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DEGREE-DEGREE DEPENDENCIES
IN DIRECTED NETWORKS WITH HEAVY-TAILED DEGREES

Pim van der Hoorn and Nelly Litvak
Faculty of Electrical Engineering, Mathematics and Computer Sciences, University
of Twente, Enschede, The Netherlands

Abstract In network theory, Pearson’s correlation coefficients are most commonly used to
measure the degree assortativity of a network. We investigate the behavior of these coefficients
in the setting of directed networks with heavy-tailed degree sequences. We prove that for graphs
where the in- and out-degree sequences satisfy a power law with realistic parameters, Pearson’s
correlation coefficients converge to a nonnegative number in the infinite network size limit. We
propose alternative measures for degree-degree dependencies in directed networks based on
Spearman’s rho and Kendall’s tau. Using examples and calculations on the Wikipedia graphs
for nine different languages, we show why these rank correlation measures are more suited for
measuring degree assortativity in directed graphs with heavy-tailed degrees.

1. INTRODUCTION

In the analysis of the topology of complex networks, a feature that is often studied is
the degree-degree dependency, also called the degree assortativity of the network. A network
is called assortative, when nodes with high degree have a preference to be connected to
nodes of similar large degree. When nodes with large degree have a connection preference
for nodes with low degree, the network is said to be disassortative. A measure for degree
assortativity was first given for undirected networks by Newman [16], which corresponds to
Pearson’s correlation coefficient of the degrees at the ends of a random edge in the network.
A similar definition for directed networks was introduced in [17] and later adopted for
analysis of directed complex networks in [9] and [20].

Degree assortativity in networks has been analyzed in a variety of scientific fields such
as neuroscience, molecular biology, information theory, and social network sciences and
has been found to influence several properties of a network. In [10] and [12] degree-degree
correlations are used to investigate the structure of collaboration networks of a social news-
sharing website and Wikipedia discussion pages, respectively. Neural networks with high
assortativity seem to behave more efficiently under the influence of noise [8] and information
content has been shown to depend on the absolute value of the degree assortativity [19].
The effects of degree-degree dependencies on epidemic spreading have been studied in
percolation theory [2, 26], and it has been shown, for instance, that the epidemic threshold
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156 VAN DER HOORN AND LITVAK

depends on these correlations. Degree assortativity is also used in the analysis of networks
under attack, e.g., P2P networks [23, 24]. Networks with high degree assortativity seem
to be less stable under attack [5]. In the case of directed networks, recent research [15]
has shown that degree-degree dependencies can influence the rate of consensus in directed
social networks such as Twitter.

Recently it has been shown [13,14] that for undirected networks of which the degree
sequence satisfies a power-law distribution with exponent γ ∈ (1, 3), Pearson’s correlation
coefficient scales with the network size, converging to a nonnegative number in the infinite
network size limit. Because most real-world networks have been reported to be scale free
with exponent in (1, 3), c.f. [1,18, Table II], this could then explain why large networks are
rarely classified as disassortative. In [13, 14] a new measure, corresponding to Spearman’s
rho [22], has been proposed as an alternative.

In this article we will extend the analysis in [13] to the setting of directed networks.
Here we have to consider four types of degree-degree dependencies, depending on the
choice for in- or out-degree on either side of an edge. Our message is similar to that of [13];
that Pearson’s correlation coefficients are size biased and produce undesirable results, hence
we should look for other means to measure degree-degree dependencies.

We consider networks where the in- and out-degree sequences have a power-
law distribution. We will give conditions on the exponents of the in- and out-
degree sequences for which the assortativity measures defined in [9] and [20] con-
verge to a nonnegative number in the infinite network size limit. This result is a
strong argument against the use of Pearson’s correlation coefficients for measuring
degree-degree dependencies in such directed networks. To strengthen this argument, we
also give examples that clearly show that the values given by Pearson’s correlation coeffi-
cients do not represent the true dependency between the degrees, which it is supposed to
measure. As an alternative, we propose correlation measures based on Spearman’s rho [22]
and Kendall’s tau [11]. These measures are based on the ranking of the degrees rather than
their value and, hence, do not exhibit the size bias observed in Pearson’s correlation coef-
ficients. We give several examples that show the difference between these three measures.
We also include an example for which one of the four Pearson’s correlation coefficients
converges to a random variable in the infinite network size limit and therefore will obviously
produce uninformative results. Finally, we calculate all four degree-degree correlations on
the Wikipedia network for nine different languages, using all the assortativity measures
proposed in this study.

This article is structured as follows. In Section 2 we introduce notations. Pearson’s
correlation coefficients are introduced in Section 3, and a convergence theorem is given
for these measures. We introduce the rank correlations, Spearman’s rho, and Kendall’s tau
for degree-degree dependencies in Section 4. Example graphs that illustrate the difference
between the three measures are presented in Section 5, and the degree-degree correlations
for the Wikipedia graphs are presented in Section 6. Finally, in Section 7 we briefly discuss
the results and their interpretations.

2. DEFINITIONS AND NOTATIONS

We start with the formal definition of the problem and introduce the notations that
will be used throughout the article.
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DEGREE-DEGREE DEPENDENCIES 157

Out/In In/Out

Out/Out In/In

Figure 1 Four degree-degree dependency types.

2.1. Graphs, Vertices, and Degrees

We will denote by G = (V,E) a directed graph with vertex set V and edge set
E ⊆ V × V . For an edge e ∈ E, we denote its source by e∗ and its target by e∗.
With each directed graph, we associate two functions D+,D− : V → N where D+(v) :=
|{e ∈ E|e∗ = v}| is the out-degree of the vertex v and D−(v) := |{e ∈ E|e∗ = v}| the in-
degree. When considering sequences of graphs, we denote by Gn = (Vn,En) an element of
the sequence (Gn)n∈N. We further use subscripts to distinguish between the different graphs
in the sequence. For instance, D+

n and D−
n will denote the out- and in-degree functions of

the graph Gn, respectively.

2.2. Four Types of Degree-Degree Dependencies

In this work we are interested in measuring dependencies between the degrees at
both sides of an edge. That is, we measure the relation between two vectors, X and Y , as
a function of the edges e ∈ E, corresponding to the degrees of e∗ and e∗, respectively. In
the undirected case, this is called the degree assortativity. In the directed setting, however,
we can consider any combination of the two degree types resulting in four types of degree-
degree dependencies, illustrated in Figure 1.

From Figure 1 one can already observe some interesting features of these dependen-
cies. For instance, in the Out/In case, the edge that we consider contributes to the degrees on
both sides. We will later see that, for this reason, the Out/In dependency in fact generalizes
the undirected case. More precisely, our result for the Out/In dependencies generalizes the
result from [14] when we transform from the undirected to the directed case by making
every edge bidirectional.

For the other three dependency types, we observe that there is always at least one
side where the considered edge does not contribute toward the degree on that side. We will
later see that, for these dependency types, the dependency of the in- and out-degree of a
vertex will play a role.
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158 VAN DER HOORN AND LITVAK

3. PEARSON’S CORRELATION COEFFICIENT

Among degree-degree dependency measures, the measure proposed by Newman [16,
17] has been widely used. This measure is the statistical estimator for the Pearson correlation
coefficient of the degrees on both sides of a random edge. However, for undirected networks
with heavy-tailed degrees with exponent γ ∈ (1, 3) it was proved [14] that this measure
converges, in the infinite size network limit, to a non-negative number. Therefore, in these
cases, Pearson’s correlation coefficient is not able to correctly measure negative degree-
degree dependencies. In this section we will extend this result to directed networks proving
that also here Pearson’s correlation coefficients are not the right tool to measure degree-
degree dependencies.

