduced in [16] is used for the third comparison.
Similarly to the GMM-EM method, its output is a fuzzy segmentation
that does not consider any contextual information. However, this
method is based not only on the image intensities but also on the
gradient magnitudes.

Finally, we compare our approach with an analogous segmenta-
tion method – Fuzzy C-Means (FCM), modified in [35] to incorporate
neighborhood information (cFCM). Unlike the GMM-EM approach we
use here, this method does not assume any probabilistic model for the
voxel intensities.

For the proposed method, we show the results obtained after the
initial WMH segmentation (“proposed (first)”) and after FP correction
(“proposed (final)”).

The results are shown in Table 2. Fig. 8 shows the average DSC
values obtained for the three LL categories.

We observe that the proposedmethod performs significantly better
than the first three context-free approaches. A slight improvement is
also observedwith respect to the contextual FCMmethod. However, the
FCMmethod seems to perform considerably less robustly in very low LL
cases – particularly with respect to the EF measure.

In all cases, the DSC values are lower for the low LL cases. This is
expectable, since errors in these measurements tend to have a larger
impact on the final similarity score. Also, the variability is larger in
these cases, indicating a lower robustness of the methods.

A criticism that can be made to model-based segmentation
methods, such as GMM, is that, for low LL, there may not be enough

http://dx.doi.org/10.1016/j.mri.2012.12.004


Fig. 6. Segmentation examples for the three lesion load categories: A) low, B) medium and C) high. Green: True positives; Red: False positives; Blue: False negatives. (For
interpretation of the color references, we refer the reader to the web version of this article.)
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lesion voxels to accurately derive the model's parameters [36].
Although this may be true for the simple GMM (with an average
DSC of 0.38 in the low LL case), the problem seems to be overcome by
considering contextual information, as in the proposed method,
which outperforms the model-free contextual approach (cFCM).

It is worth noting that the performance of the first approach
is highly overestimated, since for each patient we take the
optimal DSC value (without recurring to a training set). However,
results also show that the two other context-free approaches
(simple GMM and PVA model) have a similar performance,
indicating that adding neighborhood information not only
improves the similarity scores but also seems to be a determinant
factor in the methods' performance.

Finally, a paired sample t-test on the results of all subjects on the
test set shows a significant improvement (pb0.05) on the DSC metric
with the first step of the proposed method with respect to all other
approaches. Furthermore, the second step also accounts for a
significant improvement of the performance metrics with respect to
the first step, indicating the importance of the artifact elimination step
in the segmentation.

Table 3 shows the correlation coefficients between each segmen-
tation approach and the manual measurements.
Table 2
Performance average (standard deviation) values for four different approaches and for the

Methods Low LL Medium LL

DSC EF OF DSC

IT 0.41 (0.11) 0.40 (0.11) 0.36 (0.10) 0.57 (0.13)
sGMM 0.38 (0.15) 1.0 (2.73) 0.34 (0.13) 0.56 (0.14)
PVA 0.40 (0.13) 0.40 (0.69) 0.32 (0.11) 0.56 (0.15)
cFCM 0.42 (0.19) 1.62 (2.99) 0.47 (0.12) 0.63 (0.13)
prop. (first) 0.50 (0.13) 0.36 (0.42) 0.46 (0.19) 0.66 (0.12)
prop. (final) 0.51 (0.17) 0.11 (0.09) 0.41 (0.20) 0.70 (0.12)

Please cite this article as: Simões R, et al, Automatic segmentation of c
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3.5. Robustness to the initialization parameters

A final evaluation is performed by varying the parameters that
initialize the first EM procedure. Converging to local minima is a well-
known limitation of the EM method [37]. Therefore, we evaluate the
robustness of the proposed method to variations in the three
parameters of the Gaussian that describes the WMH class distribu-
tion: the mean value μWMH, the standard deviation σWMH and the
weight πWMH, determined as described in Section 2. Again, we use the
dice similarity coefficient as a performance measure.

The results are shown in Fig. 9.
In the horizontal axis we show the parameter values used for

comparison. During the evaluation of each parameter, the others
remained constant and equal to the values automatically determined
by the method, as described in Section 2. The values {p−2,p−1,p,p1,p2}
correspond to {μWMH−20,μWMH−10,μWMH,μWMH+10,μWMH+20}
for the WMH mean, to {σWMH−10,σWMH−5,σWMH,aWMH+5,
σWMH+10} for the standard deviation and to {πWMH/10,πWMH/5,
πWMH,πWMH×5,πWMH×10} for the WMH weight.

Even though we select a large range of parameter values, the DSC
values remain approximately constant. For the mean value, the
variability of the DSC scores (ratio between the range and the
proposed method (first step and after FP correction).

High LL

EF OF DSC EF OF

0.31 (0.17) 0.51 (0.12) 0.75 (0.05) 0.23 (0.07) 0.73 (0.07)
0.14 (0.04) 0.46 (0.14) 0.75 (0.05) 0.15 (0.04) 0.70 (0.08)
0.11 (0.05) 0.45 (0.15) 0.75 (0.05) 0.19 (0.07) 0.71 (0.07)
0.11 (0.06) 0.52 (0.13) 0.81 (0.04) 0.06 (0.02) 0.73 (0.06)
0.34 (0.13) 0.67 (0.16) 0.79 (0.02) 0.37 (0.05) 0.90 (0.04)
0.18 (0.07) 0.65 (0.16) 0.84 (0.02) 0.25 (0.06) 0.90 (0.04)
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Fig. 7. Ground Truth (GT) and Automatic Segmentation (AS) lesion loads and the fitted
linear regression line (y=1.28x−4.19).

