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Filling of charged cylindrical capillaries
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We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having
charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force
on the liquid column and also causes a reduced viscous drag force because of decreased velocity gradients at
the wall. Both these effects essentially stem from the spontaneous formation of an electric double layer (EDL)
and the resulting streaming potential caused by the net capillary-flow-driven advection of ionic species within
the EDL. Our results demonstrate that filling of charged capillaries also exhibits the well-known linear and
Washburn regimes witnessed for uncharged capillaries, although the filling rate is always lower than that of the
uncharged capillary. We attribute this to a competitive success of the lowering of the driving forces (because
of electroviscous effects), in comparison to the effect of weaker drag forces. We further reveal that the time at
which the transition between the linear and the Washburn regime occurs may become significantly altered with
the introduction of surface charges, thereby altering the resultant capillary dynamics in a rather intricate manner.
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I. INTRODUCTION

For close to a century, starting from the pioneering works
of Lucas [1], Washburn [2], and Bosanquet [3], the filling
dynamics of thin capillaries has attracted immense attention
of the fluid mechanics community. The attention has stemmed
from various reasons: First, the capillary filling process is
an ideal example of low Reynolds number flow; second, such
filling and the resulting capillary dynamics is extremely crucial
to understand biofluid transport in living organisms [4-9]; and
third, this filling process is intrinsic to several industrial and
scientific applications [10-14]. The central understanding of
capillary filling problems is that the filling occurs by a balance
of the driving surface tension and the retarding viscous forces.
This leads to the celebrated Washburn regime, where £ ~ Jt
(€ and ¢ are the filling length and the filling time, respectively)
[2,3,15-22]. Recently, there have been efforts to look beyond
the classical Washburn regime. For example, researchers have
identified a linear or an inertial regime (where £ ~ t) preceding
the Washburn regime [23-31], and an oscillatory regime
(witnessed in capillary rise problems) replacing the Washburn
regime [15,23,32-37]. In fact, there can even be a prelinear
regime, in case one accounts for the capillary end effects
[38,39]. In addition, capillary filling has been studied in a
variety of other systems, such as in porous media [40—44],
in multiple fluid systems [45—48], in granular media [49], in
irregular or noncircular geometries [50,51], etc.

Despite such overwhelming attention on different issues
related to capillary filling, problems on filling of charged cap-
illaries have remained relatively unexplored. This is especially
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surprising given the large number of applications that require
prefilling of charged capillaries. For example, the entire
science of electro-osmosis in microfluidic transport is based on
prefilling of charged capillaries with an electrolyte solution.
In fact, the filling of charged capillaries represents a small
subset of the massively explored domain of electrocapillary
problems [52-58]. A direct experimental study that pinpoints
the role of surface charge on capillary filling is still missing.
Only a handful of experimental studies provided an indirect
reference to the possible implications of wall charge on
capillary filling [59,60]. These studies [59,60] reported filling
of glass nanochannels by de-ionized water and observed a
filling rate smaller than that in an uncharged capillary. This
reduction was hypothesized to occur due to a possible retarding
electrical effect, caused by the spontaneous deprotonation of
the capillary wall during the filling process. Unfortunately, a
comprehensive mathematical analysis of the problem is absent.
The only major related theoretical study is by Phan et al. [61],
who calculated the streaming potential and the electroviscous
effects [62—68] during the filling of charged nanochannels.
This study, however, suffered from three key limitations. First,
itdid not consider the effect of the streaming-potential-induced
retarding electro-osmotic transport in modifying the drag force
on the filling liquid column. Second, it did not account for
the overlap of the electric double layer or EDL. Such an
overlap, which occurs when the EDL thickness A is larger than
the capillary radius or nanochannel half height [69,70], may
become extremely important in nanoscale capillary filling.
Third, it did not pinpoint the role of surface charge in affecting
the different regimes (linear or Washburn) during the filling
process. In this context, the studies of Jain and Chakraborty
[71] and Waghmare and Mitra [20] are worth mentioning. In
these studies, the authors investigated the combined effect of
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pH (neutral or acidic) and applied transverse electric field
in dictating the capillary filling dynamics. However, in these
studies, too, the distinctive aspects of the filling dynamics of
charged capillaries relative to the uncharged ones remained
unaddressed.

In the present study, we provide a closed-form analyti-
cal solution for describing the filling dynamics of charged
horizontal capillaries. The inner walls of the capillary can
be either originally charged (i.e., charged in air) or may
acquire charge in contact with the filling liquid. The filling
liquid is considered to be an electrolyte solution containing
dissociated salt ions. Therefore, in response to charge on the
wall, for both these cases, an EDL develops. The mobile
ions within this EDL are transported downstream by the
capillary flow. This eventually leads to the generation of an
electric field, known as the streaming potential. This electric
field has two closely related effects. First, it leads to a
retarding electrical force (opposing the capillary drive) on the
filling liquid column. Second, it modifies the flow profile by
triggering an electro-osmotic transport opposing the capillary
flow. This leads to a modification of the viscous wall drag force,
because of an alteration of the velocity gradient at the capillary
wall. We can connect such dual consequences of the electric
field with the classical notion of the streaming-potential-
induced electroviscous effects [62—65,72,73]. In the presence
of the streaming potential, an induced electro-osmotic flow,
opposing the driving pressure-driven transport, sets in. In the
present study, the consequent modified velocity field is used
to compute the net wall drag force on the liquid column,
with the liquid column being considered as a lumped mass.
Such a lumped-mass-based description of the filling column
column would imply that we must additionally account for
the electrical force. This force is simply the unbalanced EDL
charge (in the liquid column) times the electric field. This
dual effect of the electric field is analogous to the dual effect
of the surface tension force. The surface tension, because of
the curvature of the air-liquid meniscus of the filling liquid
column, triggers a pressure gradient that drives a flow field.
This flow field exerts a drag force on the liquid column. At the
same time, the surface tension force induces a pulling force on
the filling liquid column that is treated as a lumped mass.

