
Multiday weather forecasts often include graphical 
representations of uncertainty. However, visual repre-
sentations of probabilistic events are often misinter-
preted by the general public. Although various uncer-
tainty visualizations are now in use, the parameters 
that determine their successful deployment are still 
unknown. At the same time, a correct understanding 
of possible weather forecast outcomes will enable the 
public to make better decisions and will increase their 
trust in these predictions. We investigated the effects of 
the visual form and width of temperature forecast visu-
alizations with uncertainty on estimates of the prob-
ability that the temperature could exceed a given value. 
The results suggest that people apply an internal model 
of the uncertainty distribution that closely resembles a 
normal distribution, which confirms previous findings. 
Also, the visualization type appears to affect the applied 
internal model, in particular the probability estimates 
of values outside the depicted uncertainty range. Fur-
thermore, we find that perceived uncertainty does not 
necessarily map linearly to visual features, as identical 
relative positions to the range are being judged differ-
ently depending on the width of the uncertainty range. 
Finally, the internal model of the uncertainty distribu-
tion is related to participants’ numeracy. We include 
some implications for makers or designers of uncer-
tainty visualizations.

Keywords: visualization, topics, laboratory study, 
methods, user evaluation study, uncertainty, topics

IntroductIon
The quality of weather forecasts has improved 

dramatically in recent decades (Richardson  
et al., 2011). This improvement is mainly due 
to the maturing of numerical weather forecast 
models and the improved global observation of 
the atmosphere, particularly from satellites. But 
because there are fundamental physical limits to 
our ability to predict complex systems, weather 
forecasts will always contain uncertainty (Koot-
val, 2008). To overcome the limitations of 
deterministic weather forecasting in the face of 
uncertainty and chaos, meteorologists devel-
oped ensemble prediction methods (Ehrendor-
fer, 1997; Leith, 1974), which have become the 
state-of-the-art technique for weather forecast-
ing (Craig, 2012; Gneiting & Raftery, 2005). In 
contrast to deterministic modeling techniques 
that produce a single forecast, ensemble predic-
tion methods generate a collection of predic-
tions of the same physical phenomenon using 
different parameter values, boundary or initial 
conditions, instances of stochastic phenomena, 
phenomenological models, numerical regimes 
or parameters, or combinations thereof (Craig, 
2012). Such an ensemble of predictions can be 
converted into a probability distribution function 
that provides a way to infer the (un)certainty of 
a given future outcome.

Weather forecasts of 5, 10, or even 30 days in 
advance are quite common nowadays. The 
uncertainty in these forecasts is often presented 
together with the forecast itself (see Figures 1-3 
for some examples of temperature forecasts that 
include depictions of uncertainty). The idea is 
that users may appreciate this uncertainty visu-
alization (“nice to know”) and may use it to 
reach a decision (“need to know”). It has indeed 
been observed that everyday users infer uncertainty 
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into deterministic forecasts anyway and prefer 
forecasts that explicitly express this uncertainty 
(Joslyn & Savelli, 2010; Morss, Demuth, & 
Lazo, 2008; Morss, Lazo, & Demuth, 2010; 
Peachy, Schultz, Morrs, Roebber, & Wood, 
2013; Savelli & Joslyn, 2013). Research has also 

shown that including uncertainty estimates in 
probabilistic weather (and hydrological) fore-
casts increases trust and gives people a better 
understanding of the possible outcomes and the 
amount of uncertainty in the given situation, 
allowing them to make better decisions (Joslyn 

Figure 1. A visual representation of temperature forecast uncertainty in the news (screenshot taken from Dutch 
television station NOS, news edition, March 22, 2013).

Figure 2. A visual representation of temperature forecast uncertainty (from www.metoffice.gov.uk, July 18, 
2013).
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& LeClerc, 2012, 2013; Joslyn, Nemec, & 
Savelli, 2013; Marimo, Kaplan, Mylne, & 
Sharpe, 2012; Nadav-Greenberg & Joslyn, 
2009; Ramos, van Andel, & Pappenberger, 
2013; Roulston, Bolton, Kleit, & Sears-Collins, 
2006; Roulston & Kaplan, 2009; Savelli & Joslyn, 
2013). Carefully designed visual representations 
can indeed successfully convey uncertainty 
information to both experts and nonexperts 
(Nadav-Greenberg, Joslyn, & Taing, 2008; 
Roulston & Kaplan, 2009). However, the advan-
tage of the availability of uncertainty estimates 
depends critically on how they are communi-
cated (Ibrekk & Morgan, 1987; Nadav-Green-
berg et al., 2008). Effectively communicating 
forecast uncertainty to nonexperts still remains a 
challenge (Demuth, Morss, Lazo, & Stewart, 
2007; Joslyn & Savelli, 2010; Joslyn, Savelli, & 
Nadav-Greenberg, 2011; Joslyn et al., 2013; 
Morss et al., 2008; Savelli & Joslyn, 2009, 2013; 
Stephens, Edwards, & Demeritt, 2012).

In the current study, we investigate how users 
interpret the uncertainty visualization in tem-
perature forecasts. Because we encounter proba-
bilistic weather forecasts on a regular basis  

nowadays, this issue may seem trivial. However, 
visualizations are often shown without any 
explanation of the meaning of the uncertainty 
range (e.g., Figure 1). In case an explanation is 
provided, it is often ambiguous (e.g., in Figure 2, 
where the exact meaning of “high range” and 
“low range” is not given) or needs a certain level 
of expertise to comprehend (e.g., the meaning of 
a “25th %-ile” as provided in Figure 3). Because 
previous work has shown that even researchers 
(though generally quite familiar with uncertainty 
visualizations) frequently misunderstand visual 
representations of confidence intervals and 
errors bars (Belia, Fidler, Williams, & Cum-
ming, 2005), one can expect that laymen will 
have the same problems.

