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Maximizing energy transfer in vibrofluidized granular systems
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Using discrete particle simulations validated by experimental data acquired using the positron emission particle
tracking technique, we study the efficiency of energy transfer from a vibrating wall to a system of discrete,
macroscopic particles. We demonstrate that even for a fixed input energy from the wall, energy conveyed to the
granular system under excitation may vary significantly dependent on the frequency and amplitude of the driving
oscillations. We investigate the manner in which the efficiency with which energy is transferred to the system
depends on the system variables and determine the key control parameters governing the optimization of this
energy transfer. A mechanism capable of explaining our results is proposed, and the implications of our findings in
the research field of granular dynamics as well as their possible utilization in industrial applications are discussed.
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I. INTRODUCTION

Granular systems—conglomerations of individual, macro-
scopic particles—play various important roles in multitudi-
nous natural [1–3] and industrial [4,5] phenomena. Granular
materials are distinct from classical, molecular materials due
largely to the inherently dissipative nature of their dynamical
interactions. In contrast to molecular systems, if a granular
system is to maintain a kinetic state, a constant influx of
energy is required—without a continuous energy source, a
granular fluid will quickly collapse into an immobile, solid-like
state [6].

Energy may be provided to a granular system in a variety of
different manners; here, we focus on energy injection through
contact with a vibrating wall, a mechanism directly relevant to
numerous industrial applications, ranging from the processing
of pharmaceuticals, to the conveying, drying, agglomeration,
and milling of materials in the food industry and even the safe
and efficient disposal of hazardous waste [7–11].

The state and dynamical behavior of a given vibrofluidized
granular system may be quantified by two dimensionless
quantities: the energy input (or “shaking strength”) parameter,
S = 4π2f 2A2

gd
, and the dimensionless acceleration, � = 4π2f 2A

g
.

Using discrete particle method (DPM) simulations supported
by experimental data, we explore how altering the frequency,
f , and amplitude, A, of the oscillations energizing a granulate
may impact the efficiency with which energy is transferred into
the system. It is demonstrated that even if the input energy, S,
with which the system is driven remains constant, by varying
the specific combination of f and A (and hence �) used to
produce a given S, one may produce a substantial increase in
the internal energy of the granulate being vibrated. We show
this observation to be robust, persisting over a considerable
range of energy inputs, S, and bed depths, NL,1 illustrating

1For the purposes of this paper, we use the symbol NL to represent
the number of layers, or bed depth, as opposed to the symbol F ,
with which some readers may be more familiar. This choice of

how the frequency-amplitude combination producing maximal
energy transfer varies dependent on these parameters.

Our findings carry several noteworthy consequences; most
notably, an ability to control the efficiency with which energy
is transferred to a granulate may be beneficial in terms of
energy-saving and cost-reduction in industrial processes where
the fluidization of granular materials is a prerequisite. A
knowledge of the combination of parameters which may, for
a given system, be expected to produce a maximal absorption
of energy by a granulate is also potentially of value in the
design of granular dampers, an emerging technology with
applications ranging from the improvement of surgical and
dental tools [12] to the construction of skyscrapers [13].

The results of this study also highlight the necessity
for researchers to consider the interrelation of the control
parameters governing a system’s behavior—when conducting
a study aiming to investigate the dependence of a system’s
behavior on, say, the driving energy, one must also account for
effects arising due to the inevitable variation of f,A, and/or
�; worryingly, one does not need to look hard to discover a
research paper where such considerations are inevident.

In this paper, we begin by presenting details of the
system under investigation (Sec. II A), before providing an
explanation of how experimental data is acquired (Sec. II B)
and how the system is recreated using discrete particle method
(DPM) simulations (Sec. II C). In Sec. III, we present and
interpret our data and finally, in Sec. IV, we summarize our
findings.

II. MATERIALS AND METHODS

A. Experimental setup

Our general experimental apparatus consists of an 80-mm
square-based container of height 200 mm in which a granular
bed of 256 < N < 2560 spherical steel particles, each of

nomenclature is intended to maximise clarity due to the frequent
usage of the lowercase f to represent driving frequency.
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diameter d = 5 ± 0.005 mm, is housed. The container is
affixed to an electrodynamic shaker, allowing the system to
be vibrated sinusoidally in the vertical (z) direction. The
frequency, f , and amplitude, A, of these sinusoidal oscillations
are varied in the ranges 7.96 � f � 119.4 Hz and 0.4 �
A � 6.0 mm, respectively, allowing us to access a broad
spectrum of driving accelerations and energies. In order to
assess the variation in the efficiency with which energy is
transferred from the container’s vibrating base plate to the
granular medium housed within, the peak vibrational velocity,
v = ωA√

gd
, and hence the input energy, S, is held constant, with a

series of data sets being taken using differing combinations of
A and f to produce this same, fixed value of the driving energy
S. For each of these groups of experiments, all other system
variables are held constant. This process is then repeated for
various energy inputs and particle numbers.