We study the charged capillary filling dynamics based on
certain simplifying assumptions. First, we consider that the
wall charge and the induced EDL electrostatics do not affect
the dynamic contact angle that governs the capillary drive—the
role of such a charge-affected dynamic contact angle has been
discussed elsewhere [53]. Second, we consider that the EDL
and the resulting electrostatic potential and the ion number
density distribution are strictly one dimensional (i.e., varying
only in the radial direction), and neglect the EDL in the wedge
formed at the three-phase contact line [74-79]. Third, we
neglect the charge accumulation at the air-liquid meniscus
of the filling column. We discuss the implications and validity
of this particular assumption in great detail in Sec. III D.
Fourth, we restrict our analysis to capillaries of radii much
larger than 10 nm, so that we may neglect noncontinuum
effects such as the inhomogeneous viscosity (near the walls),
layering of the liquid molecules, etc. Finally, we neglect effects
such as finite ion size [80—84], solvent polarization [85,86],
etc., that may become significant in a nanoscale capillary.
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Results show that the filling rate for a charged capillary is
substantially smaller as compared to an uncharged capillary.
This is characterized by a smaller dimensionless filling length
£ for a given dimensionless filling time 7, although the
inertial and the Washburn regimes are present for the charged
capillary as well. Such a reduced filling rate indicates that
the effect of retarding electrical force on the filling liquid
column outweighs the influence of reduced drag caused by
the back electro-osmotic transport. Another important result
is the role of capillary wall charges in dictating the transition
from the inertial to the Washburn regime. We find that the time
needed for this transition significantly increases for the charged
capillary, as compared to the uncharged capillary. Also this
increase is a monotonic function of the dimensionless ionic
Peclet number and dimensionless wall potential [63], but a
nonmonotonic function of the dimensionless EDL thickness.
On the contrary, the equivalent filling length over which this
transition occurs shows a distinctly nonintuitive behavior. For
example, for a smaller dimensionless EDL thickness, this
transition filling length is larger, whereas for larger extents of
the EDL overlap, it is distinctly smaller than that corresponding
to the uncharged capillary. This final result can be explained by
unraveling the role of the additional electrical force in altering
the slope of the ¢-vs- variation for the linear inertial regime
and the alteration of the drag coefficient by considering the
retarding electro-osmotic transport.

II. THEORY

We consider the filling of a charged circular capillary as
shown in Fig. 1. The instantaneous filling length is denoted
as ¢ and the corresponding filling time is considered as ¢. The
£-vs-t relationship can be obtained from the force balance on
the liquid column (see Fig. 1):

d
E(mu):FC—i-FD—i—Fe. €))]

In Eq. (1), m = w R?>p£ (R is the capillary radius and p is the
liquid density) is the mass of the liquid column, u = % is the
average velocity of the liquid column (which is also the filling
rate), F, = 2K ;wRcosfy (y is the surface tension, 6 is the
dynamic contact angle [37], and K is the factor that accounts
for the variation in the driving capillary forces due to effects
such as precursor film formation, surface roughness, etc. [37])

FIG. 1. (Color online) Schematic of an electrolytic solution fill-
ing a charged capillary. The schematic also shows the different forces
on the filling liquid column. The circular boundary of the half-shaded
region is the three-phase contact line.
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is the driving capillary force, Fp = 27 R€n(du/dr),—g =
—Kynnl(de/dt) (n is the dynamic viscosity and K, is the
prefactor that depends on the functional form of the velocity
profile; for example, for a fully developed Poisseuille flow,
K> = 8 [37]) is the retarding drag force, and F, = g,Es (g,
is the net unbalanced charge contained in the liquid column
and Ejy is the induced streaming electric field; both of these
quantities are described in detail later) is the net electrical
force. As a consequence, we can rewrite Eq. (1) as

, d (,dt de
TR p gz =2K1ncoseyR—Kz7TTIEE+‘1pES'

2

Here we shall first describe g, and Eg. To do so, we need
the EDL potential distribution . Therefore, we start with the
calculation of .

Calculation of the EDL potential v . Both g, and Eg depend
on the EDL potential i (see below). To obtain yr, we invoke the
one-dimensional Poisson-Boltzmann equation in cylindrical
coordinates, so that we may write

1d ( dlﬂ) ez(ny —n_) 2ezng . (ezw>
r—/— ) =— = sinh | — .

rdr dr €€ €0 kgT

3)

In the previous equation, we assumed that the ionic number
densities n are governed by the Boltzmann distribution that
can be expressed as

Nt = Moo €XP (:Flz—g). “4)

In the above equations, n., is the number density of both
the cations and the anions in the bulk, ¢ is the EDL
electrostatic potential, z is the ion valence (we consider a
symmetric electrolyte), e is the electronic charge, kg T is the
thermal energy, € is the permittivity of free space, and €,
is the relative permittivity of the medium. We would like to
emphasize here that Eq. (4) governing the ion distribution
remains valid even for the case of small enough capillary
radius where the EDLs may overlap (i.e., /R > 1, where A =
\/ €oe-kpT /2nq0e2z? is the EDL thickness). For such a case,
the capillary centerline electrostatic potential is ¢ (where
¥¢ #£ 0), and the corresponding ionic number densities are
ny = nS exp [Fez(Y° — ¥)/kgT](wheren are the capillary
centerline ionic number densities). Assuming that the capillary
is connected to a bulk electrolyte reservoir, we can relate n<
and ¥ ¢ to the corresponding (known) values at this reservoir
(where no, and ¢ = 0 are the ionic number densities and the
EDL potential) as n,. = no, exp (Fezy¢/kgT), so that we do
get ny = ny exp (Fezy/kpT). Therefore, Eq. (4) is equally
valid for the case of overlapped EDLs, as long as n is the
ion number density in the reservoirs connecting the charged
capillary.

