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Abstract: For an automatic comparison of a pair of biometric specimens, a similarity metric called ‘score’ is computed by the
employed biometric recognition system. In forensic evaluation, it is desirable to convert this score into a likelihood ratio. This
process is referred to as calibration. A likelihood ratio is the probability of the score given the prosecution hypothesis (which
states that the pair of biometric specimens are originated from the suspect) is true divided by the probability of the score
given the defence hypothesis (which states that the pair of biometric specimens are not originated from the suspect) is true. In
practice, a set of scores (called training scores) obtained from the within-source and between-sources comparison is needed to
compute a likelihood ratio value for a score. In likelihood ratio computation, the within-source and between-sources
conditions can be anchored to a specific suspect in a forensic case or it can be generic within-source and between-sources
comparisons independent of the suspect involved in the case. This results in two likelihood ratio values which differ in the
nature of training scores they use and therefore consider slightly different interpretations of the two hypotheses. The goal of
this study is to quantify the differences in these two likelihood ratio values in the context of evidence evaluation from a face,
a fingerprint and a speaker recognition system. For each biometric modality, a simple forensic case is simulated by randomly
selecting a small subset of biometric specimens from a large database. In order to be able to carry out a comparison across
the three biometric modalities, the same protocol is followed for training scores set generation. It is observed that there is a
significant variation in the two likelihood ratio values.
1 Introduction

For a given pair of biometric specimens, a score computed by
a biometric recognition system quantifies the similarity
between the input pair of biometric specimens while taking
into account their typicality. In biometric applications such
as access-control and e-passport gates at some airports, the
developer of the system chooses a threshold from the range
of the score and consequently any score above the threshold
implies a positive decision and vice versa [1, 2]. However,
in a criminal case, it is desirable to report a likelihood ratio
(LR) instead of a score or a decision based on a selected
threshold [3]. This distinction between biometric and
forensic applications is addressed in detail recently by
Meuwly [2]. Once a forensic scientist has computed the
LR, it is the responsibility of the judge or the jury to make
a decision which involves other sources of information
about the case at hand such as other types of evidences.
Use of a LR value to report the output of a biometric
comparison is gradually becoming a standard way of
evidence evaluation from score-based biometric systems. A
LR is a more informative, balanced and useful output in
forensic evaluation than simply a score [4]. A general
description of the LR concept for evidence evaluation
from biometric systems can be found in [4, 5]. It is
applied to several biometric modalities including forensic
voice [6], speech [7–9] and fingerprint comparison [10].
Preliminary results of evidence evaluation using a LR value
in the context of face and handwriting recognition systems
are presented in [11–14]. A LR is the probability of the
score given the prosecution hypothesis is true divided by
the probability of the score given the defence hypothesis
is true

LR(s) = P(s|Hp, I)

P(s|Hd , I)
(1)

where s, considered as the evidence, is the score obtained by
comparison of the biometric specimen from the suspect with
that found at the crime scene. I refers to background
information which may or may not be domain specific. Hp

and Hd are two mutually exclusive and exhaustive
source-level hypotheses defined as follows:

† Hp: The pair of biometric specimens is originated from the
suspect.
† Hd: The pair of biometric specimens are not originated
from the suspect.
1
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Once a forensic scientist has computed the LR value, one

way to interpret it is as a multiplicative factor which
updates the prior odds (before observing the evidence from
a biometric system) to the posterior odds (after observing
the evidence from a biometric system) using the Bayesian
probabilistic framework

P(Hp|s, I)
P(Hd|s, I )

= P(s|Hp, I)

P(s|Hd , I)
× P(Hp|I)

P(Hd|I)
(2)