The height of the system is adequately large that particle
collisions with the system’s upper boundary are highly
improbable for the range of N and S used, meaning that
the system can be considered effectively open. The relatively
large particle diameter allows the effects of interstitial air to
be neglected [14], and this considerable size combined with
the use of a stainless steel base plate minimizes the influence
of triboelectric charge within the system [15].

In the following sections, the “size” of our system is
quantified by the dimensionless bed height, NL (defined
as the vertical extent of the static bed normalized by the
diameter, d, of a single particle), as opposed to the total
particle number, N . The choice to present our data in terms
of NL arises due to the fact that this parameter is, for a
given particle elasticity, generally accepted as the relevant
energy-dissipation control parameter for systems such as those
explored here [16–18]; indeed, the suitability of NL (and,
similarly, the inappropriateness of N ) as a control parameter
is directly demonstrated in Sec. III.

The vertical sidewalls that bound the system in the
horizontal directions are deliberately chosen to be smooth,
and a relatively low aspect ratio, A = NL

Lx,y/d
, is maintained

for all data sets (∀N : A < 1), thus reducing the probability
of convective motion within the bed [19]. The absence of
convection within our system was confirmed through analysis
of two-dimensional velocity fields [20], which, through the
observed random distribution of particle velocities, clearly
demonstrated a distinct lack of coordinated or bulk motion
within the bed [21]. Although, as will become clear in
subsequent sections, the presence of convection would not be
expected to significantly influence the phenomena that form
the focus of this study, the elimination of convective motion
nonetheless allows us to more easily study the behaviours of
our systems on a more fundamental level.

The sinusoidal oscillations used to excite the system are
controlled via a feedback loop from an accelerometer; as such,
the system’s dimensionless acceleration is accurate to within
� = 0.005.

B. Data acquisition—positron emission particle tracking

Data is acquired from the system described above using
positron emission particle tracking (PEPT), a noninvasive tech-
nique capable of tracking a single particle, in three-dimensions,

with millimeter-scale accuracy and a temporal resolution of the
order of milliseconds [22]. PEPT is performed by radioactively
labeling a single “tracer” particle, physically identical to all
others in the bed, with a β+-emitting radioisotope, causing
it to produce γ -ray pairs whose orientations are separated by
180◦. Through the detection of several such pairs of γ rays
using a dual-headed γ camera, the tracer’s spatial position can
be triangulated. Thus, for an adequately active tracer, a rapid
succession of these triangulation events allows its motion to
be tracked. Since the 511 keV γ rays emitted by the tracer are
highly penetrating, particle motion can be recorded even in the
interior of deep, dense, and/or opaque systems.

Although PEPT only directly measures the motion of a
single particle, for systems in a nonequilibrium steady state,
and if data is obtained over an adequately long period, the
principle of ergodicity means that the time-averaged behavior
of this single tracer may be considered representative of
that of the system as a whole [23]. Thus, PEPT may be
used to accurately determine various important quantities
pertaining to the granular system and its dynamics, such as
packing density [23], kinetic energy (and the fluctuations and
spatial variations thereof) [24], particle velocities and velocity
distributions [25], mean-squared displacement and diffusion
coefficients [26] and, for systems comprising more than one
“species” of particle, the degree of segregation exhibited [27].

Due to the reliance of the PEPT technique on the existence
of an ergodic steady state, care is taken to ensure that, in all
cases, the behavior of the granular systems explored remains
consistent throughout the duration of each recorded data set.
For each run, the bed is excited for an initial period of 1000 s in
order to allow a steady state to be reached; this particular time
period is chosen as it has been previously shown to be more
than adequate to successfully produce a steady state in systems
similar to those explored here [20]. Data is then recorded over
a period of between 3600 s and 7200 s, dependent on the size
of the system, and hence the time required for the tracer to fully
explore the experimental volume. The steady state nature of the
system is subsequently confirmed by subdividing each run into
a series of overlapping 200- to 400-s segments and ensuring
consistency between each segment. Although it is difficult to
directly “test” the ergodicity of our experimental system, if
the particle density distributions produced from each 200- to
400-s time segment are compared to those corresponding to
the full data set as well a results acquired for the equivalent
simulated system (see Sec. II C below) and agreement is
observed in all cases, it is likely that the system described
is indeed ergodic. In fact, based on this criterion, our systems
can be assumed ergodic even for the highest-density systems
explored in this paper, although, as touched upon previously,
the densest systems require a considerably longer run time
than the most dilute in order to fully explore the system.
Further validation of the ergodicity assumption for more
densely packed systems was conducted using discrete particle
simulations; details regarding the manner in which these
further tests were performed may be found in the next section.