We can obtain an analytical solution of Eq. (3) for the
case where the capillary wall potential () is small (/o] <
25 mV), so that we can apply Debye-Hiickel linearization [73]

to reduce Eq. (3) to
1d dy v
- r— ) ==. 5

rdr (r dr ) A2 ©®)
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We solve Eq. (5) in the presence of the condition ¥ (r = R) =
Yo and dy/dr(r = 0) = 0 to obtain i in dimensionless form
as

§ = o D) (©)

Io(1/2)

where ¥ = ez /kgT, Yo = ezyo/kgT,7 =r/R, X = A/R,
and Iy(x) is the modified Bessel function of the first kind
of order 0 and argument x. Please note we also perform a
full-scale numerical solution of the EDL potential distribution
[see Eq. (3)], valid for any general . The numerical
solution is performed by using the built-in functionODE45 in
MATLAB. O0DE45 employs the adaptive step size Runge-Kutta
(fourth-/fifth-order) method for solving an ordinary differential
equation numerically.

Calculation of q,. q, is the net unbalanced charge contained
in the liquid column. This charge is the charge contained in
the EDL formed in response to the charge on the inner walls of
the capillary. Such charge on the capillary walls can be either
intrinsically present (i.e., the walls are charged in air) or may
be acquired because of de-ionization when the filling liquid
comes in contact with the capillary wall. In the case where
the filling liquid is an electrolyte, the electrolyte ions will be
attracted towards the wall charge, thereby forming the EDL.
Such an EDL may form even when the liquid does not contain
electrolyte ions. For such a case the ions in the EDL will
be the ions obtained from the dissociation of the liquid (e.g.,
H;0™ and OH™ ions obtained from the dissociation of water).
The assumption that an EDL forms instantaneously after the
liquid column comes in contact with the charged solid is based
on the large difference between the EDL formation time scale
(tepL) and the capillary filling time scale. Tgpp, ~ A2/ D (where
A~ 1-100 nm and D ~ 1072 m?/s is the ion diffusivity),
so that tgpp. = 107°—10"> s—hence the EDL formation time
scale is substantially smaller than the capillary filling time
scale. A similar order of magnitude difference must also exist
between the capillary filling time scale and the time scale of
the chemical reactions at the capillary wall. These reactions
become important when the capillary wall acquires charges
owing to de-ionization in contact with the filling liquid. There
is another assumption implicit in the derivation of Eq. (4):
We assume that the ions that form the EDL in the capillary
(either the electrolyte ions or the ions obtained from the
dissociation of water or the de-ionization of the solid) must also
be present in the reservoir connecting the capillary. Of course,
this assumption necessarily disregards the fact that due to the
chemical reactions at the capillary walls, these ions may be
present in different forms within the capillary and the reservoir.
For the case when there is an intrinsic charge on the capillary
wall, the imbalance in the number densities between the coions
and counterions within the EDL is accounted for by the fact
that the capillary is connected to an infinite reservoir that takes
care of this imbalance. In other words, this imbalance is not an
issue, since the capillary is not an isolated system; rather, it is
connected to an infinite reservoir of the electrolyte. For the case
where the wall attains the charge on because of de-ionization
in contact with the filling liquid, the wall charge (and hence
the wall potential) is a function of the ion concentration and
the pH of the filling liquid [72,87-90]. There are well-known
relationships connecting the wall potential as a function of the
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ion concentration and buffer pH. Of course, we do not use any
of these relationships; rather, we consider only a parametric
variation of v and ion concentration (or EDL thickness). To
make such a scenario perfectly feasible even for this case
(where the wall potential depends on ion concentration and
buffer pH), one needs to operate at a specified buffer pH,
which ascertains our desired combination of wall potential and
ion concentration or EDL thickness (for more details, kindly
refer to Das et al. [72]).

The net unbalanced charge contained in the liquid column,
which is the net unbalanced charge in the EDL, can be
expressed as [using Eqs. (4) and (6)]

R 4 2.2
q4p = Ef eziny —n_)2nrdr = — Mo / Yrdr
0 kBT

= —47rEnooezR2

1

JrdF = [ Jor 11(1/»} ™
0 A Io(1/2)
where I;(x) is the modified Bessel function of the first kind
of order 1 and gy = 2mepe, kpT{/ez has the units of charge.
Ii(1/x) — 0 and Iy(1/X) — 0 when 1/X — 0, i.e.,, A — 0.
Using the condition that [1,(x)],—¢ = %(%)”, we can obtain
the limiting value of ¢, from Eq. (7) [for the case when 1 /A —
0, i.e., the case when both 7;(1/1) — 0 and Io(1/1) — 0] as

1
@pis0 ~ ( q0Vo== ) =0. 8
e 2)"2 1/A—0

The fact that the net unbalanced charge goes to zero for large
dimensionless EDL thickness values (i.e., when 1/X — 0)
is clearly evident from the figure in the inset of Fig. 2(a).
Physically, such a behavior can be explained by noting that
when A — o0, i.e., there is a large EDL overlap, we have 1 —
oo and/or R — 0. The former case would mean a negligible
ion number density (since n,, ~ 1/ 22), whereas the latter case
would imply a negligible liquid volume. For either of the cases,
therefore, it is intuitive that the net charge content in the liquid
volume will be negligible. Such a dependence is also evident
from Eq. (7), which clearly shows that g, ~ R? and qp ™~ Neo.
Please note that for generalized v, i.e., where we do not have
an analytical solution of ¥, we obtain g, numerically from the
relationship [see Eq. (7)] ¢, = —4m€nocezR? fol Yrdr.