In this framework, the judge or the jury is responsible for
quantification of the prior beliefs about Hp and Hd while the
forensic scientist is responsible for the scientific analysis of
the pair of biometric specimens and quantification of its
evidential value in the form of a LR.
The hypotheses Hp and Hd can be specifically interpreted in

a slightly different way so that the within-source and
between-sources conditions are linked with the specific
suspect in a forensic case or they are independent of the
suspect. These different interpretations correspond to
difference in the pairs of biometric specimens used to
obtain the distribution of scores under Hp and Hd. In
forensic evaluation, these pairs of biometric specimens are
called training data (or calibration data). The purpose of this
paper is to quantify the evidential value from a face, a
fingerprint and a speaker recognition system using the
likelihood ratio concept and to study the effect of different
training data on resultant likelihood ratio values using a
simple simulated forensic LR evaluation scenario. The
study is carried out for a single biometric recognition
system from each of the three biometric modalities;
however, the concepts and procedure described to obtain
the training data and compute LR values apply to any
biometric system which computes a score for an input pair
of biometric specimens.
The paper is organised as follows. In Section 2, we briefly

review the procedure of LR computation from scores and
discuss the employed score-to-LR computation method.
Section 3 discusses the two different approaches for
selection of the training data and the differences in the
interpretation of the hypotheses they imply. Section 4
reviews existing work which studies the effects of different
training data on LR values and presents the comparison
procedures followed in this paper. Section 5 explains
experimental setup by introducing the three biometric
Fig. 1 Computation of a score-based LR for a given pair of biometric s
biometric specimen

Same biometric system must be used to compute the within-source scores, the bet
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recognition systems, databases of biometric specimens and
the way the training scores sets are constructed. Section 6
presents results by mapping score values to Log10 LR
(LLR) values using the two different sets of the training
scores. Finally Section 7 draws conclusions and points
toward future research directions.

2 Computation of a likelihood ratio (LR) from
a score

2.1 Computation of training scores

Score-based biometric systems output two classes of scores.
The first one is the result of the comparison of two
biometric specimens produced by a same source. When
comparing a set of biometric specimens produced by a
same source, there is some variation in the score values
output by a biometric system. Each biometric modality has
different nature of variations in the biometric specimens
produced by a same source, for example, in case of face
recognition systems it is caused by lighting condition, facial
expressions, partial occlusion of the face and so on. A set
of scores is obtained by comparing biometric specimens
from a same source represent the within-source variability
of the score and is referred to as the within-source scores.
Similarly, comparing a set of biometric specimens produced
by different sources results in a set of scores that represent
the between-source variability of the score and is referred to
as the between-source scores (Researchers in different
biometric modalities use different terminologies for the
within-source and between-source scores such as ‘target and
non-target scores’, ‘genuine and impostor scores’ and
‘same-source and different-sources scores’.) (see Fig. 1).
Scores in the within-source and in the between-source sets
are collectively called training scores where the pair of
biometric specimens to obtain these training scores are
referred to as training data.

2.2 Mapping a score to a LR using the training
scores

Score-based LR computation can be considered as a mapping
function from score to LR. Given a set of training scores,
there are several methods to map the score-axis to
LLR-axis. LR values in logarithmic scale are preferred for
pecimens consisting of the trace biometric specimen and the suspect

ween-source scores and the evidence score s
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plotting purposes as well as it has intuitive appeal for forensic
practitioners. As an example, a LLR value of 1 can be
interpreted as ‘It is 10 times more likely that the two
biometric specimens are originated from a same source than
if they were originated from different sources’. Similarly, a
LLR value of −1 can be interpreted as ‘It is ten times more
likely that the two biometric specimens are originated from
different sources than if they were originated from a same
source’. Several methods of conversion of biometric scores
to LR values are described in [9, 15] and can be classified
as parametric or non-parametric. When the distributions of
the scores in the within-source and in the between-source
sets are similar to available probability density functions
(PDFs) such as Gaussian, Exponential and Weibull, the
PDFs of the scores under Hp and Hd can be estimated by
selection of a pair of PDFs from the available PDFs and
finding the specific parameters of those PDFs using
maximum likelihood estimation [10]. Once the two PDFs
are estimated, a LR is computed by dividing the PDF of
scores under Hp by the PDF of scores under Hd (see
Fig. 2). Another possible parametric approach is to estimate
the ratio of the PDF under Hp and the PDF under Hd using
logistic regression [16]. In non-parametric category, there
are histogram binning, kernel density estimation (KDE) and
finding slope of the receiver operating characteristic convex
hull (ROCCH) [15, 17]. Logistic regression and ROCCH
approaches have a desirable property: both of them produce
a monotonically increasing function from score to LR
values. For the purpose of this study, we propose the use of
ROCCH procedure because it can ensure to a greater extent
that the resultant variation in LR values are because of the
difference in the training scores set and not because of the
poor fitting of the PDFs or the logistic regression model to
the training score sets.
Readers are referred to [17] for the algorithm to construct

the ROCCH from a given set of training scores. Once the
ROCCH is constructed, LR value for a given score s is the
slope of the corresponding segment of the ROCCH on
which score s lies and can be computed as follows