Visualizations like those depicted in Figure 1 
do not provide direct information about, for 
example, the probability of reaching a tempera-
ture of 10 degrees on a specific day. Tak, Toet, 
and van Erp (2014) suggested that users may 
apply an internal, cognitive model to translate 
these kind of visualizations into point probabili-
ties. To test this hypothesis, they used a case from 
the geomodeling domain. In their experiment, 

Figure 3. A visual representation of temperature forecast uncertainty (from www.weatherspark.com, July 18, 
2013).
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participants judged the probability that the bound-
ary between two earth layers (represented as a 1D 
graph plus an uncertainty range of uniform width) 
passed through a given location indicated by a red 
dot, which was presented randomly at one of nine 
vertical positions relative to the center line (simi-
lar to the procedure used in the present study; see 
Method section). They tested seven different 
visual representations for both the borders (e.g., 
solid lines, dashed lines, or a gradient boundary) 
and the interior (e.g., solid fill, gradient fill, paral-
lel lines, or random lines) of the uncertainty range 
visualization. They found that the user’s hypo-
thetical internal model is best fitted by a normal 
distribution (better than, for instance, triangular, 
quadratic, or cubic distributions), with the highest 
probability corresponding to values on the center 
line of the uncertainty range and increasingly 
lower probabilities corresponding to values 
located at larger distances from the center line. 
The internal model has a wider distribution than 
would have been expected if the range would 
depict a 95% confidence interval as is common 
practice (i.e., it is overdispersed). Note that no 
values for the uncertainty ranges were provided in 
their experiment. In addition, Tak et al. (2014) 
also found that the visual depiction of the uncer-
tainty range (i.e., the visualization type) affects 
these perceived probabilities.

To increase the generalizability of the previ-
ous findings by Tak et al. (2014) and to increase 
our knowledge about the (public) understanding 
of probabilistic forecasts in particular, we inves-
tigate the following research questions:

1. What does the internal model for range probabil-
ity look like?

2. Does the internal model for range probability 
depend on the visualization type?

3. Do the perceived range probabilities depend on 
the width of the uncertainty visualization?

4. Does the internal model for range probability 
depend on numeracy?

Our first hypothesis (H1) is that people will 
apply a normal distribution to infer range prob-
ability from visualizations of temperature fore-
casts with uncertainty ranges when no further 
information is available. Our second hypoth-
esis (H2) is that the way people infer range  

probability from these visualizations depends on 
the graphical representation of the uncertainty 
range when no further information is available. 
Our third hypothesis (H3) is that perceived range 
probabilities are independent of the width of the 
uncertainty visualization, such that the prob-
ability of exceeding temperature values with 
equal relative difference from the center value 
of the probability range are judged the same for 
wide and for narrow uncertainty ranges. Finally, 
our fourth hypothesis (H4) is that the shape of 
the applied distribution depends on people’s 
level of numeracy. We base this hypothesis on 
earlier evidence that there may be a relationship 
between numeracy and the subjective assess-
ment of uncertainty visualizations (Rinne & 
Mazzocco, 2013; Tak et al., 2014).

related Work
Uncertainty communication methods, whether 

they are verbal (Juanchich, Teigen, & Gourdon, 
2013; Teigen & Filkuková, 2013; Teigen, Juanch-
ich, & Filkuková, 2013; Teigen, Juanchich, & 
Riege, 2013), numerical (Rinne & Mazzocco, 
2013), or graphical (Belia et al., 2005; Hildon, 
Allwood, & Black, 2012; Kootval, 2008; Lem, 
Onghena, Verschaffel, & Van Dooren, 2013; 
Spiegelhalter, Pearson, & Short, 2011), typically 
give rise to a range of misunderstandings. At the 
same time, providing uncertainty information 
may help to disambiguate the concept of uncer-
tainty, increase user trust, and eventually improve 
decision making (Joslyn et al., 2013), particularly 
for people with low numeracy (Garcia-Retamero 
& Galesic, 2010; Garcia-Retamero & Hoffrage, 
2013). In this section, we briefly review the 
problems that occur in understanding probabilis-
tic forecasts in general, the various visualization 
approaches that have been developed to commu-
nicate uncertainty in forecasts, and the specific 
problems that occur with the interpretation of 
these uncertainty visualizations.

understanding Probabilistic Forecasts
Even experts (including meteorologists; de 

Elía & Laprise, 2005; Murphy, Lichtenstein, 
Fischhoff, & Winkler, 1980) sometimes misun-
derstand probabilities and misinterpret probabi-
listic forecasts (Tversky & Kahneman, 1974). 
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Although nonexperts can interpret probability of 
weather events in a general sense (e.g., “70% is 
higher than 30%”), the specific meaning of the 
forecasts remains unclear to many (Gigerenzer, 
Hertwig, Van Den Broek, Fasolo, & Katsiko-
poulos, 2005; Joslyn & Savelli, 2010; Morss 
et al., 2008; Murphy et al., 1980). In addition, 
people appear to have a strong tendency to 
convert probabilistic forecasts into determin-
istic ones; that is, they make “deterministic 
construal errors” (Savelli & Joslyn, 2013). For 
instance, it has been observed that the upper and 
lower bounds in predictive temperature inter-
val visualizations are sometimes misinterpreted 
as diurnal temperature fluctuations (Savelli & 
Joslyn, 2013). Predictive interval visualizations 
may therefore require a more direct depiction of 
uncertainty that blocks automatic deterministic 
interpretations (Savelli & Joslyn, 2013).

techniques for Visualizing uncertainty
There are roughly three different ways to 

visualize uncertainty: by varying the graphi-
cal properties of the visualization (intrinsic 
uncertainty representation; Gershon, 1998), by 
adding uncertainty information to the visualiza-
tion (extrinsic uncertainty representation; Ger-
shon, 1998), and by animating the visualization 
(Ehlschlaeger, Shortridge, & Goodchild, 1997).

The first approach deploys various techniques 
to vary the graphical properties of depicted enti-
ties, such as blur, sketchiness, transparency, size, 
texture, and color saturation (Boukhelifa, Beze-
rianos, Isenberg, & Fekete, 2012; Finger & 
Bisantz, 2002; Griethe & Schumann, 2005; for a 
recent taxonomy, see Potter, Rosen, & Johnson, 
2012). For example, blurring or degradation (i.e., 
reducing the saliency; Bisantz et al., 2009) of  
the data is intuitively related to uncertainty: The 
harder it is to see or recognize something, the 
more uncertain it appears (Finger & Bisantz, 
2002). However, blurring or degradation can also 
inadvertently be interpreted as poor visualization 
quality (Riveiro, 2007).