An important assumption intrinsic to Eq. (7) is about
the one dimensionality of the EDL potential i and the
ionic concentration distribution, i.e., we assume that all these
variables only vary with the radial coordinate r. This is
significant in light of the fact that recent studies [61] have
suggested that in filling of charged capillaries there must be
an accumulation of unequal ion concentration at the moving
interface. This would mean that ¥ and n. would also be a
function of the axial coordinate x. However, we neglect the
contribution of such a distribution in the calculation presented
in Eq. (7). We have provided a detailed discussion later (see
Sec. III D) on the significance and validity of the assumption
of neglecting ion accumulation at the moving interface.

Calculation of Eg. To obtain Eg, we make the net ionic
current equal to zero, i.e.,

R
I = ez/ (nyuy —n_u_)2ardr =0. ©)]
0
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A

FIG. 2. (Color online) (a) Variation of the magnitude of the
dimensionless streaming potential | Es/Ey| with dimensionless EDL
thickness A with different values of the ionic Peclet number S. In
the inset of the figure, we show the variation of the magnitude of
the dimensionless charge |g,/qo| with A. |, /qo| is independent of
S. (b) Variation of the dimensionless ratio A’ = g, Es/my R with x
for different values of S. For both plots, except for the case where
[0l = ez|wol/ kT is specified, we always take || = 1. For the
case where || = 4, we obtain the results numerically.

Here u are the ionic velocities expressed as
Us = Uady + Ucond,+ = (up +ug) £ ezEs/f, (10)

where ucong,+ = FezEg/f are the ionic conduction velocities.
Here f is the ionic friction factor, assumed identical for the
cations and anions [63-65]. Please note that the analysis is
equally possible in case f is not identical for the cations and
anions. Also u,qy = up + ug is the ion advection velocity.
U,qy 1s identical for cations and anions and is a linear com-
bination of the pressure-driven velocity (up) and streaming-
potential-induced electro-osmotic velocity (ug). Considering
the velocity field to be steady and fully developed, we can
write

up = —i<dp/dx>R2(1 _P),

VoE
up = — ;’7’0 VLS (| _ 510,

(1)
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where —dp/dx is the applied pressure gradient. Using
Egs. (10) and (11) in Eq. (9), we finally get [using —dp/dx =
(2y/R)/¢ and Eqgs. (4) and (6)]

AW /0 Jy 1L =1/ RO)yrdr

Eg =

e)? e7)?
ARl 4 €D [F 2y (1 — y/Yo)rdr
Jor2L(1/1)/To(1/%
=E0|:1/fo 2(1/ _)é o(1/ ):|7 (12)
S/24+YyMp
where
B/ BA/R 13
TR O/
Here Eq = f:zkyl;l has the units of electric field and § =
526 < is the dimensionless ionic Peclet number [63]. Similar
o€ kpTf

to g, for generalized vy, E is obtained numerically from the
relation

0)? R
oG v /0 Jy' r( = P Ry
T T Gt Jo 20—/ ordr

feoe kT
Calculation of the electrical force q,Es. The electrical
force F, = q,Es on the liquid column [see Eq. (2)] can be
expressed as [using Eqgs. (7) and (12)]

ek L(1/M)(1/%)
S/2+ My [Io(1/D)]?

For generalized v, F, can be obtained from the numerical
values of ¢, and Eg. It is worthwhile to discuss here the
origin of this retarding electrical force F, = ¢,Es on the
filling liquid column. The streaming potential is fundamentally
created whenever there is an axial charge separation by the
advection of any fluid mass with a net charge imbalance. Such
an advection first generates the well-known streaming current.
However, since there is no externally employed electric field,
the net current within the system has to be zero. This ultimately
results in the generation of an electric field Eg, with Eg being
directed opposite to the direction of the advective transport.
For the present case, during the filling process there is a
continuous advection of a mass of liquid with a net charge
imbalance (the EDL is the source of this charge imbalance).
Hence, by applying the principle of generation of the streaming
potential, we can safely assume that there will always be a
streaming potential accompanied with the process of filling of
charged capillaries. It is well known that in the presence of
the streaming potential, the per unit volume body force term
used in the Navier-Stokes equation describing the fluid flow
is p.E; = ez(ny — n_)Eg. Therefore, when we consider the
force on the total mass of the filling liquid column, we need to
integrate this force over the entire volume of the filling liquid
column, and that force is thus ¢ fOR ez(ny —n_)2nrEsdr =

[£ fOR ez(ng —n_)2mrdr|Es = q,Es = F, [see Eq. (7)].
Calculation of the drag force. The drag force on the liquid
column can be expressed as

Fp =27 REn(Ou/0r),—g. (15)

Eg =

F,=qyEs=—4nyR (14)

Therefore, to obtain the drag force, we need the velocity
profile. In classical capillary filling studies [2,3,15-22,59], the
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drag force has been computed considering a fully developed
pressure-driven Poisseuille flow profile:

1 dp _ _
U=up= —EaRz(l — ) = 2up(1 — 7%),  (16)
where
up2mrdr 1d
Uavg = —fo =R (17
fo 2wrdr 8n dx

Therefore, using Eq. (16) in Eq. (15), we shall get (using
Uaye = dl/dt)

Fp=—-8n Edg— Kym Edg (18)

which implies K, = 8 [see Eq. (2)].