Let us consider Pearson’s correlation coefficients as in [16,17], adjusted to the setting
of directed graphs as in [9,20]. This will constitute four formulas that we combine into one.
Take α, β ∈ {+,−}, that is, we let α and β index the type of degree (out- or in-degree).
Then we get the following expression for the four Pearson’s correlation coefficients:

rβ
α (G) = 1

σα(G)σβ(G)

(
1

|E|
∑
e∈E

Dα(e∗)Dβ(e∗) − 1

|E|2
∑
e∈E

Dα(e∗)
∑
e∈E

Dβ(e∗)

)
, (3.1)

where

σα(G) =
√√√√ 1

|E|
∑
e∈E

Dα(e∗)2 − 1

|E|2
(∑

e∈E

Dα(e∗)

)2

and (3.2)

σβ(G) =
√√√√ 1

|E|
∑
e∈E

Dβ(e∗)2 − 1

|E|2
(∑

e∈E

Dβ(e∗)

)2

. (3.3)

Here we utilize the notations for the source and target of an edge by letting the superscript
index denote the specific degree type of the target e∗ and the subscript index the degree
type of the source e∗. For instance r−

+ denotes the Pearson correlation coefficient for the
Out/In relation.

It is convenient to rewrite the summations over edges to summations over vertices by
observing that ∑

e∈E

Dα(e∗)k =
∑
v∈V

D+Dα(v)k,

and similarly ∑
e∈E

Dα(e∗)k =
∑
v∈V

D−Dα(v)k,

for all k > 0. Plugging this into (3.1)–(3.3) we arrive at the following definition.
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DEGREE-DEGREE DEPENDENCIES 159

Definition 3.1 Let G = (V,E) be a directed graph and let α, β ∈ {+,−}. Then the
Pearson’s α-β correlation coefficient is defined by

rβ
α (G) = 1

σα(G)σβ(G)

1

|E|
∑
e∈E

Dα(e∗)Dβ(e∗) − r̂β
α (G), (3.4)

where

r̂β
α (G) = 1

σα(G)σβ(G)

1

|E|2
∑
v∈V

D+(v)Dα(v)
∑
v∈V

D−(v)Dβ(v), (3.5)

σα(G) =
√√√√ 1

|E|
∑
v∈V

D+(v)Dα(v)2 − 1

|E|2
(∑

v∈V

D+(v)Dα(v)

)2

, (3.6)

σβ(G) =
√√√√ 1

|E|
∑
v∈V

D−(v)Dβ(v)2 − 1

|E|2
(∑

v∈V

D−(v)Dβ(v)

)2

. (3.7)

Just as in the undirected case, c.f. [13,14], the wiring of the network contributes only
to the positive part of (3.4). All other terms are completely determined by the in- and out-
degree sequences. This fact enables us to analyze the behavior of rβ

α (G), see Section 3.1.
Observe also that in contrast to undirected graphs, in the directed case, the correlation
between the in- and out-degrees of a vertex can play a role, take, for instance, α = − and
β = +.

Note that, in general, rβ
α (G) might not be well defined, for either σα(G) or σβ(G)

might be zero, for example, when G is a directed cyclic graph of arbitrary size. From (3.2)
and (3.3) it follows that σα(G) and σβ(G) are the variances of X and Y , where X = Dα(e∗)
and Y = Dβ(e∗), e ∈ E, with probability 1/|E|. Thus, σα(G) �= 0 is only possible if
Dα(v) �= Dα(w) for some v,w ∈ V . Moreover, v and w must have nonzero out-degree
for at least one such pair v,w, so that Dα(v) and Dα(w) are counted when we traverse
over edges. This argument is formalized in the next lemma, which provides necessary and
sufficient conditions so that σα(G), σβ(G) �= 0.

Lemma 3.2 Let G = (V,E) be a directed graph and take α, β ∈ {+,−}. Then the
following holds:

1

|E|

(∑
v∈V

Dα(v)Dβ(v)

)2

≤
∑
v∈V

Dα(v)Dβ(v)2, (3.8)

and strict inequality holds if and only if there exists distinct v,w ∈ V such that Dα(v),
Dα(w) > 0 and Dβ(v) �= Dβ(w).
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160 VAN DER HOORN AND LITVAK

Proof. Recall that |E| = ∑
v∈V Dα(v) for any α ∈ {+,−}. Then we have:

|E|
∑
v∈V

Dα(v)Dβ(v)2 −
(∑

v∈V

Dα(v)Dβ(v)

)2

=
∑
w∈V

∑
v∈V \w

Dα(w)Dα(v)Dβ(v)2 − Dα(w)Dβ(w)Dα(v)Dβ(v)

= 1

2

∑
w∈V

∑
v∈V \w

Dα(w)Dα(v)
(
Dβ(w)2 − 2Dβ(w)Dβ(v) + Dβ(v)2

)

= 1

2

∑
w∈V

∑
v∈V \w

Dα(w)Dα(v)
(
Dβ(w) − Dβ(v)

)2 ≥ 0,

which proves (3.8). From the last line, one easily sees that strict inequality holds if and only
if there exists distinct v,w ∈ V such that Dα(v), Dα(w) > 0, and Dβ(v) �= Dβ(w).

3.1. Convergence of Pearson’s Correlation Coefficients

In this section we will prove that Pearson’s correlation coefficients (3.4), calculated on
sequences of growing graphs satisfying rather general conditions, converge to a nonnegative
value. We start by recalling the definition of big theta.

Definition 3.3 Let f, g : N → R>0 be positive functions. Then f = �(g) if there exist
k1, k2 ∈ R>0, and an N ∈ N such that for all n ≥ N

k1g(n) ≤ f (n) ≤ k2g(n).

When we have two sequences (an)n∈N and (bn)n∈N, we write an = �(bn) for (an)n∈N =
�((bn)n∈N).

Next, we will provide the conditions that our sequence of graphs needs to satisfy to
prove the result. These conditions are based on properties of i.i.d. sequences of regularly
varying random variables, which are often used to model scale-free distributions. We will
provide a more thorough motivation of the chosen conditions in Section 3.2. From here on,
we denote by x ∨ y and x ∧ y the maximum and minimum of x and y, respectively.

Definition 3.4 For γ−, γ+ ∈ R>0 we denote by Gγ−γ+ the space of all sequences of graphs
(Gn)n∈N with the following properties:

G1 |Vn| = n.
G2 There exists a N ∈ N such that for all n ≥ N there exist v,w ∈ Vn with Dα

n (v),
Dα

n (w) > 0, and Dα
n (v) �= Dα

n (w), for all α ∈ {+,−}.
G3 For all p, q ∈ R>0, ∑

v∈Vn

D+
n (v)pD−

n (v)q = �(np/γ+∨q/γ−∨1).
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DEGREE-DEGREE DEPENDENCIES 161

G4 For all p, q ∈ R>0, if p < γ+ and q < γ− then

lim
n→∞

1

n

∑
v∈Vn

D+
n (v)pD−

n (v)q := d(p, q) ∈ (0,∞).

