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Abstract Business Process Management (BPM)
has gained a lot of popularity in the last two
decades, since it allows organizations to manage
and optimize their business processes. However,
purchasing a BPM system can be an expensive
investment for a company, since not only the
software itself needs to be purchased, but also
hardware is required on which the process engine
should run, and personnel need to be hired or
allocated for setting up and maintaining the hard-
ware and the software. Cloud computing gives
its users the opportunity of using computing re-
sources in a pay-per-use manner, and perceiving
these resources as unlimited. Therefore, the ap-
plication of cloud computing technologies to BPM
can be extremely beneficial specially for small and
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middle-size companies. Nevertheless, the fear of
losing or exposing sensitive data by placing these
data in the cloud is one of the biggest obstacles
to the deployment of cloud-based solutions in
organizations nowadays. In this paper we intro-
duce a transformation-based approach that allows
companies to control the parts of their business
processes that should be allocated to their own
premises and to the cloud, to avoid unwanted ex-
posure of confidential data and to profit from the
high performance of cloud environments. In our
approach, the user annotates activities and data
that should be placed in the cloud or on-premise,
and an automated transformation generates the
process fragments for cloud and on-premise de-
ployment. The paper discusses the challenges of
developing the transformation and presents a case
study that demonstrates the applicability of the
approach.

Keywords Business processes · Cloud
computing · BPM in the cloud · Process
decomposition

1 Introduction

Business Process Management (BPM) [35] has
gained a lot of popularity in the last two decades,
since it allows organizations to manage and opti-
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mize their business processes. A business process
consists of activities, which are performed by ei-
ther humans or information systems. In a Business
Process Management System (BPMS), a process
engine is responsible for coordinating and mon-
itoring running instances of business processes.
The introduction of the Service-Oriented Archi-
tecture (SOA) paradigm [27] has led to an in-
creased use of BPM, especially since the SOA
paradigm provides standardized interfaces for
defining services and communication between ser-
vices. Consequently, executable process languages
such as WS-BPEL [24], have been introduced for
describing executable business processes that inte-
grate existing services, stressing the link between
BPM and SOA.

Purchasing a BPMS can be an expensive in-
vestment for a company. Not only the software
itself needs to be purchased, but also hardware is
required on which the process engine should run
and personnel need to be hired or allocated for
setting up and maintaining the hardware and the
software. In addition, scalability can be a concern
for companies that use BPM, since a process en-
gine is only able to coordinate a limited number
of business process instances simultaneously. As
a consequence, organizations might need to pur-
chase additional servers, to ensure that all their
customers can be served during peak load situa-
tions. Especially when these additional servers are
only rarely needed, buying and maintaining the
servers might become expensive.

Cloud computing [3] gives its users the opportu-
nity of using computing resources in a pay-per-use
manner and perceiving these resources as unlim-
ited. The NIST definition of cloud computing [19]
mentions three service models for cloud comput-
ing: Infrastructure as a Service (IaaS), Platform
as a Service (PaaS) and Software as a Service
(SaaS). For example, organizations may choose
cloud-based BPM systems, in which a BPM system
is offered as a service (SaaS) over the Internet
[30]. Instead of having to buy hardware and soft-
ware, the BPM system can be used in a pay-per-
use manner. This cloud solution should also offer
scalability to the organization, so that in peak load
situations, additional resources can be instanti-
ated, and when the rush is over, the additional
resources can be terminated. However, the fear

of losing or exposing sensitive data in the cloud is
one of the biggest obstacles to the deployment of
cloud-based solutions in organizations nowadays.

In Duipmans et al. [8] we introduced our initial
ideas on an architecture based on Han et al. [12],
in which traditional BPM is combined with cloud-
based BPM. By splitting up a business process into
two groups of interacting processes, one group
to run on-premise and another one to run in the
cloud, organizations can place their sensitive data
and activities that are not computation-intensive
within the borders of the organization, whereas
non-sensitive data and computation-intensive ac-
tivities can be placed in the cloud. In our ap-
proach, the original (monolithic) business process
is transformed according to a user-defined activ-
ity distribution list. This gives organizations the
possibility of distributing activities and data in a
controlled way, depending on performance and
sensitivity requirements.

This paper builds on Duipmans et al. [8] and
discusses the challenges and design decisions we
encountered when designing and implementing
the automated transformation support necessary
to split business processes according to data and
activity distributions. In order to realize this trans-
formation support, we defined an intermediate
language and a transformation chain. The inter-
mediate language allows the definition of a core
transformation that is independent of the specific
business process language used to describe these
processes (e.g., WS-BPEL [24], BPMN [25], etc.).
The paper motivates and discusses our interme-
diate language, and shows that this language and
the core transformation support the most popular
workflow patterns of van der Aalst et al. [2]. This
paper shows the applicability of our approach
with a case study performed with the tooling that
we built to implement our transformations. This
paper is based on the work reported in the Master
thesis Duipmans [7].

In this paper we refrain from discussing meth-
ods to determine which specific activities and data
items should be assigned to the cloud, and which
should remain on-premise. Here we assume that
these assignments have been determined some-
how, for example, with the technique described in
Han et al. [12], which allows the optimal distribu-
tion of activities and data items to be determined
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based on the time, monetary and privacy risk costs
of the different distribution alternatives.

The reminder of this paper is organized as
follows. Section 2 introduces and justifies our
extension to Han et al. [12] and explains the
purpose of our transformation-based approach.
Section 3 introduces and justifies the transforma-
tion chain that characterizes our transformation-
based approach. Section 4 introduces the inter-
mediate model we defined in order to facilitate
the development of our transformations. Section 5
systematically analyzes the decomposition alter-
natives by considering patterns of the interme-
diate model and activity allocations. Section 6
discusses the design and implementation of the
decomposition transformation. Section 7 presents
a case study that illustrates and shows the ap-
plicability of our transformation-based approach.
Section 8 discusses related work. Section 9 gives
our final remarks.

2 Activity and Data Distribution

In most commercial BPM solutions available
nowadays, the process engine, the activities and
the process data are placed on the same side,
either on-premise or in the cloud. In Han et al. [12]
the distribution possibilities of BPM in the cloud
have been investigated by means of the so-called
PAD model, in which the process engine, the ac-
tivities involved in a process and the data involved
in a process are separately distributed. In the PAD
model, P stands for the process enactment engine,
which is responsible for activating and monitoring
all the activities, A stands for activities that need
to be performed in a business process, and D
stands for the storage of data that is involved in
the business process. By distinguishing the process
engine, the activities and the data, cloud users
gain the flexibility to place activities that are not
computation-intensive and sensitive data at the
end-user side (on-premise), and all the other ac-
tivities and non-sensitive data in the cloud.

The PAD model introduced in Han et al. [12]
defines four possible distribution patterns: (1)
the traditional BPM pattern in which everything
is placed at the end-user side; (2) a pattern in
which a user runs a process engine on-premise,

but computation-intensive activities are placed in
the cloud; (3) a pattern in which users do not
have a process engine and utilize a cloud-based
process engine in a pay-per-use manner, while
some activities that are not computation-intensive
and sensitive data are placed at the end-user side,
and (4) the fully cloud-based BPM pattern in
which all elements are placed in the cloud. In the
architecture proposed in Han et al. [12], the cloud-
side engine deals with data flows only by means of
references to data identifiers, instead of the actual
data. When an activity needs sensitive data, the
transfer of the data to the activity is handled under
user surveillance through an encrypted tunnel.
Sensitive data is stored at the end-user and non-
sensitive data is stored in the cloud.