For the present case, this simple formulation needs to be
modified, since now the flow is a fully developed combined
pressure-driven and electro-osmotic transport:

€oerPoEs (1 B i)
n ‘;DO '
(19)

d
u—up+uE——4—d—pR2(l —FZ)—

Therefore, we may write

[ up +ug)2nrdr

Uayg =

fOR 2wrdr
fOR up2ardr + fOR ug2ardr
= R = Uavg, P T Uayg E
Jo 2mrdr
1d Yo E - I 1/
4p g2 _ €€, Vo Es 1—2 1(1/2) 20)
87] dx n Io(l/)»)
Using Eqgs. (20) and (6) in Eq. (19), we shall get
i ) Uave E _ 10(7/)_\)
U =2y p(1 —7°) + [ 5 0D |:1 Ik 21)

To(1/%)

We can relate uug g (O Ugg p as [using Eq. (12) and the
condition —dp/dx = 2y /R)/{]

Uavg E = _8¢3Nkuavg,P7 (22)
where
LA/M LA/
Ny = [1 _ i I‘(m)} PRSI (23)
I/ | S 4 g
Hence, we can now write
Uavg = Uavg, P + Uavg, E = Uavg, P [1 - 81/_/3N)\<] . (24)

Therefore, the actual velocity profile can be expressed as

7.2
U= 2ua—v_g2(1 _ ,72) _ Hayg [83_021\])»]
[1—8Y5N,] [1- 82N, ]
! L7 /2)
- . 25
" T —2300m] [ 10(1/»} 25)
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From the above equation, we can write

<d_u> _ Augyg l Uavg [S&gN)\]
dr)._x  R[1—8yZN;] X R[1—8yZN;]
1 11(1/)_~):|
_ — . 26
STy |:10(1//\) 2o

Therefore, using Eq. (26) in Eq. (15) and u.y, = d£/dt we get
the drag force as

. de
FD = _KZTETIEE’ (27)
where
. 8 1 [1695N;]
PT1-8YN, A1 -8YEN,]
1 Ii(1/x
T [léiljf\ﬂ 28)
[_ 10(1/1)]

The closed-form expression for K} provided in Eq. (28) is
valid for small . Please note that for generalized vy, we
shall get

- 255(%)7:1
% - ES% + Eg fol Ipfdf’

K) =

where

[y sinh (@)F(1 — P2)dF

— 1
E =3 —
2 [y cosh ()FdF + 24 /01 (1- %) sinh (Y)FdF

S

is the expression for the dimensionless streaming potential
used for numerical calculation (valid for any general ).

Length-versus-time relationship. Above, we have obtained
all the components of the force balance equation [see Egs. (1)
and (2)] governing the capillary filling. Equation (2) can now
be expressed in dimensionless form as

d (pat =A Cfdg + A (29)
di \di ) df ’

where I =1/, (1. = /pR3/y is the capillary time scale),
A =2K,cos6,C = K,Oh(Oh = n//pRy is the Ohnesorge
number), and [using Egs. (7) and (12)]

o WEs _ w§§2 WADBAD g,
Ty R S/2+ygMp  Ij(1/2)
(please note goEo/my R = 4). For larger v, we obtain A’
numerically.
Solving Eq. (29) analytically under the condition that the
solution passes through zero and £7—y = 0, we can obtain the
length-versus-time relationship as

2 24+ A 2(A+A)
C C?
Please note that for larger ¥y, A" and K, (and hence C) are

obtained numerically (as discussed above), but the analytical
relationship expressed in Eq. (31) remains perfectly valid.

[l —exp(~CD].  (31)
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III. RESULTS AND DISCUSSIONS

The effect of charge on the capillary, which induces a
streaming potential in the presence of the capillary transport, is
manifested in two different ways. First, it imparts an electrical
force on the liquid column, with A’ being the dimensionless
representation of this force. Second, it induces a back electro-
osmotic transport which changes the drag force, with the new
drag force being quantified by the parameter K. These two
factors combine to alter the overall £-vs-¢ signature of the
capillary filling process. In classical context, the streaming
potential has mostly been described to induce this electro-
osmotic transport that eventually opposes the pressure-driven
transport and in the process reduces the volume flow rate.
However, this additional contribution of the electrical force
arises from treating the filling capillary column as a lumped
mass, as discussed earlier.

A. Variation of the electrical force on the liquid column

Electrical force exerted on the liquid column is a combina-
tion of two components: the streaming potential Eg and the net
EDL charge g,,. Variations of both of them, in dimensionless
forms, as functions of the dimensionless EDL thickness A
(please note that in an experiment one can increase A either
by lowering the ion concentration or by reducing the capillary
radius), are depicted in Fig. 2(a). The dimensionless streaming
potential (E) first increases (in magnitude) with A, ultimately
attaining saturation at a larger overlapped value of A (A = 1
signifies the start of the EDL overlap; Ref. [72] also reports
such a behavior). Such a trend can be explained from the
functional dependence of E s on the EDL potential ¥ and hence
X [see Eq. (12)]. For thicker EDLSs, there is a finite value of the
EDL potential even at larger distances from the capillary wall.
This enhances the streaming current, which is proportional to

fOR r(1 —r2/a*)ydr. In case A becomes substantially large
(i.e., when EDLs overlap), ¢ attains a uniform value (equal
to the dimensionless wall potential v/, we represent this con-
dition mathematically as ¥ — ) across the entire capillary
cross section, and therefore ceases to vary with . This causes
the streaming potential to saturate at a given value at large
overlapped X values. The second issue concerning Ey is its
dependence on the dimensionless ionic Peclet number S (see
Ref. [91] for an estimate of §). Eg decreases monotonically
with S, and such a dependence can be explained following
the analysis presented in several other studies [63,65]. The
magnitude of the net dimensionless charge contained in the
liquid column |g,| [see Eq. (7)] decreases monotonically with
X [see the inset of Fig. 2(a) and the discussions following
Eq. (7)]. In Fig. 2(a) we show the variation of Eg and g/, for
both small vy (for which we get closed-form analytical results)
and larger ¥ (for which we need numerical results). For larger
Yo, Es gets reduced (see Ref. [63] for a detailed explana-
tion), but |g,| is substantially enhanced because of a larger
counterion concentration required to screen the larger wall
charge.