C. Simulations

In order to elucidate and verify the various trends and
behaviors observed in our experimental data, simulations were
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performed using the MercuryDPM software package [28–31].
In order to emulate as accurately as possible the experi-
mental setup, parameters including f and A (and hence �

and S), the particle number, N , diameter, d, and material
density, ρ = 7850 kgm−3, as well as the container dimensions
(Lx,y,z) were implemented as their known experimental values.
Particle-particle, particle-base, and particle-sidewall collisions
were all modeled with experimentally obtained coefficients of
restitution εp = 0.80, εb = 0.75, and εw = 0.59, respectively.
The coefficient of friction, μ, was taken as 0.12 [32]. Although
not included here for the sake of brevity, full details of the
MercuryDPM code may be found in the references provided
above or, alternatively, in the Supplemental Material of our
previous paper [27].

Since, as discussed above, more densely packed systems
are more likely to exhibit a lack of ergodicity, additional
tests of the ergodicity assumption were conducted using
simulations, where ensemble averages of whole beds and
long-time averages of single-particle behaviors can be directly
compared. Specifically, a series of simulations spanning the
range of S and NL used in experiment was produced. For each
simulation, two sets of steady-state temperature and density
fields were produced—one attained by time-averaging the
motion of a single particle and the other through a simple time-
and ensemble-average across all particles. Although the run
duration required for the time-averaged single particle be-
havior to be truly representative of the whole system varied
considerably over the range of parameters tested, the ergodicity
assumption was found to hold for all systems explored,
lending a considerable degree of support to the validity of
our experimental data acquired using PEPT.

III. RESULTS AND DISCUSSION

In order to quantify the average internal energy possessed
by a given granular system, we calculate the time-averaged
position of its vertical center of mass, h, which—due to the
relation EP = Mgh (with M the total mass of the particulate
assembly and g the acceleration due to gravity)—provides
a measure of the system’s potential energy. Specifically, we
choose a parameter h∗ = h−h0

h0
, the relative increase in the

system’s center of mass from its resting (S = 0) state. Here,
h0 represents the center of mass of the relevant static bed.
Confirmation of the viability of h∗ as a measure of the system’s
internal energy may be seen in Fig. 1, which shows data for a
simulated system of dimensionless depth NL = 4 driven with a
fixed input energy S = 3.26. This image clearly demonstrates
the close correspondence between the variation with f and
A of h∗ and that of the system’s total internal energy, ET ,
i.e., the time-averaged sum of the average kinetic2 (EK )
and gravitational potential (EP ) energies for all particles in
the system. This close correspondence in the forms of the
observed trends is found to persist across the full range of
parameters tested, with Fig. 1 simply providing a convenient
visual illustration of this fact. Although values of h∗ and ET

2EK includes kinetic energy in both the translational and rotational
modes, ensuring that ET is an accurate representation of the system’s
total energy.

FIG. 1. (Color online) Comparison of the variation with the
nondimensionalized driving amplitude, A/d , of h∗, the relative
increase in a system’s center of mass height from its resting
position (blue triangles), and ET , the total energy (kinetic and
potential) possessed by the system (black circles), as determined
from simulations.

clearly do not possess a direct, 1:1 equivalence, importantly,
they can be expected to present maxima and minima at the
same points in phase space, and indeed the same relative
increasing or decreasing trends between these extrema, and
it is these (as opposed to any absolute numerical values) that
form the focus of our present work.

Although at first glance the strong correlation between the
observed trends in the time-averaged, steady-state values of h∗
and ET may seem surprising, it is not necessarily unexpected.
Since, in vibrated systems such as ours, ET = EK + EP and
EP ∝ h∗, the observed correlation simply implies that the
remaining component, EK , must be proportional to EP and
hence h∗, an idea supported by existing theory [33], as well as
our own results.3

Perhaps the most striking feature of the data shown in Fig. 1,
however, is the considerable variation in the system’s internal
energy, despite the fact that both NL and S are fixed—in
direct contradiction of our expectations based on previous
experimental and theoretical studies [34,35]. The possible
origins of this discrepancy will be discussed in detail later
in this section.