Where the limits are such that for all a, b ∈ N, k,m > 1 with 1/k + 1/m = 1,
a + p < γ+ and b + q < γ−, we have

d(a, b)
1
m d(p, q)

1
k > d

(
a

m
+ p

k
,

b

m
+ q

k

)
.

Now we are ready to give the convergence theorem for Pearson’s correlation coeffi-
cients, Definition 3.1.

Theorem 3.5 Let α, β ∈ {+,−}. Then there exists an area Aβ
α ⊆ R

2 such that for
(γ+, γ−) ∈ Aβ

α and (Gn)n∈N ∈ Gγ−γ+ ,

lim
n→∞ r̂β

α (Gn) = 0,

and, hence, any limit point of rβ
α (Gn) is nonnegative.

Proof. Let (Gn)n∈N be an arbitrary sequence of graphs. It is clear that if r̂β
α (Gn) → 0

then any limit point of rβ
α (Gn) is nonnegative. Therefore, we need to prove only the first

statement. To this end we define the following sequences,

an = 1

|En|

⎛
⎝∑

v∈Vn

D+
n (v)Dα

n (v)

⎞
⎠

2

, bn = 1

|En|

⎛
⎝∑

v∈Vn

D−
n (v)Dβ

n (v)

⎞
⎠

2

,

cn =
∑
v∈Vn

D+
n (v)Dα

n (v)2, dn =
∑
v∈Vn

D−
n (v)Dβ

n (v)2,

and observe that r̂β
α (Gn)2 = anbn/(cn−an)(dn−bn). Now if (Gn)n∈N ∈ Gγ−γ+ , then because

of G2 and Lemma 3.2 there exists an N ∈ N such that for all n ≥ N we have cn > an and
dn > bn, so r̂β

α (Gn) is well defined for all n ≥ N . Next, using G3, we get that an = �(na),
bn = �(nb), cn = �(nc), and dn = �(nd ) for certain constants a, b, c, and d, which depend
on γ−, γ+ and the degree-degree correlation type chosen. Because r̂β

α (Gn) → 0 if and only if
r̂β
α (Gn)2 → 0, we need to find sufficient conditions for which anbn/(cn −an)(dn −bn) → 0.

It is clear that either a < c and bn/(dn − bn) is bounded or b < d and an/(cn − an)
is bounded is sufficient. It turns out that this is exactly the case when either a < c

and b ≤ d or a ≤ c and b < d. We will do the analysis for the In/Out degree-degree
correlation. The analysis for the other three correlation types is similar. Figure 2 shows all
four areas Aβ

α .
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162 VAN DER HOORN AND LITVAK

When α = − and β = + we get the following constants:

a, b = 2

(
1

γ+
∨ 1

γ−
∨ 1

)
− 1.

c =
(

1

γ+
∨ 2

γ−
∨ 1

)
.

d =
(

2

γ+
∨ 1

γ−
∨ 1

)
.

It is clear that when 1 < γ−, γ+ < 2, then a < c and b < d, and hence, r̂β
α → 0.

Now, if 1 < γ− < 2 and γ+ ≥ 2, then a = b = d = 1 < c. Using G4 we get that
limn→∞ dn/n = d(2, 1) and

lim
n→∞

bn

n
= lim

n→∞

(∑
v∈Vn

D−
n (v)D+

n (v)
)2

n2

n

|En|

= lim
n→∞

(∑
v∈Vn

D−
n (v)D+

n (v)

n

)2 (∑
v∈Vn

D−
n (v)

n

)−1

= d(1, 1)2

d(0, 1)
< d(2, 1) = lim

n→∞
dn

n
,

where, for the last part, we again used G4. From this it follows that bn/(dn −bn) is bounded
and so r̂β

α → 0. A similar argument applies to the case γ− ≥ 2 and 1 < γ+ < 2, where the
only difference is that a = b = c = 1 < d, hence,

A+
− = {(x, y) ∈ R|1 < x < 2, y > 1} ∪ {(x, y) ∈ R|1 < y < 2, x > 1}.

Using similar arguments, we obtain

A−
+ = {(x, y) ∈ R

2|1 < x < 3, y > 1} ∪ {(x, y) ∈ R
2|1 < y < 3, x > 1},

A+
+ = {(x, y) ∈ R

2|1 < x < 3, y > 1}, and

A−
− = {(x, y) ∈ R

2|1 < y < 3, x > 1}.

Let us now provide an intuitive explanation for the areas Aβ
α , as depicted in Figure

2. The key observation is that because of G3, the terms with the highest power of either
D+

n or D−
n will dominate in r̂β

α (Gn). Therefore, if these moments do not exist, then the
denominator will grow at a larger rate then the numerator, hence, r̂β

α → 0.
Taking α = + = β, we see that D− has terms only of order one whereas D+ has

terms up to order three. This explains why A+
+ = {(x, y) ∈ R|1 < x ≤ 3, y > 1}. Area A−

−
is then easily explained by observing that the expression for r−

− (G) is obtained from r+
+ (G)

by interchanging D+ and D−.
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DEGREE-DEGREE DEPENDENCIES 163

Figure 2 Four areas A
β
α , where r

β
α converges to a nonnegative number.

For the Out/In correlation, i.e., α = + and β = −, we see from (3.5)–(3.7) that r̂−
+ (G)

splits into a product of two terms, each completely determined by either in- or out-degrees,

1
|E|
∑

v∈V Dα(v)2√
1

|E|
∑

v∈V Dα(v)3 − 1
|E|2

(∑
v∈V Dα(v)2

)2
,

with α ∈ {+,−}. These terms are of the exact same form as the expression in [13] for the
undirected degree-degree correlation. Because both D+ and D− have terms of order three,
one sees that

A−
+ = {(x, y) ∈ R

2|1 < x < 3, y > 1} ∪ {(x, y) ∈ R
2|1 < y < 3, x > 1}.

Now take an undirected network and make it directed by replacing each undirected edge
with a bidirectional edge. Then D+(v) = D−(v) for all v ∈ V and hence, r−

+ (G) equals the
expression of (3.4) in [13] when we replace D by either D+ or D−.

Theorem 3.5 has several consequences. First, no matter what mechanism
is used for generating networks, if the conditions of the theorem are satisfied,
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164 VAN DER HOORN AND LITVAK

then for large enough networks the degree-degree correlations will always be
nonnegative. This could explain why in most large networks strong disassortativity has
not been registered. We will present such examples in Section 5. Second, if the underlying
model that governs the topology of the network is in line with the conditions of the theorem,
then one cannot compare networks of different sizes that arise from this model. For in this
case, the degree-degree correlation coefficients rβ

α will decrease with the network size.

3.2. Motivation for Gγ−γ+

In this section we will motivate Definition 3.4. G1 is easily motivated, for we want
to consider infinite network size limits. G2 combined with Lemma 3.2 ensures that from a
certain graph size N , rβ

α (Gn) is always well defined. Conditions G3 and G4 are related to
heavy-tailed degree sequences that are modeled using regularly varying random variables.