A’ is the dimensionless quantification of the net electrical
force. A’ is a product of Eg and ¢,, with the product
made dimensionless with the surface tension force ym R. A’
first increases (in magnitude) with A (for small A values)
manifesting a more dominating influence of the streaming
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A

FIG. 3. (Color online) Variation of the dimensionless ratio
K}/ K, with the dimensionless EDL thickness 2 for different values of
the dimensionless ionic Peclet number S. The ratio K/ K> is equal to
the ratio 1/n,pp, Where 14y, is the apparent viscosity characterizing the
electroviscous effect. Except for the case where |1/70| = ez|Yol/ksT
is specified, we always take |y| = 1. For the case where |1/_/0| =4,
we obtain the results numerically.

potential. However, beyond a critical 2, the effect of |g, |
becomes more dominant, since for larger X, Eg ceases to
increase with A. This ensures a decrease in A’ with A, ultimately
becoming negligible at large overlapped A values. Another
important observation is that the sign of the dimensionless
electrical force is always negative (independent of the sign
of the wall potential), indicating that the net electrical force
always opposes the capillary filling process. This occurs since
when ¥ > 0, Es > 0 and g, < O (since the counterions are
negative), whereas when Yo < 0, Es¢ <0 and Gp > 0 (since
the counterions are positive).

B. Variation of the drag force

Figure 3 shows the variation of the parameter K}/K>,
signifying the alteration in the drag force on account of
considering a combined pressure-driven and electro-osmotic
transport. This drag force is the wall-induced drag, which is
solely a function of the velocity profile. Hence a larger net
velocity will imply a larger value of this drag force. This
ratio K} /K, is always less than unity. This signifies that the
net drag force of the combined transport is always lower
than that of a pure pressure-driven transport. This occurs
as the streaming-potential-induced electro-osmotic transport
opposes the pressure-driven capillary transport. For smaller
X, the ratio K;/K, decreases with A, manifesting a larger
influence of the retarding electro-osmotic transport. However,
beyond a critical A value, K}/K, increases with A, finally
becoming 1. This signifies that for large extents of EDL
overlap, there is no effect of the retarding electro-osmotic
transport. This electro-osmotic transport, which causes the
lowering of the drag, depends on the streaming potential Eg
and the electro-osmotic flow profile that varies as 1 — ¥ /v.
E increases with X, and this increase, particularly for small
X [see Fig. 2(a)], is responsible for an equivalent decrease
in the drag coefficient for such A values. However, at larger
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X, Eg ceases to vary with A [see Fig. 2(a)], whereas the
corresponding electro-osmotic velocity [~(1 — ¥ /)] would
tend to zero (since ¥ — ). Therefore, the electro-osmotic
flow gets weakened leading to an increase in the ratio K}/K»
to a value close to unity for larger A values. Key to note
here is that the critical A value beyond which K é /K starts to
increase is different from the A value beyond which |A’| starts
to decrease. This can be justified by noting that the magnitude
of dimensionless net charge |g,| and the electro-osmotic
flow profile 1 — ¥y /vy demonstrate different functional de-
pendences on A, although both decrease monotonically with
. Please note that this ratio K;/K» is equal to the ratio
1/Napp» Where n,pp, is the apparent viscosity characterizing
the electroviscous effect. Here too we provide results for
both small and large v,. Electro-osmotic flow velocity ~ v,
and hence larger v/ enhances the streaming-potential-induced
retarding electro-osmotic transport, causing a weaker net flow
and hence a weaker drag (quantified by a weaker K;/K»
ratio).

C. Capillary filling dynamics

In this section, we shall discuss the central results of the
paper, namely, the role of charge on the capillary walls in
affecting the filling dynamics. Figure 4 clearly shows that for
charged capillaries, the filling speed is reduced, as evidenced
by a smaller dimensionless filling length £ for a given

0.6} Inset 1
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140

20|
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FIG. 4. (Color online) Variation of Z-vs-f for uncharged and
charged capillaries. In the plot, we indicate the initial inertial regime
[23,30] (where {~ f) and the Washburn regime [2,3,15-23,30,37,59]
(where £ ~ /7). £-vs-t behavior for these two regimes is separately
magnified in insets 1 and 2 of the plot. The results for charged
capillaries are provided for different values of S. We choose
dimensionless EDL thickness A values, corresponding to these S
values, such that the magnitude of the electric force on the liquid
column [see Fig. 2(b)] is maximum. In the main plot and the plots
in the inset, we use a bold line for the uncharged capillary and a
dashed line for the charged capillary (S = 0.3 and X = 0.2178). For
the plots in the inset, dashed-dotted lines represent the case for the
charged capillary (S =3 and A = 0.2911), whereas the plot with
square markers represents the case corresponding to larger |1/_/o
(S =23 and X = 0.1265). All the results are shown for Oh = 1,
A =2K,cosf =2, and || = 1 (except for the case of larger WO
where we take || = 4).