The decision to represent, throughout this manuscript, the
variation in system energy using h∗ arises from the fact that
while h∗ may be determined with a high degree of accuracy
from both PEPT data and simulations, the accuracy with
which our experimental techniques can determine EK is less
than desirable for relatively dense systems. Thus, in order to
guarantee both accuracy and ease of comparison across the full
range of systems explored, data is predominantly presented in
terms of h∗.

The average center of mass position can be extracted from
PEPT data as follows: the computational volume correspond-
ing to the experimental system is divided into a series of
equally sized cells in the vertical direction. The fractional
residence time of the tracer particle within each of these cells
can then be determined. Due to the principle of ergodicity,
this averaged residence time is directly proportional to the

3It is important to note that the various energy and center of mass
values quoted throughout this manuscript refer—unless otherwise
specified—to time-averages taken from systems in their steady states.

052203-3



WINDOWS-YULE, ROSATO, PARKER, AND THORNTON PHYSICAL REVIEW E 91, 052203 (2015)

FIG. 2. (Color online) Variation of the relative increase in center
of mass, h∗, with frequency and amplitude at a fixed dimensionless
input energy S = 1.83. Data is shown for both experimental (tri-
angles) and simulated (circles) data sets and for two differing bed
heights: NL = 3 (gray circles and red triangles) and NL = 6 (black
circles and blue triangles). Panel (a) shows the variation in h∗ as a
function of driving frequency, f , while panel (b) plots h∗ against the
dimensionless driving amplitude, A

d
, where d is the diameter of a

particle.

average particle density within each of these vertical cells.
With a known particle density at each given height within the
container, the system’s time-averaged vertical center of mass
can then be easily determined.

Figure 2 shows, for both experiment and simulation, how,
for a single, fixed input energy S = 1.83, the systems’s center
of mass heights (and hence internal energies) are observed to
change as f and A are varied by a decade. Data is shown for
two systems, identical in all aspects other than the number of
particles forming the bed, and hence their approximate resting
bed heights, NL = Nd2

LxLy
.

The most obvious, and rather remarkable, observation to be
drawn from Fig. 2 is the significant variation in the system’s in-
ternal energy, which, considering the unaltered driving energy,
implies a considerable change in the efficiency with which en-
ergy is transferred into the system. Indeed, for the NL = 6 case
shown, simply through adjustment of the combination of f and
A used to produce the fixed value of S, h∗ can be increased by
almost 50% above the “baseline” value that it asymptotically
approaches in the large f , small A limit. In other words, since
h∗ is directly representative of the energy supplied to the bed
by the base vibrations, we are observing a ∼50% increase
in the efficiency of this energy transfer in the optimal case.
Equally large—and even greater—increases in the efficiency
of energy transfer can also be seen for numerous other values
of the dimensionless bed depth, NL, and shaking strength, S.

A second notable feature of Fig. 1 is the similarity between
the general trends in the variation of h∗ for both cases. Indeed,
this same typical form is adhered to over a range of bed

FIG. 3. (Color online) Center of mass position for simulated beds
as a function of frequency, f , for a variety of differing bed heights, NL,
and driving energies, S, produced via simulation. The center of mass
positions for each NL-S combination have been arbitrarily normalized
such that the positions of the various maxima may be easily compared
by visual inspection. Panel (a) shows data for a fixed driving strength
S = 1.83 for beds of depth NL = 2 (circles), NL = 3 (triangles),
NL = 4 (squares), and NL = 6 (diamonds). Panel (b) gives data for
a constant bed height NL = 3 driven with input energy S = 1.37
(diamonds), S = 1.83 (squares), S = 2.75 (triangles), and S = 4.13
(circles).

depths, NL, and driving strengths, S, as made apparent by the
simulated results shown in Fig. 3. Specifically, our experiments
and simulations strongly imply that the behavior discussed in
this manuscript may be expected to hold as long as the system
under investigation is adequately dilute and strongly excited to
allow fluid-like dynamics. The observed behavior seemingly
breaks down only when the bed undergoes a phase transition
to the less kinetic “bouncing bed” [36] state and begins to
move as a single, solid body. At this point, the introduction of
resonances between base motion and the solid-like bed’s free
flight time introduce additional variation in energy transfer to
the system [37], resulting in more complex dynamics.

