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GENERATORS WITH A CLOSURE RELATION

FELIX L. SCHWENNINGER AND HANS ZWART

Abstract. Assume that a block operator of the form ( AZA‘ 0) , acting on the Banach space

Xj x X5, generates a contraction Cp-semigroup. We show that the operator Ag defined by
Agx = A ( S,fzx) with the natural domain generates a contraction semigroup on X;. Here, S

is a boundedly invertible operator for which eI—S~! is dissipative for some £ > 0. With this
result the existence and uniqueness of solutions of the heat equation can be derived from the
wave equation.

1. Introduction

The question whether an (unbounded) operator is the generator a Cp-semigroup
appears naturally for abstract differential equations in the discussion of well-posedness.
In this paper we relate the well-posedness of two abstract differential equations.

Starting with an abstract Cauchy problem (ACP) on the space X; x X»,

(2) = Aex (ﬁ;) , x(0) =xo, (ACP-1)

for an operator A,y of the form

A — A A]ID(Al)CX1><X2—>X1, (1.1)
“r—\ A 0)’ Az:D(AQ) C X) — X, ’
we set Agx; =A ( S,;;lxl ) where § is a bounded operator, and define the ACP
X = Agx, x(0) =xp € X;. (ACP-2)

The question is whether (ACP-2) is well-posed when (ACP-1) is assumed to be well-
posed.

The idea comes from port-based modeling, see e.g. [5, 8]. There, A,y defines a
structure relating the variables (f1,/2)7 and (e1,e;)”, by f = Aeve. Now, adding the
closure relation e, = Sf,, where S maps from X, to X;, yields the structure Ag, as
depicted in Figure 1. There, the operator S is seen as adding dissipation.

The form (1.1) appears in the context of port-Hamiltonian systems, see [3, 8], but
is applicable in wider settings, see [9]. Motivated by this, we will study well-posedness

Mathematics subject classification (2010): 47D06,47B44,34G10.
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Figure 1: Interconnection structure

in terms of operators generating contraction semigroups. Hence, we want to know
whether the operator Ag will generate a contraction Cyp-semigroup if this holds for the
initial system of A,y . The case of X; and X, being Hilbert spaces has already been
solved and can be found in [3, 8, 9]. Our aim is to generalize the result, including the
conditions on §, to arbitrary Banach spaces.

A natural application is given by the heat equation for the space L'. We conclude
existence and uniqueness of its solutions from the undamped wave equation. Motivated
by the example we give further results concerning the analyticity of the semigroup
generated by Ag.

1.1. Semi-inner-products

In this section we collect some facts we are going to need.
The following notion was introduced by Lumer in 1961, see [6]. From now on, X
will be a Banach space.

DEFINITION 1. For a Banach space X, a mapping [-,-] : X x X — C is called
semi-inner-product, SIP, if for all x,y,z€ X and A € C

o [x+Az,y] = [x,y]+ Alz,)] (linearity in first component),
o [x,x] = |x|? (positive definiteness),
o |[x,]> < [x,x][y,y] (Cauchy-Schwarz inequality).

LEMMA 1. The following assertions hold

i. Every Banach space X has a SIP, i.e. X is a SIP space.
ii. For SIP spaces (X,[-,-|x), (Y,[,-]y), the mapping defined by

[@i) ’ (JyZ) }ny = [rsxax + yaly (1.2)

is a SIP for X XY equipped with the Euclidean norm

X
IG)] = Vi, rexer. (13

XxY
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Proof. i. relies on the Hahn-Banach theorem, see [6]. For ii. one simply checks
the definition of a SIP. [

As an example, let us consider L? spaces, see [, page 90].

EXAMPLE 1. For the space LP[0,1], p > 1,

1
1.8l = [ f956) ds. fgerron)
where

g(s) 1= {@g(sngﬂgw, 2(s) #0

otherwise ’
defines a SIP.