The second approach is to add uncertainty 
information to a visualization, such as glyphs 
(graphical elements that can convey a number of 
variables through variations in their size, shape, 
orientation, texture, and color), geometry, labels, 
and icons. For example, positional uncertainty 

can be indicated by overlaying a glyph, the size 
of which becomes larger the more uncertain the 
location is (Andre & Cutler, 1998; Brolese & 
Huf, 2006; Pang, Wittenbrink, & Lodha, 1997). 
Geometric techniques include contour lines and 
isosurfaces (Pang et al., 1997; Pöthkow & Hege, 
2011). Also, textual or numerical information 
about the magnitude of uncertainty can be added 
to the visualization (Kootval, 2008; Nadav-
Greenberg & Joslyn, 2009). Adding graphical 
representations of uncertainty information to a 
data visualization may result in data obscuration 
and user distraction (Cedilnik & Rheingans, 
2000). Although uncertainty annotations have 
been designed that minimize these effects 
(Cedilnik & Rheingans, 2000), the added 
amount of information can still negatively influ-
ence the user’s response time, as it sometimes 
requires more cognitive processing (Andre & 
Cutler, 1998).

Finally, uncertainty information can also be 
visualized through animation. However, this 
may lead to annoying and distracting blinking 
and flicker effects (Evans, 1997) and may result 
in cluttered or overcrowded displays.

In weather forecasting in particular, there are 
various ways to communicate the results of an 
ensemble prediction in graphical form such as 
spaghetti plots (plots including multiple lines, 
each representing the outcome of one model pre-
diction), line graphs with error bars, contour box 
plots, bar charts, fan charts (line graphs with an 
uncertainty “band”), threshold maps (using 
color or gray scales), and summary tables 
(Demeritt et al., 2007; Demeritt, Nobert, Cloke, 
& Pappenberger, 2013; Kootval, 2008; Pappen-
berger et al., 2013; Sanyal et al., 2010; Whitaker, 
Mirzargar, & Kirby, 2013). The study reported 
in this paper investigates seven different visual 
formats of hypothetical ensemble temperature 
predictions to assess their effectiveness in com-
municating prediction uncertainty.

understanding uncertainty 
Visualizations

Because many people (even experts) fre-
quently misunderstand visual representations 
of uncertainty (Belia et al., 2005), there is 
a need for better graphical conventions that 
unambiguously convey the notion of probability 
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(Cumming, 2007). Research on visual uncer-
tainty communication mostly focuses on the 
development of new graphical uncertainty rep-
resentations, with little attempt to evaluate their 
effectiveness for users (Bisantz et al., 2009). 
Even less research has been done into how 
well uncertainty visualization supports decision 
making (Joslyn et al., 2013; Savelli & Joslyn, 
2013; Zuk & Carpendale, 2007). It is often sim-
ply taken for granted that visual depictions of 
uncertainty will be useful for decision making 
(MacEachren et al., 2005). As a result we still do 
not have a comprehensive understanding of the 
parameters that influence successful uncertainty 
visualization (MacEachren et al., 2005).

When no information on the nature of the 
probability distribution is available, people 
sometimes assume a uniform probability distri-
bution, both for graphical (Ibrekk & Morgan, 
1987) and numerical (Rinne & Mazzocco, 2013) 
uncertainty representations.

A notorious example of the misunderstanding 
of a graphical uncertainty representation is the 
deterministic construal error induced by the 
well-known “Cone of Uncertainty” graphic used 
by both the U.S. National Hurricane Center and 
the media to communicate hurricane risk to the 
public prior to landfall (Broad, Leiserowitz, 
Weinkle, & Steketee, 2007). The main elements 
of this graphic are a black line representing the 
predicted path of the hurricane center, centered 
on a white “cone” representing the potential 
geographic range of the track. Despite the 
attempt of the forecast community to make a 
user-friendly product, this type of hurricane-
warning graphics is misinterpreted by a large 
part of the public. Although the track line only 
represents the predicted (potential) track of the a 
hurricane center, the lay public typically fails to 
appreciate both the uncertainty about it or the 
statistical meaning of the wider “cone” of uncer-
tainty about its projected course. The white cone 
is often incorrectly interpreted as the extent of 
the hurricane, its intensity, or the potential swath 
of destruction (Broad et al., 2007). As a result, 
people often fail to understand that the hurricane 
will potentially affect a much larger area than 
just the cone depicting the uncertainty about the 
track of the eye of the storm. People wrongly 
assume that only areas along the track line are at 

risk (over distances up to the boundary of the 
cone), whereas areas outside the cone will not be 
impacted. Another source of confusion is the 
fact that the white cone has been obtained by 
thresholding the actual overall spatial probabil-
ity distribution (i.e., the continuous distribution 
was converted into a binary one by replacing all 
values above a given threshold with a predefined 
maximum value and all values below the thresh-
old with predefined minimum value), resulting 
in a loss of information (the variance in proba-
bilities over the white area is no longer avail-
able). It has been observed that this may cause 
an overestimation of the probability along the 
center line, even by experts (Kirlik, 2007).

A previous study on the perception of point 
probability in graphs with visual uncertainty 
bands (Tak et al., 2014) found that observers 
(when given no explanation of the “mathemati-
cal” meaning of the uncertainty band) intuitively 
apply an internal model of uncertainty bands 
that closely resembles a normal distribution. The 
current study extends this previous work by 
investigating the effects of type and overall 
width of ensemble prediction visualizations 
(presented without any additional information) 
on range probability estimates.

Method
We follow up on the findings by Tak et al. 

(2014) with three key differences. First, we 
examine range probability as opposed to point 
probability, as a range probability question (e.g., 
“What are the chances that it will be warmer 
than 25 degrees Celsius tomorrow?”) is more 
realistic than a point estimate (e.g., “What are 
the chances that it will be 25 degrees Celsius 
tomorrow?”) in the domain of temperature 
forecasts. Second, Tak et al. (2014) used uncer-
tainty ranges with uniform widths, which are 
unlikely for temperature forecasts over time. 
Therefore, in the current study, we examine the 
effect of varying (i.e., monotonously increasing) 
the width of the uncertainty range. Third, the 
visualizations in Tak et al. (2014) concerned an 
unfamiliar, abstract domain (the location of the 
boundary between two earth layers). This means 
that users will not have an a priori internal 
model (built on experience), whereas this may 
be the case with respect to weather forecasting.
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design and Procedure
Before starting the actual experiment, the 

participants first viewed some slides presenting 
a “cover story” to provide some context about 
uncertainty visualizations in temperature fore-
casts and explaining the experimental proce-
dure. The cover story and the instructions were 
as follows (translated from Dutch):

You are about to participate in an experi-
ment on uncertainty visualizations. This 
experiment will last about 15 minutes. 
Nowadays weather forecasts increasingly 
include graphical representations of the 
uncertainty of the given predictions. In 
this experiment you will see a series of 
temperature graphs provided by different 
weather forecasters. Each of these graphs 
represents the predicted temperature over 
a 7-day period together with the associ-
ated uncertainty. [Note: At this time, the 
participant was presented with an example 
graph like the one in Figure 4 but without 
the red dot] It is your task to estimate the 
probability that the afternoon temperature 
on a given day will exceed a given thresh-
old value, indicated by a red dot in the 
graph. [Note: At this time, the participant 
was presented with an example graph 

including a red dot, like Figure 4] You can 
enter your response by dragging the slider 
to the position corresponding to your esti-
mate. [Note: At this time, the participant 
was shown a linear scale with endpoints 
labeled, respectively, impossible to abso-
lutely certain and a slider that could be 
moved along this scale using the mouse 
pointer.] By clicking on the “Next” button, 
you can indicate that you understand these 
instructions and the actual experiment will 
start.