In Duipmans et al. [8] we proposed an exten-
sion of the PAD model of Han et al. [12] with a
fifth pattern in which process engines, activities
and data are placed in both the cloud and on-
premise. The architecture proposed in Han et al.
[12] also considers process engines on both the
cloud and on-premise sides, but the decomposi-
tion of the original process is not addressed there.
We proposed the use of two separate process
engines in order to minimize the amount of data
that has to be exchanged between the cloud and
on-premise, so that each process engine regulates
both the control flows and data flows of a process.

Fig. 1 Single (on-premise) process engines and activity
distribution
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Fig. 2 Two process engines

We justify the potential benefits of distributing
a business process with a simple example in which
the output of one activity is the input for the fol-
lowing activity. Figure 1 shows a situation in which
a process is executed by a single process engine
situated on-premise, where some of the activities
within the process are placed in the cloud. Since

the process is coordinated by the process engine,
data are not directly sent from activity to activity,
but instead are sent to the process engine first. In
the case of cloud activities that are in sequence,
using one process engine on-premise may lead to
unnecessary data exchange between the process
engine and the cloud. Figure 2 shows that by
introducing a second process engine in the cloud,
we can avoid this problem. Activities in sequence
with the same distribution location do not have to
send their data from cloud to on-premise, or vice
versa, since the coordination can be performed by
the process engine in the cloud.

As a consequence of our extension to Han et al.
[12], we devised the general goal of developing
a transformation framework in which users can
automatically decompose a business process into
collaborating business processes for distribution
on-premise and in the cloud, based upon a list in
which activities and data are marked with their
desired distribution location. In addition, users
should be able to define data restrictions, to en-
sure that sensitive data stays within the premises
of an organization. Figure 3 gives a schematic
overview of our transformation approach.

Fig. 3 Process
decomposition with
activity and data
distribution
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3 Transformation Approach

In order to realize the goal of decomposing busi-
ness processes based on the allocation of activities
and data on-premise or in the cloud, we investi-
gated techniques that would allow the automated
transformation of process models. Initially we in-
tended to define model transformations based on
the metamodel elements of the business process
language, as discussed in Miller and Mukerji [20],
and supported by languages like ATL [14] and
QVT [26]. These transformations are defined in
terms of transformation rules that define how
patterns of the source model are transformed into
patterns of the target model. However, we noticed
that when applying this transformation approach
to our problem, the resulting transformations
tended to get quite complex and difficult to man-
age. Furthermore, these transformations would
depend too much on the specific abstract syntax
elements of the business process language at hand,
with low reusability as a drawback. Therefore we
realized that in our case it would be better to
define the transformation rules based on the con-
trol flow and data flow relations that determine
the semantics of processes, instead of language
syntax. In addition, the resulting decompositions
must comply with the original business process
(be functionally correct) and with the intended
activity and data distribution.

Instead of building a solution for each specific
business process language, we opted then for
defining and using an intermediate model in which
the structure and semantics of business processes
are captured. We found two main benefits of using

an intermediate model: (1) a business process is
defined in a business process language using the
syntax of the language, but the decomposition
transformation has to be defined in terms of the
semantics of the business process language (the
control and data flows) that it preserves. This
implies that we have to lift the original business
process to a model in which the intended se-
mantics of the model is preserved, which can be
done with an intermediate model; (2) by using an
intermediate model, we can purely focus on the
decomposition tasks, without having to consider
language-specific problems. As a corresponding
drawback, extra transformations are needed for
converting a business process to the intermediate
model and back.

Figure 4 shows that our approach consists of a
transformation chain with three transformations:

1. Lifting transformation: transforms a business
process defined in some business process lan-
guage into an instance of the intermediate
model. Data analysis is performed during this
transformation phase to capture data depen-
dencies between activities in the process. This
information is needed for ensuring that no
data restrictions are violated during the de-
composition transformation.

2. Core transformation: transforms an instance
of the intermediate model according to an
activity distribution list into a new instance of
the intermediate model that represents the de-
composed processes and the communication
between the processes. The activity distribu-
tion list defines the distribution locations of

Fig. 4 Transformation
chain considered in our
approach
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each of the activities in the resulting process.
Furthermore, data restrictions can be defined
in the list. The distribution location of each
data element used within the process can
also be defined, to ensure that the data ele-
ment stays within the borders of the defined
location.

3. Grounding transformation: transforms a de-
composed intermediate model back to the
(original) business process language. Depend-
ing on the language that is used, the trans-
formation creates separate orchestrations for
each of the processes, and optionally a chore-
ography in which the cooperation between the
processes is described.

4 Intermediate Model

Our challenge in the definition of the intermedi-
ate model was to obtain a model that is reason-
ably simple, but is still able to capture complex
business process situations. We used the control-
flow workflow patterns defined in van der Aalst
et al. [2] for selecting the most common workflow
patterns. We decided not to support all of the
control-flow workflow patterns at first, since the
intermediate model would get too complex. In-
stead, we identified the patterns that are present
in the business process languages WS-BPEL [24],
WS-CDL [34], Amber [9] and BPMN 2.0 [25]. We
selected the most common patterns from the ones
we studied and used them as requirements for
the intermediate model. The following patterns of
van der Aalst et al. [2] have been considered as
requirements for our intermediate model:

WP1: Sequence. The intermediate model should
have a mechanism for modeling control flows,
in order to be able to express the sequence of
execution of activities within a process.

WP2: Parallel split. The intermediate model
should support parallel execution of activities.
A construct is needed for splitting up a process
into two or more branches, which are executed
simultaneously.

WP3: Synchronization. The intermediate model
should have a mechanism for synchronizing two
simultaneously executing branches. A synchro-

nization construct is needed in which multiple
branches are joined into one executing branch.

WP4: Conditional choice. The intermediate model
should have a construct for executing a branch,
based upon an evaluated condition.

WP5: Simple merge. The intermediate model
should have a construct for joining multiple al-
ternative branches, from which one is executed.

WP10: Arbitrary cycles. The intermediate model
should support a construct for modeling recur-
sive behavior.

The requirements identified so far are all based on
control-flows. The following additional require-
ments should also be supported by our interme-
diate model:

Data dependencies. Since we might have to deal
with sensitive data, it is crucial that the conse-
quences of moving activities around are mea-
surable. By explicitly representing data depen-
dencies between activities, the flow of data
through the process can be monitored.

Facilitate decomposition. Since the original pro-
cess needs to be decomposed into collaborat-
ing processes, the intermediate model should
have capabilities to define the communication
between the resulting processes, i.e., to define
how these processes invoke each another. Fur-
thermore, the intermediate model should be
relatively easy to manipulate, allowing decom-
position transformations to be specified and
automated.

4.1 Model Definition

We compared existing process models for their
suitability to support the requirements of our
intermediate model. The models we compared
were mainly taken from similar decentralization
approaches. We considered the following models:
Program Dependency Graphs (PDGs) [11], Con-
trol Flow Graphs (CFGs) [22], Protocol Trees [31]
and Petri nets [21].

We analyzed these models and came to the
following conclusions:

– PDGs support data dependencies between
nodes. Control dependencies, however, are
not directly visible in these graphs. This means
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that complex behaviors, such as parallel exe-
cution of nodes, cannot be properly described
by a PDG.

– CFGs can be used for modeling the control
flow within a process. The data dependencies
between nodes, however, are not visible in
these graphs.

– Traditional Petri nets are not able to support
all the requirements we set for our interme-
diate model. For example, data dependencies
cannot be modeled in traditional Petri nets,
although they can be modeled in Petri net
variants such as Colored Petri Nets [13]. The
downside of using Petri nets for modeling
processes is that many different nodes are
needed for representing a process. A tran-
sition between two nodes is modeled with
places, transitions, tokens and arrows, which
would bring an overhead to our intermediate
model.

– Protocol Trees are able to capture only block-
structured processes. Since we also want to be
able to capture graph-based structures, Proto-
col Trees are not directly suitable to support
our requirements.