A random variable X is called regularly varying with exponent γ if for all t > 0,
P(X > t) = L(t)t−γ for some slowly varying function L, that is limt→∞ L(tx)/L(t) = 1
for all x > 0. We write R−γ for the class of all such distribution functions and write
X ∈ R−γ to denote a regularly varying random variable with exponent γ . For such a
random variable X, we have that E [Xp] < ∞ for all 0 < p < γ .

Through experiments it has been shown that many real-world networks, both directed
and undirected, have degree sequences whose distributions closely resemble a power-law
distribution, c.f. Table II of [1] and [18]. Suppose we take two random variables D+ ∈ Rγ+ ,
D− ∈ Rγ− and consider, for each n, the degree sequences (D±

n (v))v∈Vn
as i.i.d. copies of

these random variables. Then for all 0 < p < γ+ and 0 < q < γ−

lim
n→∞

1

n

∑
v∈Vn

D+
n (v)pD−

n (v)q = E
[
(D+)p(D−)q

]
.

Moreover, since D± is nondegenerate, we have E
[
(D±)k

]
> E

[D±]k , and thus, by tak-
ing d(p, q) = E

[
(D+)p(D−)q

]
, we get G4 where the second part follows from Hölder’s

inequality. Although i.i.d. sequences generated by sampling from in- and out-degree dis-
tributions do not in general constitute a graphical sequence, it is often the case that one
can modify this sequence into a graphical sequence preserving i.i.d. properties asymptot-
ically. Consider, for example, [6], where a directed version of the configuration model is
introduced and it is proven (Theorem 2.4) that the degree sequences are asymptotically
independent.

The property G3 is associated with the scaling of the sums
∑

v∈Vn
D+

n (v)pD−
n (v)q

and is related to the central limit theorem for regularly varying random variables. When
we model the degrees as i.i.d. copies of independent, regularly varying, random variables
D+ ∈ R−γ+ , D− ∈ R−γ− and take p ≥ γ+ or q ≥ γ−, then

∑
v∈Vn

D+
n (v)pD−

n (v)q is in
the domain of attraction of a γ -stable random variable S(γ ), where γ = (γ+/p ∧ γ−/q),
c.f. [7]. This means that

1

an

∑
v∈Vn

D+
n (v)pD−

n (v)q
d→ S(γ+/p ∧ γ−/q), as n → ∞ (3.9)

for some sequence an = �(nq/γ−∨p/γ+ ), where
d→ denotes convergence in distribution.

Informally, one could say that
∑

v∈Vn
D+

n (v)pD−
n (v)q scales as nq/γ−∨p/γ+ when either the p

or q moment does not exist and as n when both moments exist, hence,
∑

v∈Vn
D+

n (v)pD−
n (v)q
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DEGREE-DEGREE DEPENDENCIES 165

scales as nq/γ−∨p/γ+∨1, which is what G3 states. For completeness we include the next
lemma, which shows that (3.9) implies that G3 holds with high probability.

We remark that, although the motivation for G3 is based on results where in the
regularly varying random variables are assumed to be independent, the dependent case can
be included. For this, one needs to adjust the scaling parameters in G3 for the specified
dependence. In our numerical experiments, the in- and out- degrees in the Wikipedia graphs
show strong independence, hence G3 holds for networks such as Wikipedia.

Lemma 3.6 Let (Xn)n∈N be a sequence of positive random variables such that

Xn

an

d→ X, as n → ∞,

for some sequence (an)n∈N and positive random variable X. Then for each 0 < ε < 1,
there exists an Nε ∈ N and κε ≥ 	ε > 0, such that for all n ≥ Nε,

P(	εan ≤ Xn ≤ κεan) ≥ 1 − ε.

Proof. Let 0 < ε < 1 and take δ > 0, 0 < 	 ≤ κ such that

P(	 ≤ X ≤ κ) ≥ 1 − ε + δ.

Then, because Xn/an
d→ X as n → ∞, there exists an N ∈ N such that for all n ≥ N ,

|P(	 ≤ X ≤ κ) − P(	an ≤ Xn ≤ κan)| < δ.

Now we get for all n ≥ N ,

1 − ε + δ − P(	an ≤ Xn ≤ κan) ≤ P(	 ≤ X ≤ κ) − P(	an ≤ Xn ≤ κan) ≤ δ,

hence, P(	an ≤ Xn ≤ κan) ≥ 1 − ε.

4. RANK CORRELATIONS

In this section we consider two other measures for degree-degree dependencies,
Spearman’s rho [22] and Kendall’s tau [11], which are based on the rankings of the degrees
rather than their actual value. We will define these dependency measures and argue that they
do not have unwanted behavior as we observed for Pearson’s correlation coefficients. We
later use examples to enforce this argument and show that Spearman’s rho and Kendall’s
tau are better candidates for measuring degree-degree dependencies.

4.1. Spearman’s Rho

Spearman’s rho [22] is defined as the Pearson correlation coefficient of the vector
of ranks. Let G = (V,E) be a directed graph and α, β ∈ {+,−}. In order to adjust the
definition of Spearman’s rho to the setting of directed graphs, we need to rank the vectors
(Dα(e∗))e∈E and (Dβ(e∗))e∈E . These will, however, in general have many tied values. For
instance, suppose that Dα(v) = m for some v ∈ V , then edges e ∈ E with e∗ = v satisfy
Dα(e∗) = Dα(v). Therefore, we will encounter the value Dα(v) at least m times in the
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166 VAN DER HOORN AND LITVAK

vector (Dα(e∗))e∈E . We will consider two strategies for resolving ties: uniformly at random
(Section 4.1.1) and using an average ranking scheme (Section 4.1.2).

4.1.1. Resolving Ties Uniformly at Random. Given a sequence {xi}1≤i≤n of
distinct elements in R, we denote by R(xj ) the rank of xj , i.e., R(xj ) = |{i|xi ≥ xj }|,
1 ≤ j ≤ n. The definition of Spearman’s rho in the setting of directed graphs is then as
follows.

Definition 4.1 Let G = (V,E) be a directed graph, α, β ∈ {+,−} and let (Ue)e∈E , (We)e∈E

be i.i.d. copies of independent uniform random variables U and W on (0, 1), respectively.
Then we define the α-β Spearman’s rho of the graph G as

ρβ
α (G) = 12

∑
e∈E Rα(e∗)Rβ(e∗) − 3|E|(|E| + 1)2

|E|3 − |E| , (4.1)

where Rα(e∗) = R(Dα(e∗) + Ue), and Rβ(e∗) = R(Dβ(e∗) + We).

From (4.1) we see that the negative part of ρβ
α (G) depends only on the number of

edges

3(|E| + 1)2

(|E|2 − 1)
= 3 + 6|E| + 4

|E|2 − 1
,

whereas, for rβ
α (G) it depended on the values of the degrees; see Definition 3.1. When

(Gn)n∈N ∈ Gγ+,γ− , with γ+, γ− > 1, then it follows that |En| = θ (n), hence, 3 + (6|E| +
4)/(|E|2 −1) → 3, as n → ∞. Therefore, we see that the negative contribution will always
be at least 3, and so ρβ

α (Gn) does not in general converge to a nonnegative number although
rβ
α (Gn) does.