In this experiment, participants were asked to 
estimate a range probability by judging the prob-
ability that the afternoon temperature on a given 
day would exceed the temperature indicated by 
a red dot in a given uncertainty visualization 
(Figure 4). The different visualizations and the 
possible positions of the red dot are described in 
detail in the next section. Participants reported 
their probability estimates by positioning a slider 
on a continuous scale with end points labeled 
impossible (translated to 0 in our results) to 
absolutely certain (translated to 100 in our 
results). Similar to Tak et al. (2014), no numeri-
cal markers were added along this scale. The 
rationale was that labeling could prime partici-
pants to form a linear relation between their 

Figure 4. Screen shot of a stimulus in the dashed border condition (Dutch instructions and labels were used in 
the experiment).
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probability judgment and the uncertainty visual-
ization (i.e., to assign a value of 50% to the mid-
dle of the scale, 25% and 75% to the first and 
last quarter points, and so forth), whereas previ-
ous work suggests that such a linear relationship 
between visual uncertainty features and per-
ceived certainty does not necessarily exist (San-
yal et al., 2009; Tak et al., 2014).

After completing the experiment, the partici-
pants were asked (using an open question) to 
describe how they had assessed the stimuli (e.g., 
if they had ever judged the probability that a 
temperature would be higher than indicated by 
the red dot to be impossible or absolute certain 
at any point, and if so, why). Also, participants’ 
numeracy was assessed using the Subjective 
Numeracy Scale (Fagerlin et al., 2007). Finally, 
we asked participants to report their highest 
level of education completed (seven categories: 
1 = primary education/no education; 2 = lower 
vocational education; 3 = lower secondary edu-
cation; 4 = higher secondary education; 5 = 
BSc; 6 = MSc; 7 = PhD).

Similar to the study by Tak et al. (2014), the 
experiment used a mixed design, with visualiza-
tion type as a between-subject independent vari-
able and position and width as within-subject 
independent variables. Participants were ran-
domly assigned to one of seven groups, corre-
sponding to the seven visualization types shown 
in Figure 5.

Stimuli
Figure 5 shows the seven visualization types 

that were used in this study. These visualiza-
tions are similar to the ones used by Tak et al. 
(2014) in their study on the visualization of the 
positional uncertainty of the boundary between 
two earth layers (represented as a 1D graph plus 
an uncertainty interval with a uniform width). 
All seven visualizations represented seven data 
points connected by a continuous black line 
(we will refer to this line as the center line). 
The seven data points represented the predicted 
temperature values for 7 days ahead. The visu-
alizations differed in the graphical representa-
tion of the uncertainty range, which was always 
symmetrical around the center line.

The width of the uncertainty range increased 
monotonously along the horizontal (temporal) 

axis (in contrast to the study by Tak et al., 2014, 
who used an uncertainty range with a uniform 
width). The solid border and dashed border visu-
alizations both represent the edges of the uncer-
tainty range by a (respectively, solid or dashed) 
line. The band and gradient visualizations fill the 
area between the edges of the uncertainty range 
with, respectively, a uniform or a gradient gray-
scale distribution. The thinning lines and ran-
dom lines visualizations fill the area between the 
edges of the uncertainty range with lines, either 
parallel and with a decreasing density from the 
center outward (thinning lines) or with (semi)
randomly generated lines (random lines). The 
random lines representation resembles a type of 
uncertainty visualization that is sometimes also 
called an ensemble prediction, (model) realiza-
tions, or more informally, a spaghetti plot. 
Finally, the error bars visualization uses “tradi-
tional” error bars.

In the course of the experiment, the partici-
pants were asked to judge the probability that 
the afternoon temperature on one of two days 
(Sunday and Wednesday, corresponding to, 
respectively, a smaller and larger width of the 
uncertainty range) would exceed 1 of 11 differ-
ent indicated temperatures (5 above, 5 below, 
and 1 on the predicted temperature value for that 
day). All individual measurements were repeated 
four times, resulting in a total of 88 samples per 
participant: two x-positions or uncertainty 
widths (narrow and wide) × 11 different indi-
cated temperatures × 4 repetitions. All 88 stimuli 
were presented in random order.

If yc (x) represents the vertical position of the 
center line at position x and w(x) represents the 
width (i.e., the vertical distance between the outer 
edges of the uncertainty range) of the uncer-
tainty interval at location x, the 11 (vertical) 
positions yi (x) of the sampling points are given 
by (see also Figure 6):

y x y x
i
w xi c( ) = ( ) + ( )

6
.

for i∈ − − − − −{ , , , , , , , , , , }.5 4 3 2 1 0 1 2 3 4 5
The width w increased monotonically (in this 
case linearly) with x along the center line.

To prevent stimulus familiarization, the shape 
of the center line was varied slightly across stim-
uli by randomly distributing the seven predicted 
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temperature values over the days of the week 
while keeping the width of the uncertainty inter-
val fixed at each x-position (i.e., for any given 
day of the week, the y-value or uncertainty width 
was fixed, but the corresponding temperature 

value was randomly selected from the set of 
seven temperatures). This procedure yielded 
temperature curves with slightly varying shapes 
but similar and monotonously increasing uncer-
tainty ranges (Figure 7).