Since none of the selected models completely
satisfies our defined requirements, we decided to
define our own intermediate model by combining
features of Control Flow Graphs, Program De-
pendency Graphs and Protocol Trees. The struc-
ture of a Control Flow Graph is used for defining
control flows between nodes, and the model also
contains data dependency edges to capture data
flows. The formal definition of our intermediate
model (see Section 4.2) has been inspired by the
formal definition of Protocol Trees.

We use a graph-based representation for
processes, since the base languages we targeted
are either block-structured or graph-structured
[18]. Another reason for this choice is that
graph-based representations are relatively easy to
manipulate by means of graph transformations,
which has proven to be quite beneficial when we
defined our transformations.

A graph consists of nodes and edges. In our
model, a node represents either an activity or
a control element. An edge defines a relation
between two nodes. In order to be able to cap-

ture complex constructs and data dependencies
between nodes, we introduce specializations of
nodes and edges. For each of the nodes and edges
we also define a graphical representation.

Node Types Node types have been defined to
represent activities, parallel behaviour, condi-
tional behaviour, loops and communication be-
tween processes.

Activities can be modeled by so-called activity
nodes. Every activity node has at most one in-
coming control edge, with the exception of one
additional control edge coming from a loop node
to represent recursive behavior (see Fig. 6b), and
at most one outgoing control edge.

Figure 5a shows an example of parallel behav-
ior modeled in the intermediate model. A process
with parallel behavior can be modeled using so-
called f low and end-f low nodes. A flow node splits
an execution branch into multiple branches, which
are executed simultaneously. A flow node has at
least two outgoing control edges. Multiple parallel
branches can be joined into one execution branch
by using the end-flow node. The end-flow node
has two or more incoming control edges and at
most one outgoing control edge.

Figure 5b shows an example of conditional
behavior modeled in the intermediate model.
Branch selection based upon an evaluated con-
dition can be modeled by using so-called con-
ditional nodes. The conditional node (if-node)
has two outgoing control edges. One edge is la-
beled with “true” and is used when the evaluated

Fig. 5 Modeling parallel and conditional behaviors
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Fig. 6 Loop node a before and b after a loop branch

condition yields true. The other edge is labeled
with “false” and is used otherwise. After the
condition in the if-node is evaluated, only one
of the outgoing branches can be taken. Condi-
tional branches can be joined by using an end-
conditional node (eif-node). This node converts
multiple incoming branches into one outgoing
branch.

We defined one single node type for modeling
repetitive behavior in the intermediate model, the
so-called loop node. Figure 6 shows two usages of
loop nodes. A loop node evaluates a loop con-
dition and according to the result of the evalua-
tion, the loop branch is either executed or denied.
The loop-node is comparable to the if-node, since
it also evaluates a condition and has outgoing
“true” and “false” edges. The outgoing branches,
however, are never joined. Instead, one of the
branches ends with an outgoing edge back to the
loop-node. This branch is called the loop-branch.
The other branch points to the behavior which
should be executed as soon as the loop-condition
does not hold anymore.

The loop node can be placed in the begin-
ning or at the end of the loop branch. The first
situation, shown in Fig. 6a, results in zero or
more executions of the loop-branch, since the loop
condition needs to be evaluated before the loop
branch is executed. In the second situation, shown
in Fig. 6b, the loop branch is executed at least
once, since the loop condition is evaluated after
execution of the loop branch.

Communication nodes model the communi-
cation between two processes. The intermedi-
ate model supports four possible communication
nodes: invoke-request, invoke-response, receive
and reply. These nodes can be used to model
synchronous and asynchronous communication.
Figure 7 shows both situations.

The invoke-request-node (ireq) is used for in-
voking a process. The node has one outgoing com-
munication edge, which points to a receive-node
(rec), located in the process that is invoked. The
invoke-request-node does not wait until the exe-
cution of the invoked process is finished, instead
it proceeds to the successor node.

The invoke-response-node (ires) is used as
a synchronization node for communication with
other processes. This node has one incoming
communication edge, which originates from a
reply-node (rep) located in another process. The
invoke-response-node waits for the response from
the other process, before continuing its execution.

In the case of synchronous communication, as
shown in Fig. 7a, a process (P1) uses an invoke-
request-node to invoke another process (P2). The
invoke-request-node follows its outgoing control
edge, which is connected to an invoke-response-
node. This node, in turn, waits until process P2 is
finished, before continuing with process P1. In the
case of asynchronous communication, as shown in
Fig. 7b, a process (P1) invokes another process
(P2) by using an invoke-request-node. After call-
ing P2, P1 continues its execution.

(a) Synchronous (b) Asynchronous

Fig. 7 Communication with the intermediate model
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Edge Types Our intermediate model distin-
guishes between control edges, data edges and
communication edges.

Control flow is modeled in the intermediate
model by control flow edges, which are repre-
sented by solid arrows in our graphical notation.
The node from which the edge originates triggers
the edge as soon as the execution of the node’s
action has been finished. The node in which the
edge terminates waits for a trigger, caused by
an incoming edge, before it starts executing the
action of the node. A control edge can be la-
beled with “true” or “false”, in case the control
edge originates from a conditional-node. When
the evaluated condition matches the label of the
edge, the edge is triggered by the conditional
node.

In business process languages such as WS-
BPEL [24], data flow between activities is defined
implicitly. Instead of sending data from activity
to activity, activities can access variables directly,
provided that the activity has access to the scope
in which the variable is defined. By introducing
data edges in our intermediate model, we are
able to investigate the consequences of moving
activities from one process to another for data
exchange. This information is needed to verify if
data constraints are violated during the transfor-
mation. A data link is represented by a dashed ar-
row between two nodes in our graphical notation.
A data edge from node N1 to node N2 implies
that data defined in node N1 is used in node N2.
Each data edge is provided with a label, in which
the name of the shared data item is defined.

Communication edges are defined between
communication nodes, and are represented as dot-
ted arrows. A communication edge sends control
and data to a different process. Communication
edges are labeled with the names of the data items
that are sent over the edge.

4.2 Formal Definition

Formally, our intermediate model I is a tuple
(A,C, S,ctype, stype, E, L,nlabel,elabel), where:

– A is a set of activity nodes.
– C is a set of communication nodes.

– S is a set of structural nodes (flow nodes, end-
flow nodes, if nodes, end-if nodes and loop
nodes).

– ctype: is a function that assigns the communi-
cator type to a communication node.

– stype: is a function that assigns a control node
type to a control node.

– E is the set of all edges in the graph.
Let E = Ectrl ∪ Edata ∪ Ecom. An edge is
defined by a tuple (n1, etype, n2) where etype
denotes the type of the edge and n1, n2 ∈ A ∪
C ∪ S, and Ectrl, Edata and Ecom are the sets of
control flow edges, data edges and communi-
cation edges, respectively.

– L is the set of text labels that can be assigned
to nodes and edges.

– nlabel : N → L, where N = A ∪ C ∪ S is a
function that assigns a textual label to a node.

– elabel : E → L is a function that assigns a
textual label to an edge.

Below we illustrate our intermediate model with
an example that shows how a loop and a flow
construct in WS-BPEL are mapped to the inter-
mediate model. Listing 1 and Fig. 8 show the WS-
BPEL example specification and the graphical
representation of the corresponding intermediate
model, respectively.

The while element in the BPEL example is
mapped onto a loop construct in which the condi-
tion is evaluated before the execution of the loop
branch. The loop branch consists of a flow ele-
ment, which is mapped in the intermediate model
onto a parallel construct with a flow and an end-

Listing 1 BPEL loop example
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Fig. 8 Graphical
representation of the
BPEL example in our
intermediate model

flow node. The invoke activities executed within
the parallel construct are mapped onto communi-
cation nodes. Invocation “act1” is mapped onto an
asynchronous invocation element, since it expects
no response, while invocation “act2” is mapped
onto two synchronous invocation nodes, since the
invocation needs to wait for a response from
the invoked service. Data dependencies are in-
troduced between the receive node and the invo-
cation nodes, since the invocation nodes use the
variable that was received by the receive element.