LR(s) = ws

bs
×W

B
(3)

where ws and bs are the number of the within-source and the
between-source scores, respectively, in the corresponding
segment of the ROCCH on which score s lies. The value W
Fig. 2 Example of LR computation from the estimated PDFs

E is the evidence score for which the LR is computed. In this example the LR
is approximately 2
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and B are number of scores in the complete sets of the
within-source and the between-source in the training scores
set. It is interesting to note that computing ROCCH is
equivalent to computing receiver operating characteristic
(ROC) curve of the posterior probabilities obtained by pool
adjacent violators (PAV) algorithm [17]. This argument
leads to an alternative way of implementation; computing
posterior probabilities using PAV and then plugging it into
the Bayesian formula along with W and B to compute LR
values. PAV algorithm (or equivalently, the ROCCH
approach) is extensively used in forensic speech recognition
for computation of LR values [18].
Once the ROCCH procedure is applied to compute LR

values, there is a group of scores for which the LR value is
either zero or infinity. The logarithm of these LR values
results in minus infinities and plus infinities, respectively.
To avoid this problem, a procedure similar to [18] is
followed. We insert a score in the between-source set which
is equal to the maximum score in the within-source set and
a score in the within-source which is equal to the minimum
score of the between-source set. These inserted scores can
be considered to represent scores which were not
encountered in the training scores set because there is not
enough training data, but which could have occurred. The
resultant LR values replacing zero and infinity are quite
intuitive for the use in forensic evaluation and reporting.
These values depend on the size of the training scores set.
In cases where small training scores set is available, the
absolute values of the log-LRs which replace zero and
infinity are small. The absolute values of these LLRs
increase as the size of the training scores set increase. It
simply shows that when small training set of training data is
available, only a weak strength of evidence (in terms of
LR) is supported empirically by the data. On the other
hand, a data-driven approach exploiting large set of training
scores offers support for a larger range of likelihood ratios
and therefore stronger strengths of evidence can be supported.
3 Choice of the training data

Based on the available number of biometric specimens from
the suspect, the within-source and the between-sources
conditions can either be anchored to the suspect or it can be
general within-source and between-source comparisons
using all persons from the potential population defined in a
given forensic case. Potential population refers to the set of
possible alternate sources of the trace biometric specimen
and its size and nature is dependent on the case as well as
the analysis of the forensic expert. In extreme situations like
in case of a crime in an immerged submarine, an
assumption of close-set can be made and the size of the
relevant population can be defined precisely. In the vast
majority of the forensic cases the relevant population is an
open set and its size can only be estimated in terms of ranges.
3.1 Suspect-specific training data

To compute the suspect-specific within-source scores, a set of
biometric specimens from the suspect can be compared with
another set of biometric specimens from the suspect [9]. The
two sets of biometric specimens are referred to as ‘reference’
and ‘test’ data sets. For better calibration, the biometric
specimens in the test data set should be as close as possible
to the trace and the biometric specimens in the reference
data set should be as close as possible to the database of
3
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biometric specimens from the potential population.
Cross-comparison of all the biometric specimens in the
reference and the test data set results in a set of scores that
can be used to model the distribution of scores under the
prosecution hypothesis. Similarly, for modelling the
distribution of scores under the defence hypothesis,
biometric specimens in the test data set are compared with
the reference biometric specimens of the potential
population database [19]. The suspect-specific approach
implies considering the following interpretations of the
prosecution and defence hypotheses

† Hp: The pair of biometric specimens is originated from the
suspect.
† Hd: The pair of biometric specimens is not originated from
the suspect (or alternatively, the pair of biometric specimens
is originated from someone else in the potential population).