s
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FIG. 5. (Color online) Variation of the ratio Z./%c = £e.cn/Le
with the dimensionless EDL thickness A for different values of the
dimensionless ionic Peclet number S. The plotted ratio is independent
of Oh, although £, and Z. ., depend on it. For example, we have
2. = 0.2964 (for Oh = 1) and Z, = 2.964 (for Oh = 0.1), so that the
linear regime can be defined for Z. x Oh « 1[30] (and the transition
from a linear to Washburn regime would occur for £, x Oh ~ 1 [30]).
In the inset of the figure, we plot the ratio 7, o /% = t..cn/t. With A for
different values of S. Here both 7. ., and 7. are independent of Oh,
and we get ., = t/7. = 0.2883, i.e., the linear regime is witnessed
for t+ < 7. and the transition from the linear to Washburn regime
occurs for ¢ ~ t. [30]. For these plots, except for the case where
[l = ez|Wol/ ks T is specified, we always take ‘1/_/0‘ = 1. For the
case where |1ﬁ0| = 4, we obtain the results numerically.

dimensionless time 7. This becomes possible since the effect
of the retarding electrical force on the filling liquid column
substantially overweighs the consequence of reduced drag due
to back electro-osmotic transport. However, the presence of
the charge on the capillary does not affect the appearance
of the linear and the Washburn regimes that characterize the
classical horizontal capillary filling process. In the two insets
of Fig. 4, we have separately magnified the £-vs-7 behavior for
the linear and the Washburn regimes for the charged and the
uncharged capillaries. The results in Fig. 4 as well as those in
the two insets are shown for different S values. Also for these
figures, the dimensionless EDL thickness value is so chosen
that, corresponding to the chosen S, the electrical force on
the liquid column [see Fig. 2(b)] is maximum. Results are
provided for both small and large V. An increase in S lowers
the electrical force, and this is manifested through a smaller
difference in the £-vs-7 variation between the charged and the
uncharged capillaries. Larger v/, leads to a larger magnitude
of the retarding electrical force [see Fig. 2(b)], causing a larger
value of this difference (for identical S).

Figure 5 and its inset demonstrate the consequence of
charge on the capillary in affecting the critical capillary filling
length (£,) and the critical filling time (¢.) corresponding
to which the £-vs-¢ variation transits from the linear to the
Washburn regime. Here we denote €., and f. o, as values
corresponding to the case of the charged capillary. From the
analytical £-vs-t relationship [see Eq. (31)], we can demarcate
the linear regime as the one where exp(—Cf) < 1, i.e.,
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|Cf| <« 1, since for such a case we can expand Eq. (31) as
204+ ANt 2A+ A 1,
oo AT AT _eiylep
C C? 2
SPx(A+A =i~

A+ A'T. (32)

For the present case, we consider that such a purely linear
regime ceases to exist for exp (—Cf) < 0.1. Therefore, 7. or
t..ch i considered as the time such that exp (—C%.) < 0.1 and
exp (—Cf.cn) < 0.1. The corresponding values of the filling
length are considered as £. and £, .,. Using this description,
we can clearly justify 7. .w/7. ~ K»/K} (since C = K, Oh),
and this can be witnessed in the figure in the inset of Fig. 5.
This figure also shows that the ratio 7. /7. is always greater
than unity, indicating a delay in the linear-to-Washburn regime
transition for the charged capillary. This ratio, at a given A, is
always larger for a smaller S. Also for larger v, this ratio
is substantially augmented, indicating a much weaker filling
dynamics caused by the presence of a much larger retarding
electrical force [see Fig. 2(b)]. Further, #. /7. first increases
with X, attains a maximum, and then decreases with the
EDL thickness. All these variations exactly follow the inverse
behavior of the ratio K;/K, with S and A (see Fig. 3). A
variation of the corresponding filling length, quantified by the
ratio £, v /£, (see Fig. 5), on the other hand, cannot be inferred
so trivially. For a given time, £ is always smaller for a charged
capillary (see Fig. 4). However, when we are looking at two
disparately spaced times, i.e., we are studying the filling length
for a time that is much larger for the case of charged capillary,
it becomes possible that the corresponding filling length for
the charged capillary is more than that for the uncharged case.
This is precisely the case for smaller A. Here the ratio E_C,Ch /4.
is more than unity, indicating that for a charged capillary the
linear-to-Washburn regime transition occurs at a larger filling
length. For larger 1, this ratio is even higher, indicating a
significantly retarded transport caused by the larger retarding
electrical force [see Fig. 2(b)]. This ratio (Z.cn/f.) also
increases with A for small A, reaches a maximum, and then
starts to decrease with A for larger A. More importantly, for
larger values of A, this ratio becomes less than unity. This
indicates that, for a charged capillary, the linear-to-Washburn
regime transition is occurring at a filling length that is smaller
than that for an uncharged capillary. Subsequently, this ratio
attains a minimum for a substantially large EDL thickness.
This represents the situation where there is an imperceptible
difference between 7, o, and 7., and accordingly the effect of
reduced driving force dominates, resulting in smaller values
of the transition filling lengths for the charged capillary.
Finally, for very large extents of EDL overlap, the ratio
becomes unity, since for such an EDL thickness value both
the net electrical force and the reduced drag are of little or no
significance.