5 Decomposition Analysis

In order to define our transformation, we defined
transformation rules for each of the constructs
defined in the intermediate model, by considering
all possible allocations of activities to the cloud
and on-premise locations. In this analysis we took
into account processes that are hosted on-premise
and have activities that should be allocated in the
cloud, or vice-versa.

5.1 Single Activity

When a single activity is marked for allocation
to the cloud as shown in Fig. 9a, the solution
shown in Fig. 9b is suitable. In this solution, the
activity is moved to a new cloud process and called
by the on-premise process via synchronous invo-
cation nodes. By using synchronous invocation,

Fig. 9 Single activity moved from on-premise to the cloud

the execution sequence of the processes can be
preserved, since the node following the activity
in the original process has to wait until the cloud
process is finished.

5.2 Sequential Activities

When multiple sequential activities are marked
for allocation to the cloud, the sequential activities
can be placed in two separate cloud processes, or
the sequential activities can be placed together in
one cloud process. Figure 10 shows the allocation
of sequential activities to separate processes.

In this case there are two possible solutions,
which depend on the distribution of the control
links between the activities:

1. Maintain control links on-premise: in Fig. 10b,
for each marked activity a new cloud process
is created. Synchronous invocation nodes are
introduced in the on-premise process for in-
voking the activities in the cloud. In the orig-
inal process shown in Fig. 10a, a control link
is present between the activities. Since both
activities are placed in new processes, there is
no direct control link any more between the
activities. In our first solution, a control link is
introduced between the created communica-
tion nodes in the on-premise process, to keep
the on-premise process together. The draw-
back of this solution is that there is unnec-
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Fig. 10 Alternatives for
sequential nodes

essary communication between the cloud and
on-premise, since the result of the first cloud
process is sent to the second cloud process via
the on-premise process, instead of sending it
directly.

2. Move control links to the cloud: in Fig. 10c,
both activities are moved to individual cloud
processes. The on-premise process calls the
first cloud process. After execution of the
activity in the first cloud process, the second

cloud process is called directly. The second
cloud process eventually gives a call back
to the on-premise process. The control link
between the two activities in the original
process is moved to the cloud and placed
between the invoke and receive of the first
and second cloud process. As a consequence,
the on-premise process is no longer a single
process, but is decomposed into two separate
processes.

Fig. 11 Sequential
activities moved
as a block
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Figure 11 shows the solutions for the second situa-
tion, in which two sequential activities are moved
together to one cloud process. The following two
solutions are applicable in this situation:

3. Splitting up on-premise processes: in this solu-
tion the sequential activities are moved to a
new cloud process. By moving these activities,
a gap arises between the nodes that are placed
before the cloud process and the nodes after
the cloud process. Figure 11b shows that this
solution leads to more additional processes,
since every time a sequence of nodes is placed
in the cloud, the on-premise process is split up.

4. Replace by synchronous invocation node: in
this solution, shown in Fig. 11c, the moved
part in the on-premise process is replaced by
a control edge, preserving in this way the
control structure of the on-premise process.
Replication of the control link between the
processes leads to more complex processes,
but the overall structure of the on-premise
process is preserved, since the cloud nodes
are replaced by invocation nodes. This makes
the on-premise process more robust, since the
execution of the overall process is coordinated
by the on-premise process.

5.3 Composite Constructs

Parallel constructs and conditional constructs can
be generalized as composite constructs since their
syntax structure is quite similar. Both constructs
start with a node that splits the process into sev-
eral branches. Eventually, the branches join in an
end-node, which closes the composite construct.
However, from a semantics perspective the be-
havior of these constructs is completely different.
We analyzed all the decomposition possibilities
for composite constructs and came up with the
following possibilities: (1) the start and end node
(e.g., flw and eflw) and all the contents within
the composite construct are allocated to the same
destination, and are kept together as a whole; (2)
the start and end node have the same distribution
location, but activities within the composite con-
struct need to be maintained locally, and (3) the
start and the end node have different distribution
locations.

In Section 5.2 we show that sequential activities
of the on-premise process can be either split up
into individual processes or kept together. This
strategy can also be applied to composite nodes.
Therefore, we can keep the on-premise process
together, when the start and end node of a com-
posite node have the same distribution location,
to reduce the number of solutions. For activities
within branches of the composite constructs, we
move activities as a block and keep the surround-
ing process together, to reduce the number of
solutions. This allows the possible decomposition
rules to be applied recursively on each of the
branches of the composite constructs. Each result-
ing decomposition alternative is discussed in the
sequel.

Category 1: Moving the Composite Construct as
a Whole Figure 12a shows the situation where
the start and end node and all the nodes in the
branches of the composite node are marked for
allocation to the cloud. Figure 12b shows the
solution that is applicable in this situation. The
construct is moved as a whole to a new cloud
process. In the on-premise process, synchronous
invocation nodes are introduced to call the cloud
process.

Category 2: Start/End Nodes with the Same Distri-
bution Location Three possible situations exist
with composite nodes, where the start and end

Fig. 12 Moving the whole composite construct
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Fig. 13 Composite
constructs are marked
to move but activities stay
on-premise

node have the same distribution location, and
contents within the construct have a different
distribution location. In the Master thesis Duip-
mans [7] each of these situations have been ana-
lyzed, and solutions have been presented in which
the composite construct itself is placed in only
one process, either on-premise or in the cloud.
The branches within the composite construct are
treated as subprocesses, and the rules defined ear-
lier are recursively applied on these subprocesses.
Activities within the branches of the composite
construct with the same distribution location as
the construct itself are placed directly within the
construct. Activities with a different distribution
location are placed in new processes. Figure 13
shows the situation where the composite con-
structs are marked for moving and the activities
are not. The other alternatives are omitted here
due to space limitations.

Category 3: Start/End Node with Dif ferent Dis-
tribution Location The last category consists of
situations in which the start-node and the end-
node of the composite construct have different
distribution locations. This category has also been
thoroughly analyzed in the design of the trans-
formation and reported in Duipmans [7], but is
omitted here due to space limitations, and because
it has not been considered in our prototype.

5.4 Loops

In the intermediate model we distinghished two
categories of loops, namely loops in which the
loop condition is evaluated before or after the
execution of the loop branch. Below we ana-
lyze the possible decomposition solutions for each
category.

Condition Evaluation Before Branch Execution
There are two situations possible when dealing
with loop constructs in which the conditional node
is evaluated before the execution of the loop
branch:

1. Move construct as a whole: we omit the so-
lution for this situation here, since it is com-
parable to moving a composite construct as a
whole, which is explained in Section 5.3. The
complete construct can be moved to a new
process and is replaced in the original process
by synchronous invocation nodes.

2. Conditional node and nodes within loop
branch have dif ferent distribution locations:
we can treat the loop branch within the
loop construct as a separate process, since
it is executed after a conditional node. A
loop branch is only connected to the original
process through the conditional node. Treat-
ing the branch as a separate process gives the
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opportunity to apply the other decomposition
rules recursively on the branch. Figure 14
shows the situation in which the condition
of a loop construct is moved to the cloud,
whereas the activities within the loop branch
are allocated to an on-premise process.

Condition Evaluation After Branch Execution
When dealing with loops in which the condition
of the loop is evaluated after execution of the loop
branch, we identified two situations:

1. Move construct as a whole: this situation is
comparable to moving a composite construct
as a whole. We omit the discussion of this
situation here, since it is similar to the solution
presented in Section 5.3.