The difficulty in following the suspect-specific approach is
that in most cases it may not be possible to obtain a large set
of biometric specimens from the suspect. This leads to fewer
scores in the training scores set, particularly the within-source
scores set.

3.2 Suspect-independent training data

Certain specific solutions have been proposed as how to
increase the number of the within-source scores when
following the suspect-specific approach [20, 21]. A general
solution is to construct the within-source and
between-sources scores sets by combining the
suspect-specific sets of multiple persons from the potential
population database. To compute the suspect-independent
within-source scores, a set of reference and test biometric
specimens from the potential population are compared
where the two biometric specimens in each pair are
obtained from a same source. Similarly, for the
suspect-independent between-source scores, a set of
reference and test biometric specimens from the potential
population are compared where the two biometric
specimens in each pair are obtained from different sources.
Using the suspect-independent approach to LR computation
implies the following interpretations of the prosecution and
defence hypotheses:

† Hp: The pair of biometric specimens is obtained from a
same source.
† Hd: The pair of biometric specimens is obtained from
different sources.

For the between-source scores, besides the suspect-specific
and suspect-independent approaches, another commonly used
approach is to compute trace-anchored scores. In this
approach, the trace biometric specimen is compared with all
the reference biometric specimens of the potential
population to compute the between-source scores [22].

4 Comparing the resultant LR values

4.1 Motivation

When sufficient training data is available, it is preferred to
compute a suspect-specific LR because it takes into account
more relevant information about the case at hand. Therefore
there is some research on how to compute a suspect-specific
LR for a biometric comparison when there is limited
4
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training data available from the suspect. Ramos [21]
proposed a strategy which is based on the adaptation of the
suspect-independent within-source scores distribution to the
suspect-specific scores via maximum a posteriori (MAP)
estimation. Similarly, in forensic handwriting recognition,
Davis [20] generated a large set of simulated writing
specimens from a small set of suspect specimens to form a
data set for computation of the suspect-specific
within-source scores. These specific approaches do not
generalise in most cases and usually a suspect-independent
approach is considered as a last resort to compute a reliable
LR for a given pair of biometric specimens [23]. In [23],
suspect-independent approach is proposed as a feasible
alternative when a single specimen is available from the
suspect. Given the common use of the suspect-independent
approach as an alternative to the suspect-specific approach
to compute a LR value, it is important to study and analyse
the differences in the LR values produced by these two
approaches.

4.2 Existing work

Quantifying the difference between the LR values using the
suspect-specific and suspect-independent training data is
still under investigation in most biometric modalities. In
[20], authors describe the effect(s) of different training data
used to construct the between-source scores set in the
context of handwriting recognition. For fingermark
evidence, Alberink et al. [24] recently discussed different
theoretical possibilities of conditioning such as conditioning
on specified fingers, fingerprints and fingermarks in order to
compute the training scores set. They also studied the
asymmetric conditioning in LR computation which is,
however, subject to further debate. Similarly, Ramos et al.
[9] studied the effect of using suspect-independent
within-source scores instead of suspect-specific on the
resultant LR values in the context of forensic speaker
recognition. In [12], we investigated the effect of the two
different approaches of LR computation considering a face
recognition system. The work presented in the current paper
is an extension of [12]. One of the main focal points of the
current paper is to investigate how much each of the three
biometric modalities show variation in the resultant
likelihood ratios when the training data is changed. The
work in [12] compares only the two approaches of
likelihood ratio computation. The current paper extends the
comparison across three biometric modalities relevant in
forensics and is, therefore, of interest to a broader domain
of audience, including in general forensic biometrics and in
specific to face, speech and fingerprint recognition.

4.3 Comparison approach

A common approach to compare systems producing forensic
LR values is to compute a set of test LR values for a set of
pairs of biometric specimens whose origin is known. Then
the criterion is that a better system should result in a larger
value of LR for a within-source pair of biometric specimens
and a smaller value of LR for a between-sources pair of
biometric specimens. Two common tools that compare
systems (more precisely, sets of test LR values produced by
systems) based on this criterion are Tippett plot [25] and
‘Cost of Log LR (Cllr)’ [18]. Such a comparison approach
is very useful in practice; however, the focus of this work is
to study how close the two LR values are instead of which
LR value is preferred. Therefore in this work, instead of
IET Biom., pp. 1–12
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following the traditional approach to compare forensic LR
computation systems, we propose to study the whole
mapping function from score to LLR values and for a given
random score, observe how much the LR values differ. We
compute the functions from score to LLR using the
suspect-specific and suspect-independent sets of training
scores and sample them uniformly for a quantitative
analysis of the differences in the two LR values. The
behaviour of the two score-to-LLR functions is studied in
different regions of LLR values. Furthermore, using random
subsampling, the effect of the different sizes of the training
scores set used in each approach is also investigated.