Figure 5. The seven graphical uncertainty visualization types used in the experiment. The thick black center 
line connects the seven data points (the 7-day predictions). Note that axis labels were present in the experiment 
(see Figure 4).
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Participants
In total, 140 people, naïve about the goal 

of the experiment, participated voluntarily 
(64 male, 76 female, age 18-57 years with a 
mean age of 38.1 years). The participants were 
recruited from the TNO database of volunteers 
and received a modest financial compensation 
for their participation. All participants gave 
their written consent prior to the experiment. 
Numeracy ranged from 1.5 to 5.9 (the Sub-
jective Numeracy Scale ranges from 1 to 6; 
Fagerlin et al., 2007), with a mean score of 4.0. 
For a graphical overview of the education level 
(categorical, ranging from primary education/
no education to PhD) and numeracy of the 
participants, see Figure 8. Participants were 

randomly assigned to one of the seven visualiza-
tion groups, such that each group consisted of 
20 participants.

reSultS and dIScuSSIon
Before analysis, we inspected the data for 

outliers. Most participants attributed probabili-
ties such that probability was correlated with 
the (vertical) position of the sampling point 
(see Figure 9). However, some participants 
attributed the highest probability to sampling 
points on the center line and increasingly lower 
probabilities to sampling points located at larger 
distances from the center line (i.e., they adopted 
a “peaked” interpretation). We identified 16 
participants that adopted such an interpretation. 

Figure 6. (a) The circles represent the 22 possible locations of the red dot. The dot was only presented at two 
positions along the horizontal (temporal) axis (respectively labeled Sunday and Wednesday). The width of 
the uncertainty interval at the location labeled Wednesday was about twice this width at the location labeled 
Sunday. At both horizontal positions (Sunday and Wednesday), the red dot could be presented at any of 
11 vertical positions relative to the uncertainty range (5 below, 5 above, and 1 directly in the center of the 
uncertainty interval). (b-d) Three different instantiations of the stimulus.
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There was no difference with regards to educa-
tion level or numeracy between these and the 
other participants. Also, they were equally dis-
tributed across visualization types. Most likely, 
these participants inadvertently interpreted the 
range probability question as a point probability 
question. Also, there were eight participants 
who attributed probabilities such that probabil-
ity was negatively correlated to the position of 
the sampling point; that is, they used a “colder 
than” rather than a “warmer than” interpreta-
tion. There was no difference with regards to 
education level or numeracy between these and 
the other participants. Also, they were equally 
distributed across visualization types.

The participants with a point probability or a 
“colder than” interpretation were regarded as 

erroneous and removed from the data set (see 
the Discussion section). Next, we examined if 
there were any extreme outliers among the 
remaining 116 participants. We examined the 
extreme outliers (data points that were more 
than 3 SDs above or below the mean) for each 
Position × Visualization Type combination. This 
process identified three additional participants 
as outliers. Results from these participants were 
also removed from the data set. All further anal-
yses reported in this paper were performed on 
the data of the remaining 113 participants.

distribution Shape
Similar to Tak et al. (2014) and to test our 

first hypothesis, we investigated the shape of the 

Figure 7. Four different instantiations of the stimulus. For each visualization type, the shape of the graphical 
temperature prediction varied throughout the experiment by randomly distributing the seven predicted 
temperature values over the days of the week, while keeping the width of the uncertainty interval fixed at each 
day.
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perceived probability distribution. Participants 
may have a “linear” interpretation (consistent 
with a uniform distribution) or an interpretation 
that resembles a normal (cumulative) distribu-
tion (Tak et al., 2014). Knowledge of the shape 
of the inferred distribution function may help to 
explain effects like bias or misconceptions and 
may ultimately be deployed to produce visual-
izations that optimally convey the underlying 
distribution.

To be able to fit the data, we coded the posi-
tion as 1-11, with 1 on the lowest position, 6 as 
the position on the center line, and 11 as the top 
position. Results of the fit in terms of µ and/or σ 
are given in “units” equaling one step size (see 
formula under methods) and with 6 units sub-
tracted from the µ value to scale it from −5 to 5, 

with 0 at the center. We fitted the data (using 
SPSS 20.0) to the following:

 • a normal cumulative distribution with its mean µ 
located at the center line and a width σ such that 
the 95% interval corresponds to the width of the 
uncertainty range (95% of the area under the nor-
mal distribution lies within 1.96 standard devia-
tions of the mean, and the edges of the uncertainty 
range represent ±1.96 standard deviations of the 
mean),

 • a normal cumulative distribution with its mean µ 
located at the center line and width σ fitted,

 • a normal cumulative distribution with both mean µ 
and width σ fitted, and

 • a linear (uniform) distribution, with µ located at 
the center line.

Figure 9. Results across visualization types and various fitted curves. Error bars denote ±1 SE.

Figure 8. Highest education completed (1 = primary education/no education; 2 = lower vocational education; 
3 = lower secondary education; 4 = higher secondary education; 5 = BSc; 6 = MSc; 7 = PhD) and numeracy of 
participants in the experiment. Bars show number of participants per category (education) or bin (numeracy).
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We find the following results (sorted by R2 
from high to low):

 • normal CDF (cumulative distribution function)  
with µ and σ fitted: R2 = .761 (µ = 0.6 and σ = 2.46);

 • normal CDF with σ fitted: adjusted R2 = .756  
(σ = 2.57);

 • normal CDF with σ such that width of the uncer-
tainty range represents a 95% interval: R2 = .743; 
and

 • linear (uniform) distribution: R2 = .739.

Figure 9 shows these fits. This analysis shows 
that the results are best fitted by a normal curve 
with both µ and σ as free parameters. This con-
firms our first hypothesis (H1: People will apply 
a normal distribution to infer range probability 
from visualizations of temperature forecasts 
with uncertainty ranges when no further infor-
mation is available, although note that given the 
nature of the distribution, a linear distribution 
will unavoidably have a relatively good fit as 
well. However, a priori, we did not expect a 
“bias” in the responses; that is, we expected the 
mean µ to be (close to) the center line because 
of the symmetrical nature of the stimuli. How-
ever, if we include µ as free parameter, the 
best fit is found for a value about 0.6 positions 
above the center line. This bias indicates that in 
general participants judge the probability of the 

temperature to exceed that at the center line to 
be above 50%. Similar to Tak et al. (2014), the 
fitted normal curve has a wider distribution than 
would have been expected if the outer lines cor-
responded with a 95% confidence interval: The 
participants’ interpretation is (approximately) a 
75% interval. However, as these results are an 
average of both the narrow and the wide uncer-
tainty width conditions, it is informative to look 
at these two conditions separately as well to see 
if one of them is the main cause of the overdis-
persion (see Figure 10). In the narrow uncer-
tainty width condition, we find that σ = 2.87; 
in the wide condition, σ = 2.18. According to a  
t test for independent samples, this difference is 
significant: t(111) = 17.90, p < .001. Though the 
results are even more dispersed in the narrow 
uncertainty width condition, both are notably 
more overdispersed than the results found by 
Tak et al. (2014), where σ ≈ 1.8. Possibly, this is 
due to preconceptions people have about a “rea-
sonable” uncertainty in temperature forecasts, in 
contrast to the study by Tak et al. (2014), where 
a case from an unfamiliar domain was used.