Having established that the trend between h∗ and the
system’s driving parameters is robust across a range of bed
heights and driving strengths, we now attempt to explain the
mechanisms underlying this behavior. We begin by discussing
the initial increase in h∗ with increasing amplitude (decreasing
frequency) for small A (large f ). Figure 4 shows how
the average rate of collision, νb, between grains and the
system’s energy-providing base plate varies as a function
of the plate’s peak amplitude, A, for a fixed input energy
S = 1.83 and a bed of dimensionless depth NL = 2. The
image clearly demonstrates a significant, monotonic increase
in the frequency of base-particle interactions as amplitude is
increased at fixed S. Since the plate’s mean velocity is fixed
and, as illustrated in the diagram, the average duration of the
contact between a single particle and the plate is approximately
invariant with A, one would naturally expect an increase in
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FIG. 4. (Color online) Mean collision rate (circles) and contact
time (diamonds) for particle-base interactions as a function of driving
amplitude, A, for a fixed base vibrational energy S = 1.83. Data
shown is acquired from DPM simulations and corresponds to the case
NL = 2. Each data point represents an average taken over ∼100 000
individual collisions.

the rate of collisions to lead to an increase in the energy
transferred to the granular medium as a whole [38]. It is
interesting to note that the considerable variation in collision
rate observed for a fixed value of base velocity, v, achieved
using different combinations of f and A is in stark contrast
to the observations of Falcon et al. [35] and Aumaitre and
Fauve [34], who show, both experimentally and theoretically,
a direct proportionality between νb and v = √

S implying that,
for fixed S and N , νb should remain constant. The strongly
differing behaviors observed in our simulations can perhaps
be explained by the relatively inhomogeneous distribution of
particles in our system compared to those belonging to the
dilute, low-gravity environments explored in Refs. [34,35].
The relatively small vibrational amplitudes used in these prior
studies may also play a contributing role in the observed
differences, as other studies [39] utilizing larger vibrational
amplitudes have observed near-linear increases in collision
rate similar to those described here.

Another important factor to bear in mind when considering
the efficiency of energy transfer between a vibrating surface
and a system of particles is that as well as providing energy to
colliding particles, particle-base interactions may also act to
remove particles’ kinetic energy if collisions occur while the
base undergoes the downward phase of its oscillatory cycle.
As the velocity, vp, of a particle within the system increases
relative to the base’s velocity, such energy-reducing collisions
become increasingly prevalent [40,41]. Indeed, in the limit
v → ∞, one may anticipate that, for finite base velocity, the
net energy input to the system will actually tend to zero!
Since the scaling relation between a system’s average particle
velocity, 〈vp〉, and base velocity, v = √

S, is not precisely
known [33,42–44], it is important to investigate not only
the typical frequency of particle-base collisions, as described
above, but also the relative proportion of these collisions that
occur when the base is ascending and descending as this,
clearly, will influence the net energy input to the system.

Figure 5 shows the variation with S of the likelihood
that a given particle will experience an energy-augmenting
collision with the upward-moving base (a “positive collision”)
as opposed to an energy-removing interaction with the base
during its downward phase (a “negative collision”). The
measured fraction of positive collisions shows, for fixed �,
a slow increase with S. This is an interesting observation, as it

FIG. 5. (Color online) Particle-base collision rate per particle
[solid orange (light gray) symbols] and the percentage of these
collisions that occur when the base’s motion is in the positive vertical
(upward) direction [open blue (dark gray) symbols] as a function of
the vibrational energy parameter S. Data is shown for the case of
constant acceleration with � = 8 (circles) and � = 13.5 (triangles)
as well as for parameter combinations producing a constant h∗ = 2.1
(squares) and h∗ = 2.8 (diamonds). In all cases, the resting bed depth
is fixed at a value NL = 3. The extent in S of the fixed-h∗ data sets
is constrained by the limited overlap between the ranges of center of
mass positions achievable for differing S-values—for example, the
lowest h∗ achievable in a system driven with S = 7.34 is still greater
than the largest obtainable h∗ value for an equivalent system with
S = 3.26.

gives us some insight into the scaling of the average particle
velocity, 〈vp〉—and hence the system’s mean kinetic energy or
“granular temperature”—with the peak base velocity v [38].
Specifically, while a relation 〈vp〉 ∝ vα with α = 1 is often
assumed in theoretical models [33,42], the increasing trend of
Fig. 5 suggests an increasing disparity between 〈vp〉 and v as S

increases, i.e., α < 1. Although this matter is not a main focus
of the current study, it is nonetheless worth mentioning, due
to the considerable importance of such scaling relations to the
theoretical modeling of granular flows [45].

For the purposes of the present work, the presence of
the trend discussed above can be quite safely neglected as,
over the range of variables investigated, the variation in the
positive collision probability is dwarfed by that of the total
collision rate—while the percentage of positive collisions is
found to change by less than 10% between the extremal cases
investigated, the collision rate varies by more than a factor
of three. Thus, this latter parameter may indeed be expected
to dominate the energy transfer behaviors of our systems as
discussed above.