5 Experimental setup

Fig. 3 illustrates computation of the within-source and the
between-source scores in the suspect-specific and
suspect-independent approach for a single specimen per
person case assuming person 1 is the suspect.
To simulate a forensic case, we randomly select five

persons from a large database of biometric specimens in
each of the biometric modality. For this purpose, face
recognition grand challenge (FRGC) [26] database is used
for face data, Dutch National Police database is used for
fingerprint data and National Institute of Standards and
Technology (NIST) 2010 Speaker Recognition Evaluation
(SRE) extended database is used for speech data [27]. The
important condition for setting up a rational experimental
protocol for such a comparative study across the three
different biometric modalities is to use equal number of
scores per person in the within-source and between-source
sets.
Fig. 3 Within-source and the between-source scores sets assuming the

a Computation of the within-source scores sets
b Computation of the between-source scores sets

IET Biom., pp. 1–12
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For face data, a set of 36 biometric specimens are chosen
randomly for each of the five persons in the selected subset.
Then half of the biometric specimens are used to generate
the test data set while the remaining half are used as a
reference data set. Cross-comparison of the 18 biometric
specimens in the test data set and reference data set results
in 324 scores in the suspect-specific within-source scores
set. For face data, images used as test data set are degraded
by adding motion blur of 15 pixels with zero angle and
downsampling them by half of the original resolution. The
goal of the degradation process is to make the images in the
test data set similar to a trace image because the original
face images in FRGC database are of very-high resolution
(231 × 251). The comparison is performed using a
commercial face recognition system developed by Cognitec
[28]. The specific values for the blurring and resizing were
chosen empirically where the objective was to reduce the
quality with the constraint that the resultant images could
be compared by Cognitec face recognition system [28]. It
should be mentioned that selection of different values will
have no significant effect on the analysis. This is because it
will mainly shift, along the score-axis, the within-source,
the between-source and the evidence score values. Since the
LR is the ratio of the two PDFs, horizontal shifting of the
functions should have no effect. However, it is possible to
obtain slightly different distributions of the within-source
and between-source scores using different values of the blur
and resolution of the images.
For fingerprint data, there is only one fingermark available

which is used as the test data set. However, the number of
reference fingerprints are very large. In order to have equal
number of scores in the training scores set for each
first person as the suspect and 1 biometric specimen per person

5
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biometric modality, the size of the suspect-reference data set
is increased to 324. Comparison of the one fingermark in the
test data set with the 324 fingerprints in the reference data set
results in 324 scores in the suspect-specific within-source
scores. Motorola Biometric Identification System (BIS)
software (version 9.1) is used for comparison of the
fingermark to the reference fingerprints. In case of the
fingerprint, a fingermark (which simulates a trace biometric
specimen) is compared with a high-quality fingerprint and
therefore no degradation in the quality of the biometric
specimens is required.
For speech data, similar to the face data, 18 specimens are

used as the test data set and 18 specimens are used as the
reference data set. The recognition algorithm is based on
probabilistic linear discriminant analysis approach [29]
which models the distribution of i-vectors as a multivariate
Gaussian. The system is described in [29, Section 2.5] in
detail.
Table 1 Number of scores in the set of the within-source and
the between-source scores

within-source scores
suspect-specific 324
suspect-independent 4 × 324 = 1296
between-source scores
suspect-specific 4 × 324 = 1296
suspect-independent 4 × 1296 = 5184

Table 2 Number of times in which the LR values computed by the
persons (P1, P2, P3, P4 and P5) in the selected subset