Visualization type
We performed the fit with µ and σ as free 

parameters for each of the seven visualization 
types separately. Table 1 summarizes the results.

Figure 10. The significant Uncertainty Width × Position interaction. Error bars denote ±1 SE.
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Differences between the visualization types 
were analyzed using a Tukey Honestly Signifi-
cant Difference test. For µ, significant differ-
ences (p < .05) were found between dashed bor-
der (highest µ) and all other visualizations except 
gradient, and between gradient (second highest 
µ) and band, random lines, and thinning lines. 
For σ, significant differences (p < .05) were 
found for gradient (highest σ) and random lines 
and solid. These results support our second 
hypothesis (H2), that people’s internal model 
depends on the visualization type. The mean 
values of µ indicate that all visualization types 
have a positive bias with the dashed border and 
gradient visualization as most “optimistic”: 
With these visualizations, the occurrence of tem-
peratures more than 1 unit above the center line 
is still perceived as 50-50. With regard to σ, the 
differences are small, with gradient having the 
most dispersed fit and random lines and solid 
having the steepest fit.

In addition and similar to Tak et al. (2014), 
we examined whether participants judged the 
probability of the “extreme values” (top-most 
and bottom-most points in Figure 6) as “impos-
sible” (perceived probability 0) for the top-most 
point or as “absolutely certain” (perceived prob-
ability 100) for the bottom-most point. Overall, 
we find that 14% of responses on these outer 
points were either 0 or 100. This is a low score, 
but somewhat higher than the results found by 
Tak et al. (2014), who used 9 instead of 11 verti-
cal locations, thereby putting the outmost sam-
pling points at a smaller distance from the center 
line compared to the current study. The large 
majority of responses (86%) indicate that people 

nevertheless seem reluctant to consider any 
value to be “impossible” or “absolutely certain.” 
There is a significant effect of visualization type 
on the occurrence of these extreme values, χ2(6) 
= 14.3, p < .05. From low to high, the visualiza-
tion types scored as follows: error bars 5.9%, 
solid border 7.4%, dashed border 10.0%, band 
14.1%, random lines 18.1%, thinning lines 
19.6%, and gradient 23.4%, largely replicating 
the results for σ.

These results might suggest that the “density” 
of the fill within an uncertainty range determines 
how likely observers rate values outside the 
uncertainty range, with a denser fill leading to 
observers rating the extreme values as either 
“impossible” or “absolutely certain” more often. 
In other words, the denser the fill, the more 
likely it seems to observers that all values should 
fall within this area. This finding may be related 
to an earlier finding by Bisantz et al. (2009) that 
people assign regions that contrast most with the 
background to levels of meta-information that 
are most relevant to their task: If a task depended 
on the (un)certainty of information, participants 
assigned high contrast colors to highly (un)cer-
tain information. In our study, the uncertainty 
ranges with a relative dense fill (and thus a high 
contrast with the background) may have 
appeared more certain, thereby leading to 
observers rating the extreme values outside this 
area as either “impossible” or “absolutely cer-
tain” more often.

Summarizing, the data support our second 
hypothesis (H2), that people’s internal model 
depends on the visualization type. Although we 
expected that the participants would estimate the 

TAblE 1: Results of the Data Fit to a Normal Cumulative Function With µ and σ as Free Parameters for 
Each of the Visualization Types

Visualization Type R 2 µ Mean (SE) σ Mean (SE)

Band .882 0.44 (.23) 2.70 (.38)
Dashed .623 1.31 (.64) 2.74 (.88)
Error .768 0.65 (.30) 2.42 (.45)
Gradient .619 1.19 (.70) 2.98 (1.01)
Random .809 0.24 (.21) 2.13 (.31)
Solid .753 0.65 (.26) 2.09 (.37)
Thinning .926 0.34 (.16) 2.37 (.24)
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probability that the temperature could exceed 
the center line to be 50% (i.e., µ = 0), we found 
a consistent optimistic bias (participants consis-
tently estimated this probability to be larger than 
50%; i.e., µ > 0) across the internal models for 
the different visualization types. The internal 
models for the different visualization types dif-
fer mainly in the size of this bias. Because the 
visual density of the pattern representing the 
area between the edges of the uncertainty range 
differed between the different uncertainty visu-
alization types, we expected to find differences 
in the steepness of the (fitted) distribution 
curves. However, these differences were small 
and only significant for 3 of the 21 pairwise 
comparisons.

uncertainty Width
Our third hypothesis (H3) was that the inter-

nal model would scale with the width of the 
uncertainty range; that is, we expected no effect 
of uncertainty width on the probabilities as a 
function of the relative position. However, our 
hypothesis H3 is not supported by the data, as 
we found significant differences between the 
wide and narrow width conditions on both µ 
and σ. For the narrow condition, µ = 0.40 and  
σ = 2.87, and for the wide condition, µ = 0.73 
and σ = 2.18. According to a t test for indepen-
dent samples, both differences are significant: µ, 
t(111) = 13.87, p < .001, and σ, t(111) = 17.90, 
p < .001 (see also Figure 10). The results show 
that the range probability estimates for points 
below the visualization center line are generally 
lower in the narrow uncertainty width condition 
than in the wide uncertainty width condition, 
whereas the reverse is true for the points above 
the visualization center line. This implies that 
for temperatures represented by points at the 
same relative distance from the center line, par-
ticipants’ judgments were affected by the uncer-
tainty width. Note that this result is not trivial, 
as we intentionally chose the sampling positions 
to be at equal relative distances from the center 
line in both the narrow and wide uncertainty 
width conditions to avoid such an effect. This 
raises the question of whether participants’ 
judgments are affected by the absolute distance 
of the points to the center line, as points at the 
same relative distance from the center line have 

a smaller absolute distance to this line in the 
narrow uncertainty width condition compared to 
the wide condition. However, Figure 11 shows 
that absolute distance does not account for the 
results found. Similar to the results by Sanyal  
et al. (2009), this shows that perceived uncer-
tainty does not necessarily map linearly to 
visual features; a point x% outside a narrow 
uncertainty range is not perceived as (un)certain 
as a point x% outside a wide uncertainty range. 
Because there is no a priori reason to attribute 
different uncertainty estimates to temperatures 
represented by points at the same relative dis-
tance from the center line, this may indicate 
that either the interpretation of the uncertainty 
interval or the degree of trust in the forecast 
depends on the width of the uncertainty range. 
The current results do not allow us to distin-
guish between both explanations.