2. Conditional node and nodes within loop
branch have dif ferent distribution locations:
there are two possible solutions for dealing
with this situation. In the first solution, the
loop branch and loop condition node are
moved to a new process and are replaced
in the original process by synchronous invo-
cation nodes. In the newly created process
(loop process), the loop branch is taken and

Fig. 14 Conditional node moved to the cloud and loop
branch on-premise

moved to a separate process and called by
the loop process via synchronous invocation
nodes. The second solution is to move the loop
branch to a separate process and rewrite the
loop construct to a loop construct in which
the condition is evaluated before the execu-
tion of the loop branch. The original process
then first calls the loop branch, to execute the
branch once before evaluation of the condi-
tion. After this invocation, a new invocation
is used to call the loop process. In this loop
process, the loop condition is evaluated first
and depending on the result of the evaluation,
the loop branch is executed in which the on-
premise process is invoked.

6 Core Transformation Design

In order to define and implement our core trans-
formation and keep it manageable, we have se-
lected some situations from the decomposition
analysis discussed in Section 5. These choices have
simplified our transformation considerably, with-
out imposing strong limitations to their applica-
bility, as we observed in our case studies. We
specified and implemented the core transforma-
tion in both Java and as a graph transformation in
the tool Groove [29].

6.1 Design Decisions

We took the following decisions concerning the
decomposition design:

Process completeness. The input process for the
transformation is restricted with the following
constraints: (1) the input process has at most
one start node; (2) the input process has at
most one end node, and (3) the start-node of
each composite construct should have a corre-
sponding end-node, in which all of the branches
of the composite construct are merged. This
decision was taken to avoid complex situations
with multiple receive nodes at the beginning of
a process, or multiple reply nodes at the end of a
process. In addition, the restrictions ensure that
a process will never start or end with alternative
or simultaneously executing branches.
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Group sequential activities. Sequential activities
with the same distribution location are always
placed together in a process and are moved
as a block to a new process, instead of be-
ing placed in separate processes. This decision
was taken to reduce the number of processes
that are generated during the decomposition
transformation.

Keep process together. When a sequence of activ-
ities is moved from one side to another, the sur-
rounding process is kept together, as in solution
4 for the sequential activities shown in Fig. 11c.
By keeping the process together, the original
process is not split, and only new processes are
generated for activities with a different distrib-
ution location than the original process. In the
original process, these nodes are replaced by
communication nodes. Since the structure of
the process is maintained, the calling behavior
of the process does not change either.

Treat branched activities as separate processes.
Each branch within a composite construct is
treated as a separate process. Nodes with the
same distribution location as the surrounding
composite construct stay within the branch of
the construct. Nodes with a different distribu-
tion location are moved to separate processes.
This decision gives us the opportunity to use
the decomposition rules recursively on the
branches of the composite constructs.

Keep composite constructs start and end together.
When dealing with composite constructs, we
only allow the situation in which the compos-
ite construct is kept together. Different dis-
tribution locations for start and end nodes of
composite constructs are not allowed. This de-
cision was taken to avoid complex situations
with composite constructs. By keeping the start
and end node together in the same process,
we can treat them as block-structured elements
[18] and perform the decomposition operations
recursively on the branches of the construct.

Only allow a single incoming edge for activity
nodes. Activity nodes can have at most one in-
coming edge. This implies that loop nodes after
loop branches (see Fig. 6b) are not supported.
This choice is not really harmful, since behav-
iors with loop nodes after the loop branches
can be rewritten to equivalent behaviors with

loop nodes before the loop branches, with the
addition of a copy of the loop branch before the
loop node.

Treat loop branches as separate processes. Loop
branches are treated as separate processes. By
treating the loop branch as a separate sub-
process we are able to use the decomposition
rules recursively on the branch and treat the
loop construct as a block-structured element.

6.2 Data Structures

Figure 15 shows an excerpt of the class diagram
we used in the implementation of our Java trans-
formations. We briefly explain each class below:

– Graph is the main class for defining processes.
A graph consists of a list of nodes, a list
of edges, and a couple of functions for per-
forming operations on the graph. Function
getAllGraphsAndSubGraphs can be used to
get a list of graphs, in which the current
graph is placed along with all the subgraphs
that are available within the graph. Sub-
graphs are branches within composite con-
structs, such as loop branches or branches
of a parallel/conditional constructs. Classes
Graph, Node and Edge all have a hash map
of attributes in which additional information
about the objects can be stored.

– Node is the parent class for all the nodes. Each
node has a unique name and distribution lo-
cation, which indicates where the node should
be located. Attribute executionGuaranteed is
used during the lifting transformation for op-
timizing the data dependency analysis.

– Edge connects two nodes to each other. Each
edge consists of a ‘from’ attribute, which rep-
resents the node from which the edge orig-
inates, and a ‘to’ attribute, which represents
the node in which the edge terminates. Each
edge has a specific edge type, which is either
Control, Data or Communication. In addition,
a label can be attached to the edge by using the
label attribute.

– ActivityNode is used to define activities within
the process.

– CommunicatorNode is used to communicate
with another process. The communicator type
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Fig. 15 Data structures of the decomposition transformation

of each communicator can be set by using the
type attribute.

– CompositeNode consists of at least one sub-
graph. Each composite node has functions for
getting the start and end nodes of the con-
struct. These functions are implemented by
each child of the CompositeNode. The tem-
plate defined for CompositeNode is used for
defining the type of the start and end node.

– Partition is used to group adjacent nodes with
the same distribution location.

– BranchedConstruct allows an execution
branch to be split up into multiple executing
branches. We defined two subtypes of
this construct: ParallelConstruct and
ConditionalConstruct. A ParallelConstruct
uses ParallelStart and ParallelEnd as the start
and end node for the construct, respectively;
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in the case of a ConditionalConstruct, the
CondStart and CondEnd nodes are used as
start and end node, respectively.

– LoopConstruct can be used for modeling
loops. The loop construct has a reference to
a LoopCondNode, which is the conditional
node, and a loopBranch, which is the graph
that is executed when the condition that is
evaluated yields true. Attribute evalBefore is
used for defining if the condition is evalu-
ated before or after the execution of the loop
branch (always set to “true” in this case).

6.3 Core Transformation Definition

Our core transformation takes a process as a
graph as input, and transforms it into multiple
collaborating processes. The transformation has
rather complex goals, and could not be imple-
mented in a single shot, so we split the transfor-
mation into four consecutive phases that modify
the input graph to produce the decomposition. We
briefly discuss the operation of each phase.

Phase 1: Identification. This phase collects all the
subgraphs, branched constructs and loop con-
structs that are nested in the graph, and mark
each node with its desired distribution loca-
tion. In addition, temporary nodes are added
to the beginning of branches of branched con-
structs and loop constructs. These temporary
nodes have the same distribution location as
the surrounding construct, and are necessary
for correctly transforming the branches in later
phases. This phase gets as input a graph that
defines the original process and the activity
distribution list, and it returns a list with all
the subgraphs that represent process fragments
(subprocesses of the original process), a list
with all the branched constructs and a list with
all the loop constructs.

Phase 2: Partitioning. This phase partitions adja-
cent nodes with the same distribution location.
These nodes should be placed together in one
process, and are therefore grouped together in
a partition. This phase gets as input the list with
all the identified process fragments from the
previous phase, and groups the nodes within the
process fragments in partitions.

Phase 3: Communicator node creation. This phase
walks through all the graphs and creates com-
municators between partitions. The first two
partitions found are examined by the algorithm.
In both processes, communicator nodes are in-
troduced and communication edges are added
to the graph. The control edge that was present
between the two partitions is deleted from the
graph. If there is a third partition, the algorithm
removes the edge between the second and third
partition, and merges the third partition with
the first partition, since the third partition al-
ways has the same distribution location as the
first partition. After the merge, the algorithm
is repeated, until all the communicators are
created between the partitions and there are
no partitions left to be merged. This phase gets
as input the list with all the identified process
fragments from the previous phase, and makes
adjustments to the inserted graphs.