Ranges Verbal equivalents

4 < LLR very-strong evidence to support Hp fin
s

3 < LLR≤ 4 strong evidence to support Hp fin
s

2 < LLR≤ 3 moderately strong evidence to support Hp fin
s

1 < LLR≤ 2 moderate evidence to support Hp fin
s

0 < LLR≤ 1 limited evidence to support Hp fin
s

−1 < LLR≤ 0 limited evidence to support Hd fin
s

−2 < LLR≤−1 moderate evidence to support Hd fin
s

−3 < LLR≤−2 moderately strong evidence to support Hd fin
s

−4 < LLR≤−3 strong evidence to support Hd fin
s

LLR <−4 very-strong evidence to support Hd fin
s

total number of agreements fin
s

For each person considered as a suspect, there are 100 values of s gen
LR values computed by the two approaches, 296, 241 and 294 times th
speaker recognition systems, respectively

6
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Table 1 shows the number of unique comparisons (and
hence the number of scores) in each approach of the
within-source and the between-source scores sets
computation given there are five persons in the selected
subset.
Beside studying the overall score-to-LLR functions for

comparison, for a more quantitative analysis of the
differences in LR values, we define score-axis as starting
from the minimum value of the score in the
suspect-independent between-source scores set and ending
at the maximum value of the scores in the
suspect-independent within-source scores set. Then we
generate 100 evidence scores by uniformly sampling the
score-axis and compute the number of cases in which the
two LR values agree and disagree on a given range of LR.
A disagreement is reported when one approach produces a
LR that falls into a different range. These ranges correspond
to different verbal equivalents of the numerical LR values
which can be used in certain situations to report the
forensic evaluation of the evidence. These ranges along
with their corresponding verbal equivalents are shown in
the left two columns of Table 2 [3].
6 Results

The score-to-LLR functions are computed using the
suspect-specific as well as the suspect-independent training
two approaches fall into a same range considering all of the five

Number of agreements

P1 P2 P3 P4 P5 Total

face 0 0 0 0 0 0
gerprint 0 0 0 0 0 0
peech 0 0 0 0 0 0
face 54 54 54 0 0 162
gerprint 0 40 0 0 44 84
peech 0 36 0 38 38 112
face 0 0 0 0 0 0
gerprint 0 0 0 0 0 0
peech 2 0 2 0 0 4
face 9 8 10 8 9 44
gerprint 5 0 8 5 4 22
peech 1 0 2 0 4 7
face 9 10 6 13 7 45
gerprint 8 0 5 6 8 27
peech 4 4 1 2 3 14
face 2 6 0 4 3 15
gerprint 5 0 7 4 7 23
peech 7 4 3 2 3 19
face 0 2 0 5 0 7
gerprint 21 0 23 0 23 67
peech 0 0 0 0 0 0
face 4 4 4 2 4 18
gerprint 5 5 0 0 3 13
peech 37 28 0 31 37 133
face 0 0 0 0 0 0
gerprint 0 0 0 0 0 0
peech 0 0 0 0 0 0
face 1 1 1 1 1 5
gerprint 1 1 1 1 1 5
peech 1 1 1 1 1 5
face 79 85 75 33 24 296
gerprint 45 46 44 16 90 241
peech 52 73 9 74 86 294

erated by uniformly sampling the score-axis. Out of a total of 500
e two LR values agree on one range for face, fingerprint and

IET Biom., pp. 1–12
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scores set in order to compare the general behaviour of these
functions. Figs. 4–6 show the frequency histograms of the
scores in the within-source and in the between-source sets,
the ROC curves of the training scores in the
suspect-specific and suspect-independent approach and the
score-to-LLR functions computed by the ROCCH
procedure as described in Section 2.2.
Note the large variations in the histograms of the

within-source scores for the suspect-specific approach.
Within-source biometric specimens of each person are
selected in such a way so that the variations are as close as
possible across the five persons. However, still we observe
considerable variation in the suspect-specific frequency
histograms of scores. These variations are caused by either
the slight variation in the specimen acquisition process or
because of the fact that some people are easy to be
recognised or differentiated from others [30]. As can be
observed from the histograms of scores, besides the slight
difference in the within-source specimens from person to
person, identity itself has a considerable effect on the
suspect-specific within-source scores distribution. A
biometric recognition system may perform differently for
different persons when it is used to match a set of pairs of
within-source and between-sources specimens.
The area under the ROC curve is used as a summary metric