D. Neglect of the charge accumulation
at the air-liquid interface

One of the main assumptions in our calculation is the
neglect of charge accumulation at the air-liquid interface. In
order to understand the impact of such an assumption, it is
important to first pinpoint why such an accumulation will
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occur. Axial charge separation is essential for the generation of
a streaming potential. At steady state in a micronanochannel
charge is accumulated at the ends of the channel, and the
rate of accumulation of that charge (the streaming potential
is proportional to this rate of accumulation) is obtained
by calculating the advective transport of the charge density
gradient. On the contrary, as has been identified by Phan
et al. [61], for the capillary filling problem charge will
accumulate at the traveling air-liquid meniscus. Phan et al.
[61] attempted to model this situation by equating the sum
of the streaming and conduction currents not to zero, but
to the rate of charge accumulation at the interface. This is
indeed a novel method to account for the charge accumulation
at the air-liquid interface. However, the main limitation of
this approach [61] is that it does not account for the fact
that such an accumulation of charges at the interface will
imply that the electrostatic potential and the ion number
distributions become two dimensional. In a future study, we
shall attempt to provide a complete numerical solution where
such charge accumulation at the interface is accounted for
in the presence of the following considerations: (a) two-
dimensional distribution of the electrostatic potential and the
ion number, (b) two-dimensional velocity fields resulting from
a two-dimensional electrostatic potential, and (c) varying
the shape of the interface on account of the movement of
the interface (i.e., using a dynamic contact angle). Such a
detailed analysis is beyond the scope of the present study,
which focuses on identifying the important physical effects
involved in filling of a charged capillary. Of course, our
calculations remain approximate, given the fact that our

(a

FIG. 6. (Color online) (a) Schematic of the capillary filling. The
control volume denoted with the dotted line is the filling liquid column
that we analyze. (b) The volume of the liquid at the interface (Vi) that
we neglect in our analysis. Vi, is equal to the volume of the cylinder
minus the volume of the spherical cap. (c) Wedge at the three-phase
contact line indicated in (a).
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computation of the streaming potential (owing to neglecting
the charge accumulation at the meniscus) and the electrostatic,
ion number density, and velocity distributions (because we
consider them as one dimensional) remain approximate.

The second and more intuitive situation where charges
can be present at the air-liquid interface is the case where
the EDL is thick (and comparable to the capillary radius)
and 0 < @ < /2. In such a scenario, the wedge formed by
the three-phase contact line [see Fig. 6(a)] will consist of
two charged interfaces: a charged solid-liquid interface and
a charged air-liquid interface. Also, such a consideration,
such as the previous case, will necessitate a two-dimensional
description of all the variables (electrostatic potential, ion
number densities, and velocity field). In the present calculation,
we neglect this wedge effect; as shown in the Appendix, such
an approximation remains valid as long as R/¢ and/or 0 are
small.

As shown in Ref. [79], the EDL in the vicinity of such a
wedge-shaped TPCL would be nontrivially different from the
one-dimensional EDL distribution, and would substantially
alter the present calculations. More importantly, the electro-
osmotic flow field in such a geometry remains unknown,
particularly given the large singularity associated with the
stress for » — 0 at the TPCL. Therefore, the first step to
incorporate the wedge effects in the present calculations
would be to pinpoint the electro-osmotic flow profile in the
wedge. Such an endeavor is beyond the scope of the present
calculations.

IV. CONCLUSIONS

In this paper, we have shown that the filling of charged
capillaries may be characterized by two distinct effects that are
absent in uncharged capillaries. The first effect is the retarding
electrical force on the filling liquid column and the second
effect is the reduced drag force because of the induced back
electro-osmotic transport. The former effect overwhelms the
latter, so that the net consequence is a weaker filling rate and
a slower transition from the linear to the Washburn regime;
however, the corresponding transition filling length, depending
on the EDL thickness, wall potential, and dimensionless
ionic Peclet number, may be larger or smaller than that
corresponding to an uncharged capillary.

The findings offered by the present study are especially
significant on two accounts. First, it allows a substantially
better understanding of the standard filling processes used in
experiments, e.g., filling of glass or silicon microcapillaries.
Such microcapillaries are often inherently charged or may
acquire charges due to spontaneous de-ionization by the filling
liquid. As a result, even without the application of an external
electric field, the filling process may get substantially altered
on account of the induced streaming potential and the conse-
quent electroresistive forces and back-electro-osmosis-driven
reduced drag forces. Second, the present analysis provides
a mechanism of controlling the lifespan of different regimes
associated with the classical capillary filling process. Such
control may be desirable in different applications demanding a
specified £-vs- behavior in the capillary filling process. These
two factors establish the relevance of the present study in better
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understanding the design and operation of microfluidics-based
laboratory-on-a-chip devices.
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APPENDIX: VOLUME OF CHARGE CONTAINING
INTERFACE NEGLECTED IN THE
PRESENT ANALYSIS

We consider a wetting liquid, i.e., & < w/2 [see Fig. 6(a)].
From Fig. 6(b), we can see that the volume of the charge
containing interface (Vi) is equal to the volume of cylinder
Veyt (with height d and radius R) minus the volume of the
spherical cap (V) with height d, contact angle 6, and base
radius R. From Fig. 6(b), we get

1 —rcosf 0
d = Ry(1 —cosf) = R——— = Rtan —. (A1)
sin6 2
Consequently,
0
Ve = 7R*d = 7R tan > (A2)
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and
V, = ”—d(3R2 +d*) = LS tang (3 + tan® Q) . (A3)
T 6 6 2 2
Therefore,

Vit = Vey — Vs = JTR3tan§ (% - étanz g) . (A
This is the charge contained in the liquid volume (at the
air-liquid interface) resulting from consideration of the wedge
geometry at the three-phase contact line, especially relevant
for thick EDLs and 0 < 6 < m/2. This charge, therefore, is
the charge of the EDL in a wedgelike volume [79,92], and is
different from the charge that accumulates at the meniscus
on account of the axial separation of charges (responsible
for triggering the streaming potential). We have neglected
this charge in the present analysis. Comparing this charge
containing volume with the volume of the cylindrical filling
liquid column (of volume Vg = 7 R%¢), we can easily see that

)4 R 0 (/1 1 0
M “tan— (- — —tan® = ). (AS)
Vin V4 2\2 6 2

Thus, if R < £ or 8 — 0, our approximation of neglecting the
effect of this charge at the meniscus remains valid.
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