Table 3
Correlation coefficients between the lesion loads determined by the automatic and the
manual measurements.

IT sGMM PVA cFCM prop. (first) prop. (final)

0.9969 0.9901 0.9927 0.9862 0.9957 0.9966
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maximum value) is 0.7%. For the standard deviation and the class
weight the variabilities are 1.1% and 0.9%, respectively.

3.6. Application in the segmentation of Multiple Sclerosis (MS) lesions

To show the applicability of our method in a different
neurological disease, we use a benchmark dataset made available
by the Medical Image Computing and Computer Aided Intervention
Society's (MICCAI's) MS Lesion Segmentation Challenge 2008
(http://www.ia.unc.edu/MSseg/). The data consist of 23 FLAIR
images acquired at the Children's Hospital Boston (CHB) and at
the University of North Carolina (UNC), with a dimension of
512×512×512 voxels, resliced at 0.5 mm×0.5 mm×0.5 mm
resolution using cubic spline interpolation.

The four error metrics used to evaluate the methods' performance
are the following: relative absolute volume difference, average
symmetric surface distance, true positive rate and false positive rate.
The results were scaled to a range such that a score of 90 points is
comparable to the performance of a human expert. For further details
on the design of the Challenge, we refer the reader to [38].

The results for all subjects are shown in Table 4.
Our method obtained an overall score of 82.0055 (http://www.ia.

unc.edu/MSseg/results_table.php), outperforming other WML seg-
mentation methods in the literature [12,17,21] and reaching similar
performance to other methods [18]. It is worth noting that our
method performs less than 2 score points worse than the method that
is currently at the first position of the Challenge. Also, all other
participating methods require at least two MR modalities, while ours
uses only FLAIR image data. Finally, some of the methods assume a
priori knowledge about the spatial distribution of the MS lesions
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Fig. 9. Variation of the average DSC values with varying initialization parameters.

Please cite this article as: Simões R, et al, Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images,
Magn Reson Imaging (2013), http://dx.doi.org/10.1016/j.mri.2012.12.004
[18,39]. In contrast, our method has a more general applicability since
it uses only intensity information.

4. Conclusion

In this work, we present a method to automatically segment
WMHs using only 3D FLAIR images. It uses a context-sensitive
Gaussian mixture model to obtain class probabilities, followed by
crisp segmentation and artifact correction. Unlike the majority of the
existing approaches (to the best of our knowledge), our method
requires no additional MRI modalities nor atlases, thereby shortening
the acquisition time, avoiding the need for co-registrations and
allowing for near real-time analysis. Results show that the method is
suitable for a robust segmentation of WMHs of various loads. Also, a
comparison with other segmentation approaches indicates the
usefulness of, on the one hand, incorporating contextual information
and, on the other hand, considering a model for the lesions (instead of
a model-free approach such as FCM). The significant improvements
observed on the performance measures after applying the FP
correction step (with respect to the initial segmentation) suggest
the efficacy of the simple CSF-based mask we have used, without
needing additional MR modalities.

We have also demonstrated the applicability of our method in the
detection of other lesion types, namely Multiple Sclerosis lesions. In
particular, the results on a benchmark dataset show that our method
performs comparably to other state-of-the art multimodal methods,
with the difference that ours does not need any MR modalities other
than FLAIR and does not make assumptions about the spatial
distribution of the lesions, therefore having a wider applicability. The
final score obtained in this evaluation indicates that the method
performs close to the human observer. Because we make no
assumptions about the lesion spatial distribution, we believe that
this method can be applied to other neurological diseases that have a
similar appearance in FLAIR images. Examples include subcortical
arteriosclerotic encephalopathy and brain tumors.

A possible drawback of our method is that it requires two
preprocessing steps: brain extraction and bias field correction. This
is a consequence of the algorithm being fully intensity-based and
relying on the brain image histogram. An extension can be considered
in which the bias field correction is incorporated into the segmenta-
tion framework. Also, a study on the robustness of the method to the
presence of field inhomogeneities and wrong brain extractions should

http://www.ia.unc.edu/MSseg/
http://www.ia.unc.edu/MSseg/results_table.php
http://www.ia.unc.edu/MSseg/results_table.php
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Table 4
Summary of the performance measures for the 23 patients in the MICCAI Challenge test set.

Ground truth UNC rater CHB rater

All datasets Volume Diff. Avg. Dist. True Pos. False Pos. Volume Diff. Avg. Dist. True Pos. False Pos. Total

[%] Score [mm] Score [%] Score [%] Score [%] Score [mm] Score [%] Score [%] Score

Range 4.5–100 85–99 1.2–128 0–97 0–68.4 51–90 0–52 78–100 11.7–142.5 79–98 1.2–128 0–97 0–81.5 51–98 0–60.8 73–100 59–93
Std dev 37.7 5.6 42.8 36.5 21.3 12.2 20.6 9.2 35.3 5.3 42.6 35.4 23.4 13.4 20.0 9.3 11.9
Average 47.4 92.9 24.6 71.3 30.4 68.7 21.3 92.8 62.9 90.8 23.5 73.2 35.2 71.5 18.2 94.6 82.0
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be carried out. Finally, it is worth pointing out that we do not perform
any registration step, which is typically more time-consuming than
the two steps required by our method (particularly when using
multimodal data).

Ultimately, we expect that this method can become a useful tool in
the evaluation of WMHs in the large patient cohorts required by
population-based studies.
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