When calculating ρβ
α (G) on a graph G, one has to be careful, for each instance will

give different ranks of the tied values. This could potentially give rise to very different results
among several instances, see Section 5.1.2 for an example. Therefore, in experiments, we
will take an average of ρβ

α (G) over several instances of the uniform ranking.
4.1.2. Resolving Ties with Average Ranking. A different approach for re-

solving ties is to assign the same average rank to all tied values. Consider, for example,
the sequence (1, 2, 1, 3, 3). Here the two values of 3 have ranks 1 and 2, but instead we
assign the rank 3/2 to both of them. With this scheme, the sequence of ranks becomes
(9/2, 3, 9/2, 3/2, 3/2). This procedure can be formalized as follows.

Definition 4.2 Let (xi)1≤i≤n be a sequence in R; then we define the average rank of an
element xi as

R(xi) = |{j |xj > xi}| + |{j |xj = xi}| + 1

2
.

Observe that in the definition the total average rank is preserved:
∑n

i=1 R(xi) =
n(n + 1)/2. The difference with resolving ties uniformly at random is that we in general
do not know

∑n
i=1 R(xi)2, for this depends on how many ties we have for each value. We

now define the corresponding version of Spearman’s rho of graphs as follows.
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DEGREE-DEGREE DEPENDENCIES 167

Definition 4.3 Let G = (V,E) be a directed graph, α, β ∈ {+,−} and denote by

R
α
(e∗) and R

β
(e∗) the average ranks of Dα(e∗) among (Dα(e∗))e∈E and Dβ(e∗) among

(Dβ(e∗))e∈E , respectively. Then we define the α-β Spearman’s rho with average resolution
of ties by

ρβ
α(G) = 4

∑
e∈E R

α
(e∗)R

β
(e∗) − |E|(|E| + 1)2

σα(G)σβ(G)
, (4.2)

where

σα(G) =
√

4
∑
e∈E

R
α
(e∗)2 − |E|(|E| + 1)2,

and

σβ(G) =
√

4
∑
e∈E

R
β
(e∗)2 − |E|(|E| + 1)2.

Note that ρβ
α(G) does not suffer from any randomness in the ranking of the degrees.

Hence, in contrast to (4.1), here we do not need to take an average over multiple instances.
The next lemma shows that taking the expectation over the uniform ranking is actually
equal to applying the average ranking scheme.

Lemma 4.4 Let G = (V,E) be a graph, e ∈ E and α, β ∈ {+,−}. Then

(i) E [Rα(e∗)] = R
α
(e∗), E

[
Rβ(e∗)

] = R
β
(e∗), and

(ii) E
[
Rα(e∗)Rβ(e∗)

] = R
α
(e∗)R

β
(e∗)

Proof. We will prove only the first statement of (i). The proof for the second is similar.

(i) Since Rα(e∗) = R(Dα(e∗) + Ue) and (Ue)e∈E are i.i.d. copies of a uniform random
variable U on (0, 1) we have that

∑
f ∈E

I {Dα(f∗) = Dα(e∗)} E
[
I
{
Uf ≥ Ue

}]

=
∑
f ∈E

I {Dα(f∗) = Dα(e∗)}
(

I {f = e} + 1

2
I {f �= e}

)

= 1

2

∑
f ∈E

I {Dα(f∗) = Dα(e∗)} + 1

2
.
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168 VAN DER HOORN AND LITVAK

It follows that

E
[
Rα(e∗)

] = E

⎡
⎣∑

f ∈E

I
{
Dα(f∗) + Uf ≥ Dα(e∗) + Ue

}⎤⎦
=
∑
f ∈E

I {Dα(f∗) > Dα(e∗)}

+
∑
f ∈E

I {Dα(f∗) = Dα(e∗)} E
[
I
{
Uf ≥ Ue

}]

=
∑
f ∈E

I {Dα(f∗) > Dα(e∗)} + 1

2

∑
f ∈E

I {Dα(f∗) = Dα(e∗)} + 1

2

= R
α
(e∗).

(ii) By definition we have that

Rα(e∗)Rβ(e∗) =
∑

f,g∈E

I
{
Dα(f∗) > Dα(e∗)

}
I
{
Dβ(g∗) > Dβ(e∗)

}

+
∑

f,g∈E

I
{
Dα(f∗) > Dα(e∗)

}
I
{
Dβ(g∗) = Dβ(e∗)

}
I
{
Wg ≥ We

}

+
∑

f,g∈E

I
{
Dα(f∗) = Dα(e∗)

}
I
{
Uf ≥ Ue

}
I
{
Dβ(g∗) > Dβ(e∗)

}

+
∑

f,g∈E

I
{
Dα(f∗) = Dα(e∗)

}
I
{
Dβ(g∗) = Dβ(e∗)

}
× I

{
Uf ≥ Ue

}
I
{
Wg ≥ We

}
.

Therefore, because (Uf )f ∈E and (Wg)g∈E are i.i.d. copies of independent uniform
random variables U and W on (0, 1), respectively, the result follows by applying (i).

From Lemma 4.4 we conclude that instead of calculating ρβ
α several times and then

taking the average, we can immediately apply the average ranking, which limits the total
calculations to just one. Moreover, we have that

E
[
ρβ

α (G)
] = 3σασβ

|E|3 − |E|ρ
β
α(G), (4.3)

which emphasizes that the difference between the uniform at random and average ranking
scheme is determined by the number of ties in the degrees.

4.2. Kendall’s Tau

Another common rank correlation is Kendall’s tau [11], which measures the weighted
difference between the number of concordant and discordant pairs of the joint observations
(xi, yi)1≤i≤n. More precisely, a pair (xi, yi) and (xj , yj ) of joint observations is concordant
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DEGREE-DEGREE DEPENDENCIES 169

if xi < xj and yi < yj or if xi > xj and yi > yj . They are called discordant if xi < xj and
yi > yj or if xi > xj and yi < yj .

Definition 4.5 Let G = (V,E) be a directed graph, α, β ∈ {−,+} and denote
by Nc and Nd , respectively, the number of concordant and discordant pairs among(
Dα(e∗),Dβ(e∗)

)
e∈E

. Then we define the α-β Kendall’s tau of G by

τβ
α (G) = 2(Nc − Nd )

|E|(|E| − 1)
.

It might seem at first that τ does not suffer from ties. However, note that the numerator
of τ includes only strictly concordant and discordant pairs, whereas the denominator is
equal to the number of all possible pairs, regardless of the presence of ties. Hence, when
the number of ties is large, the denominator may become much larger than the numerator,
resulting in small, even vanishing in the graph size limit, values of τβ

α . We will provide such
an example in Section 5. Because, as discussed previously, the sequences (Dα(e∗))e∈E and(
Dβ(e∗)

)
e∈E

naturally have a large number of ties, we cannot expect τβ
α (G) to take very

large (positive or negative) values. To address this issue, a weighted extension of Kendall’s
tau was very recently introduced [27]. This new measure also puts more emphasis on nodes
with large in- or out-degrees.

5. BRIDGE GRAPH EXAMPLE

In this section we will provide a sequence of graphs to illustrate the difference between
the four correlation measures in directed networks. We start with a deterministic sequence
and later adapt this to a randomized sequence using regularly varying random variables.