If the above conjecture regarding the increasing particle-
base collision rate with increasing driving amplitude, A, is
indeed valid, one might expect the positive correlation between
h∗ and driving amplitude to continue ad infinitum. However,
as Figs. 1– 3 clearly demonstrate, this is not the case. A clue
as to the origin of this somewhat unexpected downturn at large
A (small f ) may be provided by replotting the data from
Fig. 3(b) as a function of the dimensionless acceleration, �

(see Fig. 6). In this image we see that, unlike when plotted
as a function of f , the positions of the maxima of h∗ for
each S value are approximately coincident. It should be noted,
however, that the same does not apply for differing NL values,
as will be discussed below. Another interesting observation
to be drawn from this Figure is that stronger driving, in
general, elicits a greater disparity between the maximal value
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FIG. 6. (Color online) Simulated data showing center of mass
position as a function of dimensionless acceleration, �, for various
fixed input energies: S = 1.37 (diamonds), S = 1.83 (squares), S =
2.75 (triangles), and S = 4.13 (circles). As in Fig. 3, the value of h∗

has been normalized for ease of comparison.

of h∗ and its asymptotic, high-f value—in other words, the
variation in efficiency becomes more pronounced for higher
S. This observation holds true for all systems tested, although
“saturation” is inevitably reached in all cases, where a further
increase in S will no longer lead to a greater difference between
the extremal h∗ values. The increased “decay rate” of h∗ with
� for larger driving energy inputs, S, can perhaps be explained
by the fact that for higher values of S, a change in � at constant
S will result in a larger change in the driving amplitude, A,
as compared to the same �� for the case of a smaller S

value. Since, as discussed above and exemplified in Fig. 4, the
collision rate and hence magnitude of base-bed energy transfer
is directly dependent on A, it seems reasonable that higher S

systems should see a more rapid relative decrease in h∗ with
increasing � (and therefore, since S = const., decreasing A)
than similar but more weakly excited systems.

For a system with a given, fixed depth, NL, the breakdown
of the monotonic increase of h∗ with increasing A (i.e.,
decreasing �) at large A (small �) may perhaps be explained
in the following manner: as the nondimensionalized driving
acceleration, �, tends toward unity—the minimal value for
which a mass on an oscillating plate may achieve “free flight”
(i.e., detachment from the vibrating base) [46]—one would
expect the normally fluidized bed to approach a solid-like state.
More specifically, as � is lowered, an increasing proportion
of the bed’s constituent particles are likely to “condense” [47]
into a solid body and begin to exhibit coordinated motion
with the system’s vibrating base, as opposed to the random,
fluid-like motion observed at higher accelerations. Evidence
for such a transition may be observed in Fig. 8; here we see
experimental power spectra corresponding to time-dependent
variation in z position of the vertical mass center of a system
with fixed NL = 6 driven at a constant S = 1.83. This specific
value of S is achieved using three differing combinations of
f , A, and hence, �.

The power spectra shown in Fig. 8 are acquired simply by
taking the fast Fourier transform (FFT) of the experimental
tracer particle’s motion in the z direction over the course of a
data set. If data is acquired over a period of time adequate to
allow the tracer to fully explore the system in question (as is
the case here—see Sec. II B), any cyclic motion of the system’s
vertical center of mass will be represented in the FFT data [48]:
if the particles within the system undergo some degree of peri-
odic, collective motion in the vertical direction, the tracer will

FIG. 7. (Color online) Number of particle collisions as a function
of time for two simulated systems of identical resting depth NL = 3
driven with equal dimensionless input energies, S = 3.26, achieved
using frequency-amplitude combinations of (a) A = 12.0, f = 5.31
(� = 1.36) and (b) A = 1.0, f = 63.7 (� = 16.3). For each point
in time, the collision number is shown alongside the instantaneous
velocity of the vibrating base-plate, which forms the system’s energy
source. For ease of comparison, the collision number is normalized
such that its maximal value is equal to unity.

become frequently “caught up” in the movement, creating a
peak at the characteristic frequency of this motion in the power
spectrum produced. As exemplified in the image, for values of
A for which the simple increase of h∗ with A is observed (see
Fig. 2), the relevant power spectrum shows no distinct peaks,
implying a randomized, fluid-like motion within the system.
For higher A values, corresponding to lower �, however, it
becomes possible to distinguish a definite peak at a frequency
corresponding to that of the system’s driving, indicative of the
fact that the dynamics of at least some of the particles in the
system have become coordinated with the base’s oscillatory
motion, as hypothesized. Moreover, as A is further increased
(i.e., � is further decreased toward unity), the magnitude of
the observed peak is found to increase, indicating an increased
degree of coherent motion within the bed, i.e., that a greater
number of particles has indeed entered solid body motion.