DEFINITION 2. Let X be a Banach space. An operator A : D(A) C X — X is
called dissipative, if there exists a SIP, such that

R[Ax,x] <O Vxe D(A). (1.4)

In the literature the notion of dissipativity for general Banach spaces is often in-
troduced in a different way (see e.g. [1]). We remark that this definition is equivalent.
For instance, (1.4) implies that forall A >0, x € X,

A3l = AR [x,2] = R[(AT-A)x,x] + R[Ax,2] < [(AT-A)x]| - [x])

where we used (1.4) and Cauchy-Schwarz in the last inequality. The converse employs
the Banach-Alaoglu Theorem and can be found in Proposition I1.3.23 in [1]. There,
(1.4) is formulated as

Vx e D(A) Jj(x) € 7 (x):={x €X': (x,x) = |x|* = ||x]|*} such that
R{Ax, ) <0,
(where X’ denotes the dual of X, (-,-) the duality brackets). _# (x) is called the
duality set of x. Note that any selection j:X — X' :x+— j(x) € #(x) defines a SIP
[,-] = (-,j(-)) and, vice versa, every SIP [-,-] yields a selection j(x) = [-,x] € £ (x)
forall x € X.

The following theorem is a standard result in semigroup theory and can be found
in [, Section I1.3.b] or [7, Theorem 3.1] (in the latter dissipativity is defined via SIPs).

THEOREM 1.1. (Lumer-Phillips) For the linear operator A on the Banach space
X the following assertions are equivalent

i. A generates a contraction Cy-semigroup,
ii. A is densely defined, dissipative and there exists some A > 0 such that

ran(A1—A) =X. (1.5)

In this case A is dissipative w.r.t. any SIP on X, and (1.5) holds for every A > 0. If X
is reflexive, D(A) is automatically dense from the other assumptions in ii.
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2. Main result

THEOREM 2.1. Let Ay : D(Al) CX1xXy,— X and Ay : D(Az) C Xy — Xy be
operators such that

A
Aex 1= (A2 10>7

D(Aext) = {(xl,xz) eX| xXp:x1 € D(Az) A (xl,xz) S D(Al)}

generates a contraction Cy-semigroup on X| X X» equipped with the Euclidean norm,
see (1.3). Let S € #(X») be a boundedly invertible satisfying

Rlx,Sx]r = my||x]|3  Vxe Xy, 2.1

Sfor some my > 0 and some SIP [-, .|, on X,. Then

X
ASx:Al <SA2)C) )

defined on D(Ag) = {x € Xj : (x,SAzx) € D(Aexr)} generates a contraction semigroup
on X provided that D(Ag) is dense or that X, is reflexive.

Proof. By the Lumer-Phillips Theorem, the proof consists of two steps. First we

show that Ay is dissipative. Let [-,-]; be a SIP on X;. Then, let [-,-]x, xx, be the SIP
defined in (1.2) with respect to [-,-]; and [-,-]o. For x € D(As) we get

[ X
[ASX,.X]l - _Al (SAQ.X) ,X:|1
= A, ( s :zx) ,x] o [Aox, SAxx], — [Asx, SAxx],

[ X X
- _Am < ¢ Azx) : ( S AZX)L o [A2x, SA2] (2.2)

The second term is less or equal zero by the assumption (2.1). By Theorem 1.1, A.y is
dissipative w.r.t. any SIP on X; x X, . Together this yields

R[Asx,x]; <O0.

Hence, Ay is dissipative.
To show the range condition (1.5), let A € R and consider

0 0
P= € B(X) xX).
OAT—S!