5.1. A Deterministic In-Out Bridge Graph

Let k,m ∈ N>0, then we define the bridge graph G(k,m) = (V (k,m), E(k,m)),
displayed in Figure 3a, as follows:

V (k,m) = v ∪ w ∪
k⋃

i=1

vi ∪
m⋃

j=1

wj, E(k,m) = g ∪
k⋃

i=1

ei ∪
m⋃

j=1

fj , where

ei = (vi, v), fj = (w,wj ) and g = (v,w).

It follows that |E(k,m)| = m + k + 1. For the degrees of G(k,m) we have:

D+(vi) = 1, D−(vi) = 0, for all 1 ≤ i ≤ k;

D+(wj ) = 0, D−(wj ) = 1, for all 1 ≤ j ≤ m;

D+(v) = 1, D−(v) = k,

D+(w) = m, D−(w) = 1.

Looking at the scatter plot of (D−(e∗),D+(e∗))e∈E(k,m), in Figure 4a, we see that the
point (k,m) contributes toward a positive dependency whereas the points (0, 1) and (1, 0)
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(b)

Figure 3 A graphical representation of the graphs (a) G(k,m) and (b) Ĝ(k, m).

contribute toward a negative dependency. Hence, depending on how much weight we put
on each of these points, we could argue equally well that this graph could have a positive or
negative value for the In/Out dependency. We can, however, extend the in-out bridge graph
to a graph for which we do have a clearly negative In/Out dependency.

We define the disconnected in-out bridge graph Ĝ(k,m) = (V̂ (k,m), Ê(k,m)) from
G(k,m) by adding a vertex u and replacing the edge g = (v,w) by the edges g1 = (v, u) and
g2 = (u,w); see Figure 3b. In this graph, the node with the largest in-degree, v, is connected
to node u, of out-degree 1. Similarly, u, which has in-degree 1, is connected to the node with
the highest out-degree, w. Therefore, we would expect a negative value of In/Out depen-
dency measures. This intuition is supported by the scatter plot of (D+(e∗),D−(e∗))e∈Ê(k,m)
in Figure 4b.

Now consider for a fixed a ∈ N, the sequence of graphs Ga
n := G(n, an) and

Ĝa
n := Ĝ(n, an). Then, following the previous reasoning, we would expect any In/Out

dependency measure of Ĝa
n to converge to −1.

In Sections 5.1.1–5.1.3 we will show that limn→∞ r+
− (Ĝa

n) = 0, whereas the other
three measures indeed yield negative values. Furthermore, we show that limn→∞ r+

− (Ga
n) =

1 although limn→∞ ρ+
−(Ga

n) = −1, reflecting the two possibilities for the In/Out correlation
represented in the scatter plot in Figure 4a.

D+(e∗)

D−(e∗)
k

m

1

1

•fj

•ei

•g

(a)

D+(e∗)

D−(e∗)
k

m

1

1

•fj

•ei •g2

•g1

(b)

Figure 4 The scatter plots for the degrees of (a) G(k,m) and (b) Ĝ(k, m).
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DEGREE-DEGREE DEPENDENCIES 171

5.1.1. Pearson In/Out Correlation. We start with the graph Ga
n. Basic calcula-

tions yield that

∑
e∈Ea

n

D−(e∗)D+(e∗) = an2, (5.1)

∑
v∈V a

n

D−(v)D+(v) = (1 + a)n, (5.2)

∑
v∈V a

n

D−(v)2D+(v) = n2 + an, and (5.3)

∑
v∈V a

n

D−(v)D+(v)2 = n + a2n2, (5.4)

hence, using (3.6) and (3.7), we obtain:

|Ea
n |σ−(Ga

n) =
√

((1 + a)n + 1)(n2 + an) − (1 + a)2n2

=
√

(1 + a)n3 − (n − 1)an,

and

|Ea
n |σ+(Ga

n) =
√

((1 + a)n + 1)(n + a2n2) − (1 + a)2n2

=
√

(1 + a)n3 − (an − 1)n.

When we plug this into (3.4) with α = − and β = +, we get

r+
− (Ga

n) = |Ea
n |an2 − (1 + a)2n2

|Ea
n |σα(Ga

n)|Ea
n |σβ(Ga

n)

= a(1 + a)n3 − (a2 + a + 1)n2

a
√

(1 + a)n3 − (n − 1)an
√

(1 + a)n3 − (an − 1)n
. (5.5)

From (5.5) it follows that if a ∈ N is fixed, then limn→∞ r+
− (Ga

n) = 1, thus r+
− (Ga

n) in fact
reflects the connection between v and w where the point (n, an) in the scatter plot received
the most mass. However, when we turn to Ĝa

n we get a less expected result. Splitting the
edge g in two adds one to (5.2)–(5.4), while (5.1) becomes (a + 1)n, which is linear in n

instead of quadratic. Because all other terms keep their scale with respect to n, we easily
deduce that for a fixed a ∈ N, limn→∞ r+

− (Ĝa
n) = 0. This is undesirable for we would

expect any In/Out correlation on Ĝa
n to converge to −1.

5.1.2. Spearman In/Out Correlation. We start by calculating ρ+
−(Ga

n). For this
observe that by (4.2) and the definition of Ga

n we have that,

R
+

((ei)
∗) = 1 + n + 1

2
, R

−
((ei)∗) = an + 1 + n + 1

2
;

R
+

((fj )∗) = n + 1 + an + 1

2
, R

−
((fj )∗) = 1 + an + 1

2
;

R
+

(g∗) = 1, R
−

(g∗) = 1.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
it 

T
w

en
te

] 
at

 0
4:

50
 3

1 
M

ar
ch

 2
01

5 



172 VAN DER HOORN AND LITVAK

After some basic calculations, we get

ρ+
−(Ga

n) = −(a2 + a)n3 + (a + 1)2n2 + (a + 1)n

(a2 + a)n3 + (a + 1)2n2 + (a + 1)n
→ −1 as n → ∞.

This result is in striking contrast with r+
− (Ga

n). Indeed, ρ+
− places all the weight on the points

(0, 1) and (1, 0). However, based on the scatter plot, see Figure 4a, both results could be
plausible.

Let us now compute ρ+
−(Ĝa

n). For the rankings we have

R
+

((ei)
∗) = 2 + n

2
, R

−
((ei)∗) = an + 2 + n + 1

2
;

R
+

((fj )∗) = n + 2 + an + 1

2
, R

−
((fj )∗) = 2 + an

2
;

R
+

((g1)∗) = 2 + n

2
, R

−
((g1)∗) = 1;

R
+

((g2)∗) = 1, R
−

((g2)∗) = 2 + an

2
.

Filling this into (4.2) we get

ρ+
−(Ĝa

n) = −(a2 + a)n3 − (a2 + a)n2 + (a + 1)n − 2

σ̄−(Ĝa
n)σ̄+(Ĝa

n)
,

where

σ̄−(Ĝa
n) =

√
(a2 + a)n3 + (a2 + 4a + 2)n2 + (3a + 4)n − 2 and

σ̄+(Ĝa
n) =

√
(a2 + a)n3 + (2a2 + 4a + 1)n2 + (4a + 3)n + 2.

