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Significance of Axial Heat Dispersion for the Description of Heat Transport 
in Wall-cooled Packed Beds 

J. G. Harold Borkink and K. Roe1 Westerterp * 

A two-dimensional pseudo-homogeneous model with axial dispersion of heat has been 
solved numerically with different boundary conditions at the inlet and outlet of the packed 
bed. The model solutions are fitted to experimental temperature profiles, determined in a 
wall-cooled packed bed in which a hot gas is cooled down, and best fit values of the effec- 
tive axial and radial thermal conductivities and the wall heat transfer coefficient are obtain- 
ed. In the range of Reynolds numbers employed, Re; > 50, the axial dispersion of heat is 
found to be of no significance for the description of heat transport in wall-cooled packed 
beds without reaction, provided that the inlet boundary conditions are chosen appropriate- 
ly. If a radially flat inlet temperature profile is assumed, while the actual profile is curved, 
an apparent improvement in the description of heat transport is observed when axial disper- 
sion is incorporated into the heat balance and high effective axial thermal conductivities 
are obtained. If a Danckwerts type inlet boundary condition is used, assuming a flat tem- 
perature profile immediately in front of the inlet, an apparent improvement is also found 
on incorporation of axial dispersion of heat. This is caused by the temperature jump at the 
inlet, compensating for the overestimation of inlet temperature, in the case of cooling. The 
latter also explains why the inclusion of axial dispersion may eliminate the so-called “length 
effect”, often related to the effective radial thermal conductivity and the wall heat transfer 
coefficient. It is shown for the outlet boundary condition that deletion of the axial disper- 
sion term from the heat balance at the outlet is a convenient boundary condition for the 
model being solved numerically. 

1 Introduction 

Axial dispersion of mass and heat in packed beds has been 
of much interest for many years. Pioneering work in this 
field was, among others, performed by Wilhelm who was 
one of the first investigators to show experimentally that the 
Peclet number for axial dispersion of mass, at fully 
developed flow, equals two [l]. This agrees with the value 
predicted theoretically on the assumption of the packed bed 
acting as a series of n perfect mixers, where n is the number 
of voids between the particles traversed between the inlet 
and outlet of the packed bed. Since 1970, axial dispersion 
of heat gained even more interest, for example, through the 
work of Young and Finlayson [2]. They showed that inclu- 
sion of axial heat dispersion in the modelling of heat trans- 
port in a cooled tubular reactor, under reaction conditions, 
can significantly alter the predicted temperature profiles. 
They derived a criterion for determining under what condi- 
tions can axial heat dispersion be neglected. This criterion 
is independent of the reactor length, whereas computer 
calculations, e.g. of Carberry and Wendel [3], Marek and 
Hlavacek [4, 51, who calculated axial temperature and con- 
version profiles for heterogeneous exothermic reactions in 
an adiabatic packed bed reactor, indicate that the 
significance of axial heat dispersion decreases with increas- 
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ing bed length. Later, Mears [6] derived a criterion for 
neglecting the axial dispersion of heat in non-isothermal 
packed bed reactors, based on the inlet rate data, which 
does depend on reactor length. Recently, extensive com- 
puter calculations showed axial dispersion of heat to be of 
minor importance for practical conditions, see e.g. [7 - 91. 
These and other seemingly contradictory results lead to con- 
fusion about the significance of reactor length combined 
with axial heat dispersion for the modelling of e.g. cooled 
tubular reactors. 

I .  I Criteria for Neglecting Axial Dispersion of Heat 

For the description of heat transport without reaction in 
wall-cooled or heated packed beds, axial heat dispersion is 
usually neglected. Model calculations for these, so-called 
cold-flow experiments show the temperature profiles to be 
relatively insensitive to the value of the effective axial ther- 
mal conductivity 110 - 121. This is also the reason why 
this parameter is usually determined in adiabatic packed 
beds, employing either dynamic [13, 141 or steady-state ex- 
periments [14, 151. 

Li and Finlayson [I61 present an expression for the error in 
the effective radial thermal conductivity Ae,r and the wall 
heat transfer coefficient a,, if these are determined from 
cold-flow experiments by fitting a pseudo-homogeneous 
two-dimensional model to experimental temperature pro- 
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files and omitting axial dispersion of heat. This expression 
is: ’) 

A similar criterion for neglecting axial dispersion of heat in 
cold-flow experiments has recently been presented by Wijn- 
gaarden [17]. This criterion can be written as: 

in which ( = 0.1 for a closed-closed system and < = 0.4 for 
an open-closed system. For Re;> 50, the relevant dimen- 
sionless numbers become independent of Re; and the 
following typical values are obtained: 

Peh,,=1-2, B o h , r = 4 - 8 a n d B i t = 1 - 5  . 
For a short and narrow tube with N =  5 and r= 10, this 
yields for Eqs (1) and (2): 

I- ”“ h a w -  -0.14 and Z = 0 . 2  , 
1e.r  a w  

respectively. Thus, for sufficiently high Reynolds numbers, 
axial dispersion of heat can usually be neglected for the des- 
cription of heat transport without reaction in wall-cooled or 
heated packed beds. But, at lower Reynolds numbers, a 
small diameter tube and a small number of particles on a 
diameter, the axial dispersion of heat may become signifi- 
cant. 

I .2 Apparent Length Dependence 

Several workers observed an apparent dependence on length 
of Ae,r  and aw, as applied in the pseudo-homogeneous two- 
dimensional model, and of Uor, as used in the one-dimen- 
sional model, often referred to as the “length effect” [16, 
18, 191. It was also found that this length effect can be 
eliminated by taking axial dispersion of heat into account 
[20 - 221. 