Ay + P is a bounded perturbation of a generator, hence, it also generates a semigroup,
see [1, Theorem III.1.3]. By (2.1) we have for x = (xl,xz)T € X| x X, that

RIPx, 2y, wx, = RIAT—S xz,x0)0 < <;L - ﬂ) 22 2.
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Thus, P is dissipative if A € (0,my/||S||%], and then, A,y + P generates a contraction
semigroup by the Lumer-Phillips Theorem. Particularly, the range of AT1—A,y, — P
equals X; x X,. Hence, for any pair (g,0) € X; x X, there exists (xj,x) € X; x X»

such that
(A1—Aey — P) <2) = (g) . 2.3)

By the structure of A, , the second component reads
Axy —Arxy —i—Sile —Ax; =0,

which implies x, = SAx; . Inserting in the first component of (2.3) gives

X

which is (AT—Ag)x; = g. Thus, ran(A1—Ag) = X; .
By assumption that either D(Ag) is dense or X; is reflexive we conclude from
Theorem 1.1 (Lumer-Phillips) that Ag generates a contraction semigroup. [

REMARK 1.

1. Because of the boundedness of S~!, condition (2.1) holds for all SIPs on X; if it
holds for some SIP, see [7, Remark 2].

2. Note that since S is boundedly invertible, (2.1) is equivalent to
I >0Vx € Xy : R[S~ L, x]o < rf|x]|? & R[(mI-S ' T)x,x], <0,
which means that 7=1—S~! is dissipative.

3. For a boundedly invertible operator B € %8(X) on a Banach space X, B dissipa-
tive does not necessarily imply that B! is dissipative. In fact, by Lumer-Phillips
this is equivalent to ask whether B~! generates a contraction Cy-semigroup, if
B does. The answer is negative in general, even in finite dimensions, see e.g. [2,
Section 2]. However, on Hilbert spaces, the dissipativity of B~ always follows
from the one of B by the symmetry of the inner product.

4. For X; being a Hilbert space the assumptions on § are equivalent to

SeAB(Xy)and S+ 5" > €l > 0.

We finish this part by showing that the converse of Theorem 2.1 does not hold
in the sense that A,y does not necessarily generate a contraction Cp-semigroup if Ag
does. Looking at the proof, there is no reason to believe that the arguments in both
parts (disspativity, range condition) could be reversed. For instance, let S =1 and Ag
be dissipative. Then, one gets that

X X 2
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by reading the eq. (2.2) in reversed order. However, this won’t give that A,y is dissi-
pative (and since A,y should generate a semigroup, this should hold w.r.t. any SIP) in
general. In fact, consider the matrix case

with the Euclidean norm on RZ. Clearly,

X1 X1 . 0 X1 o
e () ()] = [(0) - (3)] =
Therefore, A,y can not be dissipative, whereas [Agx,x] = 0.

2.1. From wave to heat equation
We start with the undamped wave equation %(é,t) = gig{(é,t) on [0,1]. The
boundary conditions are chosen to be

(Ki = DG (10) = (Ki + 1) G(11),
Vi > 0, with |K; |, K 24
{(1—1@%(0 0= (Ke+ 1220, 2 OV KRS Y

This can be written as the following ACP on LP[0,1] x L”[0,1], p > 1,

. J
<XI) g “ ( ) 1= AexX x(0) =xo 25)
X2 36 0 ’

with
D(Aeq) = { (2) € (L”[0,1]): fi, f> abs. continuous and ~ (2.6)
ORS00 (1) = Ki(@a(1).(2)2(0) = Ka( @ (0) ],
where Q = % (! 1)- In the framework of Theorem 2.1 the operators A; and A read
D(A) = {@2) (L7[0,1])% : fi, f» abs. continuous and afgz € 17[0,1],

(@11 =Ki (@12 (1), (@20 =Ko @ (0) |, 41 () = 52

D(Ag)_{fEL”[O,l]:fabs.cont,x € LP]0, 1]}, Azf—%f

By diagonalizing, = QAmQ’1 , it is easy to show that A,y generates a contrac-
tion Cp-semigroup (in the Euclidean norm). Furthermore, let £ — A (&) be positive
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and continuously differentiable on [0, 1] and denote by S the induced multiplication
operator. Then,