As for visualization type, we also looked at 
the occurrence of extreme values. The probabil-
ity of the “extreme values” is affected by uncer-
tainty width, χ2(1) = 6.7, p < .05, with 10% of the 
responses assigning either 0 or 100 to, respec-
tively, the top-most and bottom-most points on 
the narrow uncertainty width, but 18% for the 
wide uncertainty width. Again, this effect can 
probably be attributed to the use of vertical loca-
tions relative to the uncertainty width, which 
puts the sampling points on the narrow uncer-
tainty width at a lower absolute distance from 
the center line.

numeracy
Our fourth hypothesis (H4) was that partici-

pant’s numeracy relates to the shape of the inter-
nal model. To analyze the effect of numeracy, 
we divided the participants in a low numeracy 
group (numeracy score 3.5 and lower) and a 
high numeracy group (numeracy score above 3.5). 
The low numeracy group fit results in µ = 1.29 
and σ = 2.75 and the high numeracy group in  
µ = 0.44 and σ = 2.35 (also see Figure 12). The 
differences in µ and σ are both significant, t(111) = 
16.38, p < .001 and t(111) = 5.64, p < .001, 
respectively. The effect is similar to the find-
ing of Tak et al. (2014) that participants with 
low numeracy adopt a “flatter” (more uniform) 
interpretation than those with high numeracy. 
As noted by Tak et al. (2014), numeracy may 
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affect the mapping of values to the (nonlabeled) 
scale used in the experiment. Also, the visual 
interpretation of certainty may be affected by 
numeracy differences, with participants with 
relatively low numeracy having a “flatter,” or 
more dispersed, interpretation than those with 
higher numeracy. In addition, the low numeracy 
group shows a larger (optimistic) bias than the 
high numeracy group. Hence, our hypothesis 
(H4) that the shape of the inferred distribution 
depends on people’s level of numeracy is con-
firmed by the present data.

comparison to Previous Work
Ibrekk and Morgan (1987) compared various 

displays to communicate cumulative distribu-
tion functions. The authors concluded that “[in] 
making judgments about probability intervals in 
displays that do not forcefully communicate a 
sense of probability density, people may use a 
linear proportion strategy which is equivalent 
to an assumption of uniform probability den-
sity” (pp. 527-528). Based on their results, the 
authors suggest that an error bar display (among 
others) may be an example of a display that 
does not properly communicate a sense of prob-
ability density. We can compare these results to 
the results of the current study, but we note that 
Ibrekk and Morgan (1987) used a 1D stimulus, 

whereas the current study uses a 2D display. 
Hence, the comparison between the current 
study and that of Ibrekk and Morgan (1987) 
may not be optimal. Fitting the results of the 
error bars visualization type in the current study 
to a normal cumulative distribution with its 
mean µ located at the center line and width σ fit-
ted, and a linear (uniform) distribution through 
(µ, 50), with µ located at the center line, reveal 
a fit of R2 = .762 to the normal distribution and  
R2 = .744 to the linear distribution. Hence, we 
find no indication of a “linear proportion strat-
egy” as found by Ibrekk and Morgan (1987). 
Possibly, error bar visualizations and/or prob-
ability density functions in general are more 
familiar to the general public nowadays than 
they were back in 1987, when Ibrekk and Mor-
gan performed their studies.

An important feature of interval estimates is 
their alpha level—the probability or frequency 
with which the target value is expected to fall 
outside the interval. Alpha levels typically equal 
.10 or .05, respectively, corresponding to 90% or 
95% certainty or reliability. Rinne and Maz-
zocco (2013) studied the effects of alpha level 
and numeracy on the distribution of inferences 
that people make when given textual descrip-
tions of uncertainty intervals. In their experi-
ment, participants received prediction intervals 

Figure 11. The significant Uncertainty Width × Position interaction by absolute distance from the center line. 
Error bars denote ±1 SE.
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for fictitious towns’ annual rainfall totals (assum-
ing approximately normal distributions) and 
estimated probabilities that future totals would 
be captured within varying margins about the 
mean, indicating the approximate shapes of their 
inferred probability distributions. The authors 
find that low alpha levels in particular led to 
overdispersed interpretations (compared to 
moderate alpha levels like .25, which led to the 
most accurate distributional inferences). Future 
work combining the current study and the work 
by Rinne and Mazzocco (2013) could shed more 
light on this question. Rinne and Mazzocco 
(2013) also examined the effect of numeracy. 
They found that highly numerate participants 
are more likely to infer (approximately) uniform 
distributions. In the current study, we find no 
evidence of this. For participants with both high 
and low numeracy, we find a better fit for a nor-
mal cumulative distribution than a linear (uni-
form) distribution, though (not unexpected 
given the nature of the distribution) the differ-
ence is not very large.

concluSIon and Future Work
The results of this study confirm earlier find-

ings (Tak et al., 2014) that, in the absence of 
any (textual) explanation of uncertainty range, 
people will apply an internal model of the 

uncertainty distribution that closely resembles a 
normal (cumulative) distribution. In contrast to 
previous work, we find only a marginal effect 
of visualization type on the disparity of the per-
ceived probability, but the perceived probability 
of “extreme values” (i.e., those far outside the 
uncertainty range) is affected by the visualiza-
tion type, with denser fills leading to higher 
perceived probability of values within that area. 
In addition, we do find large differences in the 
bias, indicating a systematic shift of the per-
ceived probability toward an optimistic view, 
which is larger than 1 unit for the dashed lines 
and gradient visualizations.

Perceived probability also depends on the 
width of the uncertainty range: The probability 
of values with equal relative difference from the 
center value of the probability range is judged 
differently for wide and for narrow uncertainty 
ranges. This means that observers take both the 
relative and absolute distance to the center line 
into account and the internal model does not 
scale with uncertainty width. Finally, as also 
noted by Tak et al. (2014), the internal model of 
the uncertainty distribution relates to a partici-
pant’s numeracy, though the cause of this effect 
is still unclear.