to assess the discrimination power of a set of within-source
and between-sources scores. The motivation behind plotting
ROC curves in this context is to demonstrate that there is
no general conclusion about the discrimination power when
comparing the suspect-specific and suspect-independent
training scores.
There is a significant difference in the LR values computed

using the suspect-specific and suspect-independent approach.
For example, for person 1 in face recognition case, at the
score location of 0.44, the suspect-specific and the
suspect-independent LR values are 1052 and 78,
respectively. The uppermost and the lowermost horizontal
lines in the mapping functions are because of the proposed
strategy to avoid infinite LLR values. We will refer to LR
values along these horizontal lines as ‘saturated LR values’.
The magnitude of these LR values is directly proportional
to the size of the training scores set and therefore the
suspect-independent approach results in saturated LR values
of larger magnitude than the suspect-specific approach. In
general, for all of the three biometric systems, it can be
stated that there are significant differences in the
suspect-specific and suspect-independent LR values.
Therefore it can be argued that anchoring plays a crucial
role in computation of a LR for a given pair of biometric
specimens.
In most cases, the exact numerical value of a likelihood

ratio is of less importance than the range in which it lies.
This fact should be taken into consideration when
performing such a comparative study. To this end, the
score-axis is uniformly sampled to simulate 100 values of
evidence score s. These scores are converted to LLR values
using both suspect-specific and suspect-independent training
data. For five persons, this implies computation of 500 LLR
values using suspect-specific as well as suspect-independent
approach in each biometric modality. Table 2 shows the
number of cases in which the two approaches compute LLR
values which fall into a same range. As seen from Table 2,
in 296 cases out of 500 for face recognition, in 241 cases
out of 500 for fingerprint recognition and in 294 cases out
of 500 for speaker recognition system, the two LR values
agree on a same verbal equivalents resulting in 59.2, 48.2
IET Biom., pp. 1–12
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and 58.8% agreement rates for face, fingerprint and speaker
recognition systems, respectively.
In case of a disagreement, the differences between the two

LRs are mostly to the adjacent classes. However, bigger
errors, where the two LR translate to verbal equivalents
(classes) which are not adjacent, are also observed. For
example, in case of fingerprint recognition system, the two
LRs of the score value of 1044 are 2.5 and 0.004. Their
verbal equivalents are ‘Moderately strong evidence to
support Hd’ and ‘limited evidence to support Hp’. The
actual differences can be larger even for adjacent classes.
For example, for person 1 in face recognition system, at
score location of 0.44, the suspect-specific and the
suspect-independent LR values are 1052 and 78,
respectively. Although this difference is only to the adjacent
class, still it can have significant effect on the conclusion of
the forensic analysis. Whether the difference can change the
decision or not also depends on the priors which are
calculated from the background information about the case
at hand.
Note that using a different method to map from score

values to LR values may lead to completely different
results. Similarly, a different database of biometric
specimens and a different biometric recognition system to
compute scores can also slightly influence the difference
between the suspect-specific and suspect-independent
approach of LR computation. Authors are currently
investigating the effect on the results when other methods
of score-to-LR conversion such as KDE and logistic
regression are used.
In the experiments not reported in the paper, a third

possibility, ‘generic approach’, is also considered. This is a
similar approach to suspect-independent; however, in the
generic approach, the suspect data was also included in the
suspect-independent sets. The results using the generic
approach were very similar to the suspect-independent
approach and therefore are not shown in order to avoid
cluttered graphs. Furthermore, the suspect-independent
approach, unlike the generic approach, is more useful since
it provides a way for computation of a LR without
obtaining biometric specimens from the suspect.
An obvious difference between the two approaches is the