Phase 4: Choreography creation. This phase re-
moves the temporary nodes from the branched
constructs and collects all the created processes,
the communication edges and the data edges.
This phase gets as input the list with all the iden-
tified graphs, the list with all the branched con-
structs and the list with all the loop constructs,
and returns a graph on which the transforma-
tions are performed, a list with the communica-
tion edges and list with all the data edges.

We discuss each transformation phase in detail in
the sequel.

6.4 Identification Phase

The input of the decomposition transformation
is one single process and an activity distribu-
tion list. In this step, an algorithm examines the
process and identifies composite constructs, loop
constructs and branches within these constructs.

During the identification process, two addi-
tional tasks are performed: (1) each node of the
graph is marked with its distribution location, as
defined in the distribution list. In the case of
conditional and flow constructs, the distribution
location of the start node of the construct is used
as distribution location for both the start and the
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end node of the construct; and (2) for each branch
of a conditional or flow construct, and for each
loop branch, a new temporary start node is added
to the beginning of the branch. The temporary
start node is marked with the distribution location
of the start node of the composite construct. This
node is used during the merging phase.

Algorithm 1 shows the pseudo code for the
identification phase. The algorithm is started with
a call to the IdentifyProcessesAndMark proce-
dure, with as parameters the start node of the
input graph and the input graph itself. DistrLoc
is a function that returns the desired distribution
location for each node.

6.5 Partitioning Phase

During the partitioning phase, adjacent nodes
with the same distribution location are allocated
to the same partition. The algorithm is performed
on each of the identified processes. The algorithm
walks through each process fragment and com-
pares the distribution location of a node with the
distribution location of its successor node. When
the distribution locations are the same, the nodes
are placed in the same partition. Otherwise, both
nodes are placed in different partitions, and a new
control edge is created to connect the partitions to
each other.

By applying this algorithm, odd partitions are
merged, whereas even partitions become separate
processes. In a possible optimization step to be
defined as future work, even partitions could be
merged. Algorithm 2 shows the pseudo code of
the partitioning algorithm.
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Figure 16 shows a graphical example of the
steps that are performed by the algorithm. The
dashed blocks around the nodes in Fig. 16 repre-
sent the partitions. Activity 1 and 2 are marked
for on-premise distribution, and activity 3 and 4
are marked for being moved to the cloud (col-
ored nodes), as shown in Fig. 16a. At first, a new
partition is created and the first activity (act1) is
added to the partition (p1), shown in Fig. 16b. The
successor node of activity 1 is examined. Since the
successor node (act2) has the same distribution
location as the current node (act1), the successor
is added to the same partition as act1 and the con-
trol edge between the activities is also moved to
the partition, as shown in Fig. 16c. The algorithm
moves on, by looking at the successor of activity 2,
which is activity 3 (act3). The distribution location
of activity 3 is different than the distribution loca-
tion of activity 2, which means that a new partition
should be created for activity 3. A new partition
(p2) is created and activity 3 is placed in this
partition. The control edge between activity 2 and
activity 3 is removed, and a new control edge is
created to connect the previous partition (p1) and
the newly created partition (p2). This situation
is shown in Fig. 16d, where the colored arrow
between p1 and p2 represents the newly created
control edge. The next step is to examine the
successor of activity 3, which is activity 4 (act4).
Activity 4 has the same distribution location as
activity 3, which means that the node can be added
to the same partition. The edge between the nodes
is also moved to the partition. This situation is
shown in Fig. 16e. Since there are no nodes left

Fig. 16 Example of the partitioning algorithm

in the process to be examined, the algorithm
terminates.

6.6 Communicator Node Creation Phase

After the nodes in the processes are partitioned,
communicators must be created to allow the par-
titions to communicate. Communication between
processes is implemented by using synchronous
communication nodes. The algorithm takes the
first partition of a process and identifies if there
is a succeeding partition. If this is the case, com-
munication nodes are introduced at the end of the
first partition for invoking the second partition.
The second partition is delimited by a receive and
a reply communicator node. The control edge that
was present between the partitions is removed and
replaced by communication edges. If there is a
third partition, this partition should have the same
distribution location as the first partition, since
only two distribution locations are supported. The
algorithm removes the control edge between the
second and the third partition, and merges the first
and the third partition. The algorithm can now
recur, until all communicators are created and no
partitions can be merged anymore.

During the first phase of the decomposition
algorithm, we introduced temporary nodes at the
beginning of each branch. The function of these
nodes for the decomposition process should now
become clear. When the decomposition algorithm
is performed, the start node of the process deter-
mines where the process is deployed. Consider a
parallel construct that is marked for on-premise
allocation, but the first activity within one of the
branches has been marked for allocation in the
cloud. Since the branches are considered as being
separate processes, the decomposition algorithm
is performed on the branch, and the algorithm
would think that the branch should be distrib-
uted in the cloud, whereas the surrounding con-
struct is situated on-premise. By introducing a
temporary node with the same distribution loca-
tion as the surrounding construct to the beginning
of the branch, the algorithm knows where the
process should be distributed and creates correct
communicators.

This algorithm has been formalized in the Mas-
ter thesis Duipmans [7], but this formalization is
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omitted here due to space limitations. Figure 17
illustrates the operation of the algorithm with an
example.

Consider the partitioned process depicted in
Fig. 17a. The algorithm starts by taking the first
partition and adding two communicator nodes
(ireq, ires) connected by a control edge at the
end of the first partition. The second partition is
placed in the cloud and surrounded with a receive
and reply node. The first partition, which is ex-
tended with invocation nodes, is merged with the
third partition, in which activity 4 is placed. This
situation is shown in Fig. 17b. The next step of the
algorithm is to examine partition 1 again. Since
there is a successor partition after partition 1,
namely the partition in which activity 5 is placed, a
communicator should be created. The partition in
which activity 5 is placed is moved to a separate
process, and is surrounded with a receive and
reply node. Invocation nodes are added at the end
of the first partition to invoke the newly created
process. The algorithm can terminate now, since
there are no other partitions to process after par-
tition 1.

6.7 Choreography Creation Phase

In the last phase of the decomposition algo-
rithm, all created processes, communication edges
and data edges are collected. The temporary
nodes that were added to the beginning of the
branches are removed. The processes, commu-
nication edges and data edges together form
the choreography description for the decomposed
business process, i.e., they determine how the re-
sulting processes cooperate.

After the previous phases, all the graphs consist
of partitions that are connected to each other by
communication edges. Each partition is collected
and is used as a separate process. However, the
first partition in a process might be part of a
composite construct and, therefore, is part of an-
other process, namely the process in which the
composite construct is placed. This is why the first
step of this phase is to walk through the composite
constructs and collect the created processes.

The functions performed in this phase have
been formalized in the Master thesis Duipmans
[7], but are omitted here due to space limitations.

Fig. 17 Example of
the communicator
creation algorithm
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6.8 Data Dependency Verification

Once the decomposition algorithm finishes, an al-
gorithm for data verification has to be performed
to check if no data restrictions have been violated
as a result of the decomposition transformation.
The algorithm we have implemented assumes that
the process engine on which the process will even-
tually be executed uses an execution strategy in
which variables are used for passing data be-
tween activities. Engines that execute WS-BPEL
[24] processes, for example, comply with this
assumption.

The last phase of the decomposition algorithm
results in three lists: (1) list of all the created
processes; (2) list of communication edges be-
tween processes; and (3) list of data dependen-
cies. These lists form the input for the verification
algorithm.