A d S ) of
Asf =41 (SA2f> =(0 x) <7L(§)g—£> aFH (l(é)x) ; 2.7

D(As) = {f € L”[0,1]: (f.SA2f)" € D(Aew)}

By the assumptions on A (&), it follows easily that

D(As) = {f e LP[0,1]: f, I abs continuous and % aié]; € LP[0,1],
0 d
(K14 1(0) = (K1 = DA S, (ke + 170) = (1= K140 5L 0)}
which is dense in L”[0, 1]. The operator Ag corresponds to the heat equation
du d du
e =5 (MO5EED). e8)
with the Robin boundary conditions
(Kz+ 1)u(0,1) = (1 — K>)A(0) $#(0,1),
{ (K + Du(L0) = (K~ A1) 22 (10, 7 @9

Hence, A (&) can represent the heat conduction coefficient. It remains to show that the
assumptions on S are fulfilled. Clearly, S is a bounded operator which is boundedly
invertible since there exist Aypin, Amax such that 0 < i < A(E) < Apgx for & € [0, 1].
To show (2.1) we use the SIP from Example 1,

1 A2
1811 = / Ay F@)IPIIS S ds > —8flL = 7Sl 210)
max max
Thus, by Theorem 2.1, we conclude that Ag generates a contraction semigroup.

2.2. Further results

Motivated by the example in Subsection 2.1, one might ask when Ag is even gen-
erating an analytic semigroup. Without further assumptions on the operator A,y this
does not seem to work in general. However, the following theorem gives an answer.

THEOREM 2.2. Assume that Aqy from Theorem 2.1 has the form

o 0 Al
Aext = <A21 0 ) 2.11)

D(Aex,) = {(xl,xz) eX| xXy:x1 € D(Aﬂ),)(g S D(Alz)}
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and that o = ((I) g)Am generates a Cy-group, where S € B(X;). Then,

Ag = A128Ay,
with D(Ag) = {x € X; : x € D(Ay1),SA21x € D(A12)} generates an analytic semigroup
of angle %.

Proof. Tt is a fact that if o7 generates a Cp-group, it follows that 27> generates
an analytic Cp-semigroup of angle %, see [, Corollary 11.4.9]. Therefore, the result
follows by considering the upper left entry of

72— 0 Ap 0 Ap\ _ [ApSAy O
T \S45; O SAy; 0 ) 0 A2 SA1L )7

D(JZ%Z) = {(xl,xz) S D(A21) X D(Alz) : SAlel S D(Alz),SAlzxz S D(Azl}. O

where

REMARK 2. Given that A, generates a Cy-group, the assumption in Theorem
2.2, that &7 generates a Cy-group, can be checked by means of (multiplicative) pertur-
bation results for generators, see e.g. [4].

In the following we note that the group generation is not surprising in the view of
the assumptions in Theorem 2.1

THEOREM 2.3. (Lemma 5.1 in [9]) Let Ay, given in the form (2.11), generate a
Co-semigroup T (t) with constants M, ® such that ||T(t)|| < Me'® forall t > 0. Then,
Ay can be extended to a Cy-group which satisfies ||T(¢)|| < Mel'l®. In particular; if
Aext generates a contraction semigroup, then A.q generates a group of isometries.

With the results of this subsection we are able to continue the discussion of the
example of the wave and heat equation in Section 2.1. To conclude the analyticity of
the semigroup generated by Ag, (2.7), it remains to check that &/ = ( (I) g)Am gen-
erates a Cp-group. By Proposition 2.3, it even suffices to show that <7 generates a
Cp-semigroup. In fact, by diagonalizing and using the specific assumptions on S (the
multiplication operator induced by A ), this is not hard to deduce (see also [5, Chapters
12 and 13]).

2.3. Remarks and outlook

One might question the use of SIPs instead of employing the more common dissi-
pativity definition only relying on the norm. The reason is that the condition on § and
the proof happens to be natural in the view of the Hilbert space result.

Discussing more general S (and at the same time restricting the form of A,y ) as
S =1, like it is done in [9, Section 4] for Hilbert spaces, might be possible as well as
adaptions to nonlinear S.

Acknowledgements. The authors would like to thank the referees for their useful
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