Further evidence of the varying degrees of coordinated
motion for differing � values may be seen in Fig. 7, which
compares, over ∼10 oscillation cycles, the number of plate-
particle collisions to the current velocity with which the plate
is moving for two systems identical in terms of their NL and
S values, but differing in the applied acceleration, �. For the
low-� case, as expected from the above discussion, we see
a strong correlation between base and particle motion, and
evidence of a coherent, coordinated motion of the bed as a
whole. In particular, one may observe considerable, regular
time periods during which no particle-base collisions are found
to occur, indicating that the entire bed has entered a period of
free flight. In other words, the bed’s dynamics are approaching
those of a single, solid body bouncing on a plate. The dynamics
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FIG. 8. (Color online) Experimentally acquired power spectra
for the center of mass motion of a granular bed of depth NL = 6 driven
with input energy S = 1.83. This value of S is achieved using three
differing combinations of driving frequency, f , and dimensionless
amplitude, A/d: f = 9.55, A/d = 1 (black), f = 11.9, A/d = 0.8
(blue/dark gray), and f = 19.9, A/d = 0.48 (orange/light gray).
Vertical dashed lines are used to demarcate the positions of the
relevant driving frequencies.

of the comparatively high-� system, however, are considerably
more chaotic; although, for obvious reasons, the collision rate
is typically reduced during the downward portion of the plate’s
motion and increased during the upward phase, the timing and
number of collisions is, in general, much more randomized
and less periodic.

The apparent change of state from a granular fluid to a
more solid-like phase suggested by the behaviors discussed
above may well (due to the more rapid dissipation of energy
in an increasingly dense state [49,50]) explain the curtailment
of the increasing trend between h∗ and A. In other words,
despite the fact that as A is increased (and hence � decreased),
the mean particle-base collision rate, and thus kinetic energy
provided to the system continues to grow, this increase is
offset, and eventually dominated, by the rapid increase in
the dissipation arising from the bed’s higher packing density
and hence interparticle collision frequency. Indeed, for the
low-� case, we clearly see from Fig. 7 that the maxima in
particle collision rate are consistently observed to coincide
with the points in time at which the energy-providing plate
reaches its peak positive velocity, i.e., the energy input to the
system is clearly increased compared to higher-� systems.
However, as discussed above, the increasingly synchronized
nature of the particles’ motion with decreasing � also leads to
a greatly increased particle collision rate and, as a result, an
increased dissipation, which, in the extremal case, will result
in inelastic collapse [51,52] and a system of particles that
simply behaves as a single, perfectly inelastic ball [53–55],
pseudoinstantaneously dissipating all energy provided to it.
The behavior of systems in and approaching this limit is
discussed in detail in Ref. [56].

The above hypothesis can also explain the observed shift
in the position of the maximum in h∗ versus � for differing
NL values (see Fig. 9), since the increased dissipation caused
by the addition of extra particles to a system is known to
raise the onset threshold for fluidization in vibrated granular
systems [57]. The simulated data in Fig. 9 also provide further
support for the invariance of the position of this maximum
with input energy as illustrated for the NL = 3 case in Fig. 6,
demonstrating the generality of this observation—for each of

FIG. 9. (Color online) Simulated data showing the variation with
bed depth, NL, of �max, the value of the dimensionless acceleration at
which, for a given NL, energy transfer is maximal. Data is shown for
input energies S = 1.83 (circles), S = 4.13 (triangles), and S = 7.34
(diamonds).

the NL values tested, the “peak” value of the dimensionless ac-
celeration, �max, at which the system’s behavior switches from
increasing with A to decreasing with A was found to remain
constant to within the appropriate error margins over a range
of S values. Indeed, this seeming invariance was observed for
all tested S values for which the system’s behavior was found
to display the characteristic curve described throughout this
manuscript. This observation strongly suggests � to be the
relevant energy-input control parameter determining the point
at which maximal energy transfer may be achieved in a given
vibrated granular system. This is an important result with clear
practical applicability, as a knowledge of the key parameters
underlying energy transfer may, for instance, prove useful in
assessing the optimal operating points of industrial equipment.

Simulations were also conducted for varying values of the
container width, Lx,y , in order to assess the applicability of
our findings to systems of different sizes. Simulations were
produced, for various NL values, using systems of width
Lx,y/d ∈ (4,48)—i.e., systems ranging from 1

4 to 3 times the
width of the experimental domain. An example of the results
obtained may be seen in Fig. 10. It is first worth noting that
the general, qualitative form of the relationship between h∗
and � remains consistent for all tested Lx,y values. Moreover,
the value of �max, the acceleration value producing maximal
energy transfer, appears, for a given NL, to be invariant with
system size for containers of horizontal extent Lx,y/d � 8.