This algorithm has a Validate function that
walks through the list of all the data edges. For
each data edge, the ‘from’ (n1) and ‘to’ node (n2)
are selected. The label on the edge identifies the
data item that is involved in the data dependency
relation. Function nodeInWhichGraph is used to
determine in which process the nodes are used.
When the nodes are not in the same process,
function findNode is used to find the path that
should be walked to get from n1 to n2. The nodes
that were visited during the walk are collected
in a list and represent a walked path. After the
path is found, function validatePath is used to
check if a data restriction is violated by the current
data edge relation. The data restriction is violated
whenever there is a node in the path list with
a different distribution destination than the data
restriction location for the current data item. The
nodes that violate a certain data restriction are
collected in a list and returned by the algorithm.

This algorithm has also been formalized in the
Master thesis Duipmans [7], but is omitted here
due to space limitations.

7 Case Study

We performed a case study in order to demon-
strate the applicability of our transformation-
based approach. The case study consists of a talent

show audition process that has activities and data
that should be allocated on-premise and in the
cloud. Below we discuss how the transformation
chain shown in Fig. 4 has been applied to the case
study.

7.1 Description

Consider that a television broadcast company
wants to produce a new singing competition show.
The company uses an on-line registration system,
in which contestants can register for the show.
In order to get selected for the show, contestants
need to upload an audition video, in which they
are performing a song, and some personal infor-
mation, so that producers can contact a contestant
in case she is selected for the show. The selection
procedure of the contestants is as follows. The
producers and a jury first look at all the videos
and directly select contestants for the show. The
other video auditions are placed on the website
of the show and visitors of the website can vote
on the videos they like. The highest voted video
auditions are selected and their performers are
added to the list of contestants. Figure 18 shows
the business process of the on-line registration
system in Amber [9], which is the business process
language used in this case study.

The process starts when the user uploads a
video. After the video is uploaded, the process
is split up into two separate parallel branches.
One branch performs operations on the uploaded
video. The video is stored in a folder on the
server and, after that, a verification algorithm is
used to check if the video is valid. This operation
also determines the video properties, such as the
format, size and quality. For the producers it is
important that the videos are all in the same for-
mat, in order to speed up their selection process.
In addition, videos are placed on the website in
a single specific video format, therefore, a con-
version step is necessary in case a video does not
comply to the selected format. After conversion,
a unique video identifier is assigned to the video.
The other branch of the process waits for personal
information that should be submitted by the user.
When the information is provided, the personal
information is stored in a database.
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Fig. 18 Business process of the on-line registration system

After the branches merge, the video identifier
should be stored in the database that contains
personal information. This step is necessary to
know which video audition belongs to which per-
sonal information. After the personal information
is updated, a notification is sent to the user and the
business process is terminated.

7.2 Marking Activities and Data Items

We assume that the television broadcast company
expects a large amount of auditions. Since the
storage of videos might take a lot of space, and op-
erations on the videos, such as video conversion,
are computation-intensive, we also assume that
the company has decided to make use of cloud
computing for storing the videos and performing
operations on them. The personal information
manipulated by the process, however, should stay
within the premises of the television broadcast or-
ganization. Therefore, the business process mainly
runs on the on-premise server, while parts of the
process are outsourced to the cloud.

Figure 18 shows the markings of the distribu-
tion locations and data restrictions on the busi-
ness process. Activities that should be performed
in the cloud are marked with the cloud flag.
In Fig. 18, these activities are marked with a
dark background color. The personal informa-
tion data item is marked with a data restriction,
which states that the item should stay on-premise.
This is represented in Fig. 18 with a shaded data
item.

7.3 Lifting

Once activities have been marked with a distri-
bution location, and a data restriction has been
placed on the Personal Information data item,
the transformation chain can start with the lifting
transformation (Transformation 1 in Fig. 4). The
first step of this transformation is to export the
business process to an XML representation, which
has been done with the help of BiZZdesigner,1

which is the tool in which the business process has
been edited. After that, the exported XML file
has been imported by our Java application and a
new instance of the intermediate model has been
created. In addition to our Java transformations,
we also implemented a graphical export function
to show the intermediate results during the trans-
formations. Figure 19a shows the intermediate
model that has been generated from the imported
XML file. Figure 19b shows the graphical repre-
sentation of the intermediate model, in which the
parallel and conditional nodes are captured within
composite constructs.

Once composite constructs are created in the
intermediate model, a data dependency analysis is
performed. Two data dependencies identified in
this step are discussed below as examples:

1. Node n7 has a data dependency edge to itself,
which means that the data item (in this case
Video) is created during the execution of the
activity.

1http://bizzdesign.com/tools/bizzdesigner/

http://bizzdesign.com/tools/bizzdesigner/
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Fig. 19 Intermediate model representations

2. Activity Assign video id (n5) has two data
dependencies, both relating to the Video data
item. The two incoming data dependencies

mean that both activities from which the data
dependency edges originate are possible writ-
ers to the Video data item. Since the execution
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of activity Convert Video (n3) is not guaran-
teed because this activity is in a conditional
branch, activity n5 does not know if n3 has

written to the item. Therefore, activity n2 is
also a possible writer, and a data dependency
edge exists between n2 and n5.

Fig. 20 Intermediate model after the choreography creation phase
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7.4 Core Transformation

The core transformation can be started after the
data dependencies have been determined. Each
phase of the core transformation is briefly dis-
cussed below.

– Identif ication: the activities that need to be
distributed in the cloud are marked. In addi-
tion, in each of the branches of a composite
construct, a temporary node is added with the
same distribution location as the composite
construct.

– Partitioning: adjacent nodes marked with the
same distribution location are placed to-
gether in a partition. Each of the subgraphs
(branches) is treated as a separate process,
therefore within a partition there might
be multiple partitions within a composite
construct.

– Creation of communicator nodes: communica-
tors are created between partitions. Consider
that Partition1 and Partition2 have to com-
municate, where Partition1 is allocated on-
premise and Partition2 is marked for move-

ment to the cloud. Partition1 is extended with
invocation nodes, and Partition2 is extended
with a receive-node at the beginning of the
partition and a reply-node at the end of the
partition.

– Choreography creation: after the communica-
tors are created, the separate processes are
collected and the temporary nodes that were
added in the identification phase are removed.
Figure 20 shows the result obtained after this
phase.

– Data restriction verif ication: data restriction
violations are verified. The verification algo-
rithm collects the data items that were vio-
lated, and selects the activities that violate
these data items. The information obtained in
this phase is used during the grounding trans-
formation. In this example no data restrictions
are violated.

7.5 Grounding

The final step in the transformation chain is the
grounding transformation. In this case study, the

Fig. 21 Business process with marked activities and data restrictions
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intermediate model is transformed back to an
Amber model. The intermediate model is then
transformed into a format that can be imported by
BiZZdesigner. During the import phase, the XML
format is converted into a new behavioral model
in BiZZdesigner and the resulting process model
is shown in Fig. 21. This process model consists of
two collaborating processes one for deployment
on-premise and another one for deployment in the
cloud.

This case study demonstrates that the trans-
formations can be performed automatically. The
Java implementation has been extended with a
function to export intermediate results as images.
The initial process was created by hand and the
marking of activities and data item was also per-
formed by hand. The layout of the resulting model
was obtained manually, since BiZZdesigner has
no automatic layout functionality, but the result-
ing process model itself has been obtained fully
automatically.

8 Related Work

Our work has been motivated by Han et al. [12],
and extends this work with an additional distrib-
ution pattern in which process engines are repli-
cated on-premise and in the cloud. This requires
process decomposition techniques, so we looked
for process decomposition techniques that could be
readily applied in our work.

Several research groups have investigated the
possibility of decentralizing orchestrations. In a
centralized orchestration, a process is coordinated
by a single orchestrator, while in decentralized
orchestration, different orchestrations are distrib-
uted among several orchestrators. By distributing
parts of a process over separate orchestrators, the
message overhead may be reduced, which poten-
tially leads to better response time and throughput
[22].