use of different sizes of the training scores sets. One way to
study the effect of the difference in the sizes of the training
sets between the suspect-specific and suspect-independent
approach is to randomly sample a number of scores equal
to the size of the suspect-specific sets from the
suspect-independent sets. Given the size of the
within-source and between-source sets in the two approach
is the same, the variation in the LR values is only caused
by the nature of the distributions of the scores. Fig. 7 shows
the mapping functions computed by the two approaches
when the within-source and the between-source sets are
equally sized by random subsampling the
suspect-independent within-source and between-source sets
so that the sizes of these sets in the suspect-independent
approach are equal to those in the suspect-specific
approach. Note that reduction in the size of the training
scores reduces the range of LR values that can be
computed. Besides the saturated region of LR values, the
difference in the sizes of the training sets has very small
effect on the resultant mapping function from score to LLR
values. For example, in case of the face recognition system,
for LLR≤ 2, the number of agreements considering original
sizes of the training sets is 129 whereas it is 134
considering equal sizes of the training sets.
7
& The Institution of Engineering and Technology 2014



Fig. 4 Frequency histograms of scores, ROC curves and score-to-LLR functions for the five persons in the selected subset of FRGC face
images database
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Fig. 5 Frequency histograms of scores, ROC curves and score-to-LLR functions for the five persons in the selected subset of the fingerprints
database
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Fig. 6 Frequency histograms of scores, ROC curves and score-to-LLR functions for the five persons in the selected subset of NIST SRE speech
recordings database

www.ietdl.org

10
& The Institution of Engineering and Technology 2014

IET Biom., pp. 1–12
doi: 10.1049/iet-bmt.2014.0009



Fig. 7 Score-to-LLR functions using equal number of specimens in the within-source and between-source sets of the suspect-specific and
suspect-independent approach

Suspect-independent within-source and between-source sets are randomly subsampled so that there are equal number of scores in these sets for the two approaches
a Face recognition system
b Fingerprint recognition system
c Speaker recognition system

www.ietdl.org
It should be mentioned that the suspect-independent
approach to compute LRs is more reliable since it uses
more training data compared to the suspect-specific
approach. The suspect-independent approach is preferred in
cases where small datasets of biometric specimens are
available from the suspect. The advantage of the
suspect-specific approach is that it addresses a more specific
set of hypotheses that the suspect-independent approach and
therefore provides a more relevant answer. However, a LR
computed using small training sets can be very sensitive to
random variations in the training sets and the LR
computation methods. Since reliability is very important in
forensic science therefore it can be concluded that when
enough training data for the suspect-specific approach is not
available, the suspect-independent approach is more reliable
and should be preferred. However, the question of the
relevance of the hypotheses tested should be explicitly
mentioned while reporting the LR.

7 Discussion and conclusions

We discussed the effect of the different training data on the
resultant LR values in the context of face, fingerprint and
speaker recognition systems. The process of conversion of a
score, computed from the comparison of the crime scene
biometric specimen with the suspect biometric specimen, to
a forensic LR is described. It is observed that there is a
significant variation between the LR values computed using
the suspect-specific and the suspect-independent approach.
IET Biom., pp. 1–12
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The differences are more prominent in the higher ranges of
LR values and therefore more caution should be taken if
one approach is used as an alternative to the other.
There has been a lot of research in forensic biometric

community and the LR is now considered as one of the
most appropriate metrics to be used for reporting the
biometric evidence in court. The aspects of the LR
computation such as the variability because of different
nature of the training data; however, need to be considered.
For likelihood ratio computation, ideally the probability
density functions of the two sets of training scores are
required. However, this is not the case in practice and in
best-case scenario, a forensic scientist can use a large
number of score in the training sets to model the two scores
distributions. This is usually feasible when a
suspect-independent approach is followed. However, this
approach answers a less relevant question in forensic
evidence evaluation than the suspect-specific approach. To
enhance the usability of biometric evidence, further works
in at least two directions are needed: improvement in the
technology for automatic comparison of two biometric
specimens and more research on the different aspects of
score-to-LR conversion procedure; particularly studies are
needed which point out issues so that practitioners are
aware of them and take them into account when reporting a
LR. A possible implication of the presented study could be
the investigation of the robustness of each biometric
modality towards the two different kinds of training data.
Furthermore, the knowledge of how much the two LRs can
11
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be different in worst-case is also useful for forensic
practitioners. Further directions for future work include
quantifying the influence of biometric specimens from other
databases, different biometric recognition systems and other
score-to-LR computation methods.
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