We note that compared to Tak et al. (2014) 
the current study had a relatively high number of 
outliers. We identify two possible reasons for 

Figure 12. The significant Position × Numeracy interaction. Error bars denote ±1 SE.
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this effect. First, the “range probability” ques-
tion used in the current study may be more dif-
ficult to answer than the “point probability” 
question used by Tak et al. (2014). In the case of 
the current study, the range probability question 
led to counterintuitive results in the sense that 
points with low (high) temperature values have 
relatively high (low) perceived probability. 
Given that the question was also one with a pos-
itive connotation (“warmer than”), this may 
have confused participants (this is supported by 
the fact that eight participants seemed to have 
adopted a “colder than” interpretation). Second, 
some confusion may also have stemmed from 
the fact that the stimuli used a red dot to indicate 
the temperature, which may have suggested a 
point probability question (this is supported by 
the fact that 16 participants seemed to have 
adopted a point probability interpretation). Pos-
sibly, the stimuli should have used a visual 
method more appropriate for a range question, 
such as an upward pointing arrow (see Figure 
13). This could also address the issue of partici-
pants incorrectly interpreting the question as a 
“colder than” question.

The results are consistent with previous work 
(Tak et al., 2014) in the sense that once again the 

results show that the internal model of the uncer-
tainty distribution closely resembles a normal 
distribution. Therefore, it seems less relevant 
whether a point or a (possibly more difficult) 
range probability question is used. Also, the 
internal model does not appear to be strongly 
affected by familiarity with the subject of the 
visualization in the sense that the results are still 
best described by a normal curve. However, the 
results in the current study are notably more 
overdispersed than the results found by Tak et al. 
(2014). Possibly, this stems from the fact that a 
case from a more familiar domain was used in 
the current study.

We also identify some implications for mak-
ers or designers of uncertainty visualizations. 
Our results imply that low alpha levels may not 
be the best choice for uncertainty visualizations, 
as observers’ interpretations are more dispersed. 
It is doubtful that textual labeling of the uncer-
tainty interval will resolve this problem (Rinne 
& Mazzocco, 2013). We also found a systematic 
bias in our data, indicating an optimistic inter-
pretation of the weather forecast. This bias has 
not been reported before and general recommen-
dations can only be made after the effect has 
been replicated and found in other domains than 

Figure 13. Proposed stimulus for future research.
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weather forecasts. In terms of the different visu-
alization types, it is unclear what the “best” 
choice is. However, the effects of the density of 
the fill on the interpretation of extreme values 
should be taken into account when choosing a 
particular visualization, especially when these 
unlikely events are of the type “low probability, 
high impact” (Bussiere & Fratzscher, 2008). 
Finally, the different results on the narrow and 
the wide uncertainty width again (Sanyal et al., 
2009) show that perceived uncertainty does not 
necessarily map linearly to visual features and 
that testing of the interpretation of uncertainty 
visualizations prior to dissemination is impor-
tant, as the intentions of the designer do not nec-
essarily match the interpretation of the viewer.

In this study, we operationalized range prob-
ability as the probability that the temperature 
exceeds a given threshold value, thus focusing 
on the range between this threshold and infinity, 
which is common in temperature communica-
tion. Because probabilistic forecasts are typi-
cally used for planning and risk management 
where different ranges may require different 
actions, future studies should also investigate 
how observers estimate the probability that a 
given entity (e.g., temperature, precipitation or 
water levels, and wind force) is within a given 
restricted range. Such an approach may also 
resolve the question of whether the bias towards 
an optimistic interpretation results from the 
instruction given to the participants (“estimate 
the probability that the temperature will exceed 
a given threshold value”), which may have 
focused their attention on higher temperatures.

Future work could also focus on the effect of 
(different types of) labeling and/or textual expla-
nation of the uncertainty range. To isolate the 
effect of visual representation, the current study 
did not include (textual) explanation of the 
uncertainty range (e.g., “95% confidence inter-
val”). The effect of labeling or even what is the 
most appropriate labeling (particularly for non-
experts or people with low numeracy) remains 
unknown. As suggested before (Savelli & Jos-
lyn, 2013), labeling may help to prevent the 
automatic deterministic interpretation of predic-
tive forecast intervals.

People have an unconscious tendency to use 
previously considered standards as a reference 

when making numeric estimates (an effect 
known as anchoring; Tversky & Kahneman, 
1974). Both the center line and the red reference 
dot in the stimuli used in this study may have 
induced anchoring effects. Although previous 
research has shown that the effect of anchoring 
on numerical estimates from probabilistic 
weather forecasts is reduced by providing both 
the upper and lower bounds of the predictive 
uncertainty ranges (Joslyn et al., 2011), there 
may still have been a net effect of the center line 
and red dot in this study. Therefore, it would be 
interesting to investigate a condition without a 
center line and one in which the red dot is absent 
or replaced by a less salient marker.

Also, it would be interesting to investigate if 
providing uncertainty information in a verbal 
format instead of a graphical representation 
results in similar internal models and could serve 
to reduce the optimistic estimation bias observed 
in this study. A condition without uncertainty 
information could serve to test if participants 
also assume a roughly normal distribution when 
only a central line is available, based on previ-
ous experiences with forecasts and their out-
comes. Another suggestion for future work is the 
inclusion of experts, as both Tak et al. (2014) 
and the current study used nonexpert partici-
pants. Previous work (Belia et al., 2005) sug-
gests that the results for experts may be different 
from those for nonexperts. Finally, the relation 
between the internal model that observers appear 
to apply and numeracy seems consistent but 
remains unexplained. Future work could exam-
ine this finding further.

Our study shows that the width and density of 
graphical representations of uncertainty ranges 
affect range probability estimates and do so dif-
ferently for estimates relative to reference values 
in, respectively, the upper or lower part of an 
uncertainty range. Though further study is 
needed to establish the generalizability of this 
result, we suspect that the effects found here are 
likely to hold for a wider range of visualizations. 
This may have practical implications for graphi-
cal forecasts used in different areas like agricul-
ture, flood management, health care, finance, 
and many other decision-making contexts where 
incorrect inferences from range estimates may 
lead to suboptimal decisions. Further research 
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can provide knowledge on the nature of the 
effects found here, which may in turn lead to 
more effective presentations of uncertainty 
ranges to diverse populations in a variety of 
judgment and decision-making contexts.
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