In Nanda and Karnik [22], Nanda et al. [23] and
Chafle et al. [5, 6], new orchestrations are created
for each service that is used within a business
process, hereby creating direct communication be-
tween services instead of having a single orches-
trator to coordinate the services. The business
processes are defined in WS-BPEL [24]. Their

work not only defines a decomposition, but also
analyzes synchronization issues. The work cap-
tures a WS-BPEL process in a control flow graph,
which is used in turn to create a Program De-
pendency Graph (PDG, Ferrante et al. [11]). The
transformations are performed on PDGs, and the
newly created graphs are transformed back into
WS-BPEL. The partitioning approach is based on
the observation that each service in the process
corresponds to a fixed node, and for each fixed
node a partition is generated. In our approach we
had to create processes in which multiple services
can be used, so this partitioning algorithm is not
particularly suitable for our case.

Research in Khalaf and Leymann [15], Khalaf
et al. [16] and Kopp et al. [17] focuses on the
decentralization of orchestrations by using WS-
BPEL processes. The main focus of the research
is to use Dead Path Elimination (DPE) [24], for
ensuring the execution completion of decentral-
ized processes. DPE is a specific feature of WS-
BPEL, which is a consequence of allowing join
conditions of links between activities. Since DPE
is so language-specific, these approaches are only
useful when WS-BPEL is selected as the input and
output language of the transformation framework.

In Baresi et al. [4], decentralization of WS-
BPEL processes is considered, and the authors use
a graph transformation approach for transforming
the WS-BPEL process. However, the transforma-
tion rules are not defined in the paper. The type
graph with which the graph transformations are
performed might be applicable to our situation,
but this would require some additional research.

In Fdhila et al. [10], the authors state that the
current research on decentralizing orchestrations
focuses too much on specific business process
languages. In most cases, implementation level
languages, such as WS-BPEL, are used. In our sit-
uation, the decision for distributing activities and
data to the cloud is not only based on performance
issues, but also on safety measures, dictated by
organizations or by the government. This implies
that the decision to execute an activity on-premise
or in the cloud might already be taken in the de-
sign phase of the BPM lifecycle, when the business
processes are conceived.

Some approaches to process decomposition
discussed in the literature make use of process
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models represented as Petri Nets. In van der Aalst
[1], a Petri Net-based approach is introduced to
analyze so called interorganizational processes,
which are processes that run in different organi-
zations but are required to interact. This work
concentrates on the consistency of the interactions
between these processes, mostly to avoid dead-
locks, so this approach is not directly applicable to
our case. In Tan and Fan [33], a Petri Net-based
approach is proposed to dynamically decompose
a workflow in workflow fragments while it is be-
ing executed, so that it can be distributed and
executed by different workflow engines. Although
this approach supports workflow decomposition,
it has been devised to be applied in a scenario
that is completely different than the one which we
envisaged for our decomposition support, namely
that the decomposition would be performed prior
to deployment (not at runtime). Similarly to Tan
and Fan [33], in Sun et al. [32] dynamic process
fragmentation is investigated, but in this case
process mining techniques are used to optimize
the fragmentation with respect to execution tim-
ing constraints.

9 Final Remarks

Below we present our conclusions and recommen-
dations for future work.

9.1 Conclusions

In this paper we reported on our transformation-
based approach to decompose monolithic busi-
ness processes into multiple processes that can be
executed in the cloud or on-premise. The decom-
position is driven by a distribution list, in which
the activities of the original business process are
marked with their desired distribution locations,
and data restrictions can be added, to ensure
that data items stay within a certain location (on
premise or in the cloud).

We defined a transformation chain for our ap-
proach. We decide to introduce an intermediate
model for defining the decomposition transfor-
mation. This intermediate model is defined at a
semantic level and captures the main concepts of
business processes. The decomposition transfor-

mation was designed to operate on the interme-
diate model. By performing the operations on the
intermediate model, the decomposition solution
is business process language-independent and is
suitable for processes defined in both the design
and the implementation phase of the BPM lifecy-
cle. In order to work with existing business process
languages, transformations are needed for con-
verting an existing business process language into
the intermediate model and back, the so-called
lifting and grounding transformation, respectively.

An analysis was performed to identify the de-
composition rules that should be supported. From
these rules, a selection was made for the imple-
mentation of the transformation. The algorithm
that was used for the decomposition transforma-
tion was first prototyped using graph transforma-
tions in Groove [29]. After that, the algorithm
was implemented in Java, and the graph-based
transformation has been used to verify the results
of the transformation implemented in Java. We
also built a verification algorithm to verify if data
restrictions are violated as a result of the decom-
position transformation.

In this paper we reported on a case study
in which Amber [9] has been used as business
process language, so that we developed the lifting
and grounding transformations for this language.
Algorithms were designed for replacing condi-
tional, parallel and loop nodes by block struc-
tured elements, and a data dependency analy-
sis algorithm was designed for discovering data
dependencies between activities. The case study
has demonstrated the feasibility of our approach,
since the transformation could be completely au-
tomated. In Povoa et al. [28] we substantiate our
claim that our solution is capable of supporting
different business process languages with an ex-
periment in which lifting and grounding transfor-
mations been developed for (a subset of) WS-
BPEL, allowing the central transformation and
the intermediate model to be reused and applied
to a simple process of the health domain.

9.2 Future Work

Since we have introduced some limitations in the
business processes and activity and data alloca-
tions supported by our transformations, a natural
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extension of this work is to extend the transforma-
tions in order to support more situations. How-
ever, we also suggest that some research shoud
be done to investigate which process patterns are
mostly used in practice, to determine which per-
centage of the process patterns used in practice
are already covered by our transformations.

An optimization phase could be added to the
decomposition transformation, to combine some
of the newly created processes, to reduce the
amount of data that is sent between processes.
For example, in the communicator node creation
phase odd partitions are merged, whereas even
partitions are identified as new processes. A pos-
sible optimization would be to merge even par-
titions, based upon data dependency relations
between nodes in partitions. Consider two even
partitions (p2 and p4) with a data dependency
between a node in p2 and a node in p4. When
the partitions are separate processes, data need
to be sent from p2 to p4 via an intermediate odd
partition (p1). By merging the partitions, data are
directly available for the activity in p4, and there-
fore, no data need to be sent from p2 to p4. We im-
plemented a simple version of this optimization,
in which also the even partitions are merged. This
solution was added to the Java implementation
and can be selected with an extra input parameter,
in which the partition merge type can be selected.
In future work, a more advanced solution can
be devised in which data dependencies between
partitions are used as basis for merging even
partitions.

We verified the correctness of the decompo-
sition solution informally by testing the solution
on several business processes. For each of the
obtained results we removed the communication
nodes and replaced the communication edges
with control edges, which resulted in the original
processes again, i.e., we verified whether the re-
sulting solution preserves the observable behavior
of the original process. This indicates that the
behavior of the process itself is not changed by
the transformation and no information from the
original process is lost during the decomposition
transformation. In future work, a formal valida-
tion of the transformations could be performed.
An approach to perform this validation could be
to formally prove that each decomposition step

in our transformations preserves observable be-
havior, and that observable behaviour is not dis-
turbed when the transformations are applied in
the transformation chain. As a matter of fact, each
transformation rule discussed in Section 5 (and in
the Master thesis Duipmans [7]) has been defined
to preserve observable behavior, already giving
an indication of the soundness of the proposed
approach.

In future work we intend to develop a compre-
hensive environment to cover not only the decom-
position of business processes in different business
process languages, but also their automated de-
ployment in process engines and their execution
monitoring. An interesting line of work can also
be to apply dynamic process decomposition tech-
niques like the ones reported in Tan and Fan [33]
and Sun et al. [32] to a monolithic process model,
and perform on-premise and cloud deployment
on-the-fly (during execution).
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