Because

lim
n→∞

1

n3
σ̄−(Ĝa

n)σ̄+(Ĝa
n) = (a2 + a),

it follows that

lim
n→∞ ρ+

−(Ĝa
n) = lim

n→∞
1/n3

1/n3

(
−(a2 + a)n3 − (a2 + a)n2 + (a + 1)n − 2

σ̄−(Ĝa
n)σ̄+(Ĝa

n)

)
= −1,

which equals limn→∞ ρ+
−(Ga

n). We have already argued that based on the graph and the
scatter plot we would expect negative In/Out correlation for the sequence (Ĝa

n)n∈N. This
result is in agreement with what we would expect, while r+

− (Ĝa
n) converges to 0 as n → ∞.

Now we turn to ρ+
− (Ga

n). We show that the choice of ranking of the tied values can
have a great effect on the outcome of the Spearman’s In/Out correlation. In this example
we pick two rankings, one will yield ρ+

− (Ga
n) > 0, and the other will give ρ+

− (Ga
n) < 0.

It is clear from the definition of Ga
n that the in- and out-degrees of all ei are the

same, and this is also true for fj . Let us now impose the following ranking of the vectors
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(D+(e∗))e∈Ea
n

and (D−(e∗))e∈Ea
n
:

R+((ei)
∗) = an + i, R−((ei)∗) = i, for all 1 ≤ i ≤ n;

R+((fj )∗) = j, R−((fj )∗) = n + j, for all 1 ≤ j ≤ an;

R+(g∗) = 1 + (a + 1)n, R−(g∗) = 1 + (a + 1)n.

Here we ordered the ties by the order of their indices. We calculate that

ρ+
− (Ga

n) = (a3 − 3a2 − 3a + 1)n3 + 3(a + 1)2n2 + 2(a + 1)n

(a3 + 3a2 + 3a + 1)n3 + 3(a + 1)2n2 + 2(a + 1)n
. (5.6)

Let us now order (D+(e∗))e∈Ea
n

and (D−(e∗))e∈Ea
n

as follows:

R+((ei)
∗) = (a + 1)n + 1 − i, R−((ei)∗) = i, for all 1 ≤ i ≤ n;

R+((fj )∗) = an + 1 − j, R−((fj )∗) = n + j, for all 1 ≤ j ≤ an;

R+(g∗) = 1 + (a + 1)n, R−(g∗) = 1 + (a + 1)n.

This order differs from the first only on the vector (D+(e∗))e∈Ea
n
, where we now ordered

the ties based on the reversed order of their indices. Here we get, after some calculations,

ρ+
− (Ga

n) = −(a + 1)3n3 + 3(a + 1)2n2 + 2(a + 1)n

(a + 1)3n3 + 3(a + 1)2n2 + 2(a + 1)n
. (5.7)

When we compare (5.7) with (5.6), we see that for the former limn→∞ ρ+
− (Ga

n) = −1 for
all a ∈ N, and for the latter we have limn→∞ ρ+

− (Ga
n) = (a3 − 3a2 − 3a + 1)/(a + 1)3.

This means that increasing a will actually increase the limit of (5.6), which becomes
positive when a ≥ 4. If we denote by da

n the absolute value of the difference between (5.6)
and (5.7), we get that limn→∞ da

n = 2(a3 + 1)/(a + 1)3, which converges to 2 as a → ∞.
This agrees with the fact that for (5.6) it holds that lima→∞ limn→∞ ρ+

− (Ga
n) = 1, whereas

lima→∞ limn→∞ ρ+
− (Ga

n) = −1 for (5.7). We see that changing the order of the ties can
have a large impact on the value of ρβ

α (G), as mentioned in Section 4.1.1. Now, using (4.3),
limn→∞ ρ+

−(Ga
n) = −1 and the fact that

σα(Ga
n)σβ(Ga

n) = (a2 + a)n3 + (a + 1)2n2 + (a + 1)n,

we get that limn→∞ E
[
ρ+

− (Ga
n)
] = −2a/(a+1)2. Notice that, unlike ρ+

−(Ga
n), this result still

depends on a and converges to 0 as a → ∞. This is not unexpected because the majority
of edges produce ties, hence, most of the ranks are defined by independent realizations of
U and W . These results indicate that Spearman’s rho with average resolution of ties is the
most informative correlation for this graph.

5.1.3. Kendall’s Tau In/Out Correlation. In order to compute Kendall’s Tau,
we need to determine the number of concordant and discordant pairs. Starting with Ga

n, we
observe that we have three kinds of joint observations:

I :
(
D−(ei∗),D+(e∗

i )
)
,

I I :
(
D−(fj∗),D+(f ∗

j )
)

and

III :
(
D−(g∗),D+(g∗)

)
.
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174 VAN DER HOORN AND LITVAK

The combinations I and III, and II and III are concordant whereas I and II are discordant.
It follows that Nc = (a + 1)n while Nd = an2. Hence we get (see Definition 4.5),

τ+
− (Ga

n) = 2(a + 1)n − 2an2

(a + 1)2n2 + (a + 1)n
,

which gives limn→∞ τ+
− (Ga

n) = − 2a
(a+1)2 . We observe that this equals limn→∞ E

[
ρ+

− (Ga
n)
]
,

calculated in the previous section.
For the graph Ĝa

n we have four kinds of joint observations:

I :
(
D−(ei∗),D+(e∗

i )
)
,

I I :
(
D−(fj∗),D+(f ∗

j )
)
,

I II :
(
D−(g1∗),D+(g∗

1 )
)

and

IV :
(
D−(g2∗),D+(g∗

2 )
)
.

Again the combinations I and II are discordant, although now I and III, and II and IV are
concordant. Therefore, we get Nc = (a + 1)n and Nd = an2, hence limn→∞ τ+

− (Ĝa
n) =

− 2a
(a+1)2 , which equals the limit for τ+

− (Ga
n). This is because the tied values, which are the

majority in this example, make the influence of the extra node on Kendall’s tau negligible.
Note that limn→∞ τ+

− (Ga
n) decreases when we increase a. This is because the number

of tied values among the degrees increases with a. We already mentioned that τβ
α gives

smaller values when more ties are involved. Here this behavior is clearly present.

5.2. A Collection of Random In/Out Bridge Graphs

Let us now consider a collection of In/Out bridge graphs G(W,Z) as defined in
Section 5.1, where the values of W and Z are integer valued regularly varying random
variables.

Let X, Y ∈ R−γ be independent and integer valued and fix a ∈ R>0. For each
n ∈ N, take (Xi)1≤i≤n and (Yi)1≤i≤n to be i.i.d. copies of X and Y , respectively, and define
Wi = Xi+Yi and Zi = 
Xi+aYi�. Then we define the graphGa

n as a disconnected collection
of the graphs (G(Wi,Zi))1≤i≤n. We will calculate r+

− (Ga
n ) and prove that it converges to

a random variable, which can have support on (ε, 1) for any ε ∈ (0, 1] depending on a
specific choice of a.

Using the calculations in Section 5.1.1 we obtain

∑
e∈Ea

n

D−(e∗)D+(e∗) =
n∑

i=1

(
X2

i + aY 2
i + (1 + a)XiYi

)
,

∑
v∈V a

n

D−(v)D+(v) =
n∑

i=1

(2Xi + (1 + a)Yi) ,

∑
v∈V a

n

D−(v)2D+(v) =
n∑

i=1

(
X2

i + Y 2
i + 2XiYi + Xi + aYi

)
,
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∑
v∈V a

n

D−(v)D+(v)2 =
n∑

i=1

(
X2

i + a2Y 2
i + 2aXiYi + Xi + Yi

)
and

|Ea
n | =

n∑
i=1

(2Xi + (1 + a)Yi + 1) .