FIG. 10. (Color online) Simulated data showing relative center
of mass position, h∗, as a function of dimensionless acceleration, �,
for the case NL = 2 and S = 4.13. Data is shown for systems of
horizontal dimensions Lx,y/d = 4 (gray crosses), 16 (black circles),
24 (blue triangles), and 48 (red diamonds), corresponding to particle
numbers, N , of 32, 512, 1152, and 4608, respectively.
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FIG. 11. (Color online) Variation in solids fraction, η, with driv-
ing parameters f and A for a fixed energy input S = 3.26 and bed
depth NL = 3, as obtained from simulations. Panel (a) shows the
variation in the bed’s average packing density as the amplitude,
A, of driving is varied at fixed S. Panel (b), meanwhile, shows the
one-dimensional vertical packing profiles corresponding to each data
point in (a). In this image, lighter shades represent higher A or,
equivalently, lower f .

The deviation observed in relatively narrow systems can
likely be related to the greater acceleration necessary for
the bed to become “detached” from the vibrating plate due
to the considerably increased role of sidewall friction in
more horizontally constrained beds [36,58]. Since holding
the number of particle layers, NL, constant while increasing
the system’s size will naturally require a larger total number
of particles, N , our results clearly demonstrate that NL, as
opposed to N , acts as the 2nd relevant control parameter
determining optimal energy transfer.

Accompanying the observed variation in the system’s
energy is, as one might expect, a modification of the bed’s
average packing fraction, η. An example of the variation in
the average η for the NL = 3, S = 1.83 case may be seen
in Fig. 11(a). Figure 11(b), meanwhile, illustrates the fact
that alongside the variation in average density, the spatial
distribution of η also varies considerably with the differing
combinations of f and A. Although outside the main interest
of the current study, these variations in packing density
may have significant implications, in particular for bi- and
polydisperse systems. The separation and/or mixing of such
systems is a matter of great industrial and environmental
relevance [11,59,60], and the degree to which such segregation
or homogenization is achieved depends strongly on η, making
this an area worthy of further research.

IV. SUMMARY AND CONCLUSIONS

Using a combination of experimental and simulational
techniques, we have investigated the behavior of a granular bed
fluidized by contact with a vibrating plate, and the dependence

of this behavior on the frequency, f , and amplitude, A, of the
plate’s oscillation.

We have shown that, for a given, fixed driving energy, S =
4π2f 2A2

gd
, the proportion of this energy actually transferred to the

system being energized may be significantly altered through
careful choice of the parameters f and A.

The general forms for the variation in the efficiency of
energy transfer as a function of driving frequency, amplitude,
and acceleration have been demonstrated and shown to be
robust over a range of system parameters. An explanation of
the mechanisms underpinning these general trends has also
been proposed.

We have established the key control parameters, � =
4π2f 2A

g
and NL, underlying the efficiency of energy transfer to

a vibrofluidized granular system, and determined the points in
�-NL phase space for which maximal efficiency is achieved.

Additionally, we have demonstrated that the variation of f

and A at fixed S can strongly influence the average packing
density of a system, as well as the spatial distribution of
particles.

The findings of this work carry numerous ramifications
of potential significance to both industry and research. As
described above, a system with a given, fixed input energy
may possess a significant range of internal energies, densities,
and even dynamic states dependent on the precise details of
its driving. This observation raises serious questions as to the
reliability and accuracy of any studies (past or future) detailing
the variation of a system’s behavior with driving energy if care
is not taken to ensure generality across a range of f and A

values.
On a more positive note, the knowledge that energy

transfer from a vibrating plate into a granular system may be
rendered considerably more efficient for certain combinations
of A,f , and NL is potentially relevant to a variety of practical
applications. For example, in the industrial sector, where
vibration is used to process granulates, it may be possible
to design and utilize equipment in a manner that maximizes
energy efficiency and, hence, minimizes cost. Alternatively, a
knowledge of how the number of particles in a system affects
its energy absorption characteristics may aid the creation
of more efficient granular dampers, a technology with a
broad range of applications in fields as diverse as power tool
manufacture and aerospace engineering [12,61–64].

The fact that, in addition to its internal energy, the packing
density of a system—and the spatial distribution thereof—may
also be altered at fixed S has considerable implications for
multicomponent systems. In such systems, the degree of
segregation or mixing between particles of different sizes
or material properties may potentially be altered without
the necessity of providing greater energy to the system—a
possibility worthy of future research.
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