By the stable limit law we have a sequence (an)n∈N such that

1

an

n∑
i=1

X2
i

d→ SX and
1

an

n∑
i=1

Y 2
i

d→ SY as n → ∞,

where SX and SY are stable random variables. Further, from Lemma 2.2 in [13] we have

1

an

n∑
i=1

XiYi
d→ 0,

1

an

n∑
i=1

Xi
d→ 0 and

1

an

n∑
i=1

Yi
d→ 0 as n → ∞.

Combining this we get

1√
an

σ−(Ga
n )

d→
√

SX + SY ,
1√
an

σ+(Ga
n )

d→
√

SX + a2SY as n → ∞,

and hence,

r+
− (Ga

n )
d→ SX + aSY√

SX + SY

√
SX + a2SY

as n → ∞,

which has support on (0, 1). Now, take 0 < ε ≤ 1 and consider the function f (x) :
(0,∞) → R defined as

f (x) = 1 + ax√
1 + x

√
1 + a2x

.

This function attains its minimum in 1/a and by solving f (1/a) = ε for a, we get that for

a = 2 − ε2 ± √
1 − ε

ε2
,

this minimum equals ε. If we now introduce the random variable T = SY /SX we see that
for a defined as previously, 1+aT√

1+T
√

1+a2T
has support contained in (ε, 1).

This example shows that Pearson’s correlation coefficients rβ
α can converge to a

nonnegative random variable in the infinite size network limit. This behavior is undesirable,
for if we consider two instances of the same model Ga

n , then the values of r+
− will be random

and, hence, could be very far apart. Therefore r+
− is not suitable for measuring the In/Out

correlation if we would like to find one number (population value) that characterizes the
In/Out correlation in this model.

6. EXPERIMENTS

In this section we present experimental results for the degree-degree correlations
introduced in Sections 3 and 4. For the calculations we used the WebGraph framework [3,4]
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176 VAN DER HOORN AND LITVAK

and the fastutil package from The Laboratory for Web Algorithmics (LAW) at the Universitá
degli studi di Milano.1 The calculations were executed on the Wikepedia graphs2 of nine
different languages, obtained from the LAW dataset database. For each Wikipedia graph
we calculated all four degree-degree correlations using the four measures introduced in this
article.

The in- and out-degree distributions of these networks satisfy conditions of scale-free
distributions with parameters between 1 and 2.5. Moreover, we evaluated the dependency
between in- and out-degrees of the vertices, using angular measure [21, p. 313], and found
them to be independent. Therefore, one could consider the Wikipedia networks as being
generated by a model satisfying the conditions of Definition 3.4.

In an attempt to quantify the results, we compared them to a randomized setting. For
this we did 20 reconfigurations of the degree sequences of each graph, using the scheme
described in Section 4.2 of [6]. More precisely, we used the erased directed configuration
model. In this scheme we first assign to each vertex v, D+(v) outbound stubs and D−(v)
inbound stubs. Then we randomly select an available outbound stub and combine it with a
inbound stub, selected uniformly at random from all available inbound stubs, to make an
edge. When this edge is a self-loop we remove it. When we end up with multiple edges
between two vertices, we combine them into one edge. Proposition 4.2 of [6] now tells us
that the distribution of the degrees of the resulting simple graph will, with high probability,
be the the same as the original distribution. For each of these reconfigurations, all four types
of degree-degree dependencies were evaluated using the four measures discussed above,
and then for each dependency type and each measure, we took the average. The results are
presented in Table I.

The first observation is that for each Wikipedia graph and dependency type, the
measures ρ, ρ, and τ have the same sign whereas r in many cases has a different sign.
Furthermore, there are many cases in which the absolute value of the three rank correlations
is at least an order of magnitude larger than that of Pearson’s correlation coefficients. See,
for instance, the Out/In correlations for DE, EN, FR, and NL or the In/Out correlation for
KO and RU.

These examples illustrate the fact that Pearson’s correlation coefficients are scaled
down by the high variance in the degree sequences, which in turn gave rise to Theorem 3.5,
while the rank correlations do not have this deficiency. Another interesting observation
is that the values for ρ and ρ are almost in full agreement with each other. This would
then suggest that, looking back at (4.3), 3σασβ ≈ |E|3 − |E| for the Wikipedia networks.
Therefore, one could freely change between these two when calculating degree-degree
correlations. Note that ρ is somewhat computationally easier than ρ because there is no
need to compute σασβ .

Finally, we notice that, for the configuration model instances of the graphs, all
correlation measures are close to zero, and the difference between different realizations
of the model is remarkably small (see the values of σ ). However, at this point very little
can be said about statistical significance of these results because, as we proved above, r

shows pathological behavior on large power-law graphs and the setting of directed graphs
is very different from the setting of independent observations. This raises important and
challenging questions for future research: which magnitude of degree-degree dependencies

1http://law.di.unimi.it
2http://wikipedia.org
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should be seen as significant and how to construct mathematically sound statistical tests for
establishing such significant dependencies.

7. DISCUSSION

From Theorem 3.5 and the examples in Section 5, it is clear that Pearson’s correlation
coefficients have undesirable properties, based on their limiting behavior when the graph
size goes to infinity. The question of whether or not rank correlations converge to correct
population values in infinite graph size limit, has not been addressed in this study, but
it can be already answered affirmatively. For undirected graphs, it has been proved in
[13], and the results for directed graphs are the subject of our current research and will
be presented in our upcoming paper [25]. This provides sufficient motivation for using
such rank correlation measures instead of Pearson’s correlation coefficients for measuring
degree-degree dependencies in directed networks with heavy-tailed degrees.

Nevertheless, we have also seen that, when using rank correlations, one needs to
be careful when resolving the ties among the degrees. Furthermore, Spearman’s rho and
Kendall’s tau make very skewed distributions uniform, thus they do not detect the influence
of important hubs, as we saw in the example of the Ga

n graph in Section 5.1. Possibly, these
measures should be considered in combination with measures for extremal dependencies,
such as angular measure. Angular measure for two vectors (Xi)i=1,...,n and (Yi)i=1,...,n is
a rank correlation measure that characterizes whether Xi and Yi tend to attain extremely
large values simultaneously. We used this measure to verify the independence between in-
and out- degrees of a node in Wikipedia graphs.

There is also an intriguing question of whether the four types of dependencies are
related to one another. For instance, it is reasonable to think that if the Out/In and Out/Out
correlations are highly positive, then the other two must also be (highly) positive. Indeed,
if we take a node v with high in-degree, then it tends to have nodes of high out-degree
connecting to it. Hence, out-degree of v tends to be high as well because of the high
positive Out/Out dependency. Therefore, if v connects to another node w, then w tends to
have large in- and out-degree, implying positive In/In and In/Out dependencies. It is very
interesting to understand what the feasibility bounds are for possible combinations of the
four dependency types in terms of different correlation measures.

Finally, although the results from percolation theory and the analysis of network
stability under attack give some insights to the impact of degree assortativity, it remains an
open question of what specific values of degree-degree correlation measures mean for the
topology of directed networks in general. This shows that there are still many fundamental
questions regarding degree-degree correlations in scale-free directed graphs.
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