1.3 Objective of the Present Investigation 

The significance of axial dispersion of heat for the descrip- 
tion of heat transport in a wall-cooled packed bed is studied 
and, to this end, a pseudo-homogeneous two-dimensional 
model with axial heat dispersion is solved numerically. The 
influence of the boundary conditions at the inlet and outlet 
is elaborated and a possible explanation given for the ap- 
parent elimination of the length effect by incorporation of 
axial dispersion. 
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2 Model Equations and Experimental Set-up 

2.1 Model Equation 

The system studied is a hot gas, cooled down in a wall- 
cooled packed bed. For describing heat transport in the 
packed bed, the following assumptions are made: 

- the system is at steady state and no reaction is taking 
place, 

- the system is considered to be pseudo-homogeneous, 
- there is no free convection of heat, 
- there is no radiation, 
- the superficial velocity is constant over the radius, 
- the wall temperature is constant, 
- the physical properties of gas and solid are independent 

of temperature. 

A heat balance for an infinitesimally small ring yields the 
following dimensionless model equation: 

ae 1 a2e 
I i a ( e ; ) z o  a o  Pe&ao2 B O & Q ~ Q  

(3) 

where 6 is given by 0 = (Tz,r - TcI)/(To- T,,) and To is the 
temperature measured at a point on the axis of the packed 
bed, defined as the location where o = 0. 

2.2 Boundary Conditions 

The following boundary conditions are chosen in radial 
direction: 

(4 a) 
ae 
ae 

e = O ,  a l l o ,  -= 0 ,  

ae e = 1  , a l l w  , -= - B i t e .  
ae 

Several possibilities exist for the boundary conditions in ax- 
ial direction [lo, 231. The system can be considered as open 
to axial dispersion of heat at the inlet and/or outlet, or it 
is considered to be closed to axial dispersion, yielding the 
well-known Danckwerts boundary conditions. For open 
boundary conditions at the inlet and outlet, a radial temper- 
ature profile is adopted, which is assumed to be parabolic 
in shape. Either of the following inlet boundary conditions 
is considered: 

(5 b) 
W = O ,  a l l @ ,  -= ae -Pe f , ( l -Ae2-e ) .  

aw 

In addition, the following outlet boundary conditions are 
I) List of symbols at the end of the paper. also considered: 
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ae 
a m  (6 b) w = wout , all e , - - - 0 ,  

-0 0 = wout , all @ , -- - 
1 a2e 

Pef, a aw 

In Eqs (6b) and (6c), oout is an axial position downstream 
from the outlet of the packed bed, thus oOUt 2 1. 

Eqs (5a) and (6a) represent the boundary conditions for an 
open-open system. In the evaluation of experimental data, 
values of constants A ,  B and C are obtained by fitting the 
equations to experimental radial temperature profiles at the 
locations w = 0 and w = 1. Therefore, the data at w = 0 
and w = 1 are not used for model fitting. Eq. (5  b) expresses 
the closed Danckwerts boundary condition at the inlet. The 
temperature profile immediately before the inlet at o = 0 is 
assumed to be of parabolic shape and a “temperature 
jump” at w = 0 is also assumed. For the system considered 
here, this is not a realistic assumption because the position 
w = 0 is situated inside the packed bed, so that the tempera- 
ture profile will be continuous; there is no reason to assume 
that axial dispersion would not occur in the region where 
w<O. However, since Eq. (5b) is often used in the 
literature, its influence on the effective axial conductivity 
Ae,a is studied. Eq. (6b) expresses the closed Danckwerts 
boundary condition at the outlet. In practice, gas tempera- 
ture never becomes equal to the coolant temperature and 
therefore Eq. (6 b) is never exactly valid. However, if the ax- 
ial position at which Eq. (6b) is assumed to be valid is suffi- 
ciently distant from the actual bed outlet, i.e. oouts 1,  the 
error incurred by using Eq. (6b) will be small. Therefore, 
the value of wout needed to minimize the error is determin- 
ed for a wide range of Ae,a values. The boundary condition 
given by Eq. (6c) may appear strange. It is obtained by 
deleting the axial dispersion term from the heat balance 
given by Eq. (3) at w = wOut. This has no physical basis, 
but Eq. (6c) is a convenient boundary condition for a 
numerical solution of the equations. Eq. (6c) does not mean 
that there is no axial heat dispersion beyond the plane where 
w = wout; it is an open boundary condition and only in- 
dicates that the term (1 /Pef 3 a2 e/aw is small enough to 
be neglected in the heat balance. 

2.3 Determination of Best Fit Values 
for  Heat Transfer Coefficients 

Eqs (3) - (6) were solved numerically with an upwind finite 
differences technique in axial direction, coupled with an in- 
terior collocation method in radial direction, see appendix. 
This numerical procedure proved to be very stable and rela- 
tively fast for a wide range of Bof,, Pet, and Bit values. 
Best fit values for &,La and a, were obtained by ad- 
justing these parameters until a best fit solution of 
Eqs (3) - (6) to the experimental temperature profiles was 
found. The objective function minimized is a chi-square 
target function, calculated according to: 

(7) 

In Eq. (7), n is the number of temperature measurements, 
0, denotes the experimental temperature, 
O(e, O , A ~ , ~ , A ~ , ~ , ~ ~ )  the value predicted by the model and 
( ~ i  is the standard deviation of the measured temperatures. 
The chi-square target function is minimized using a 
Nealder-Mead method in multidimensions with different 
starting points [24]. 

2.4 Experimental Set-up 

The device for measuring radial and axial temperature pro- 
files contains three stainless steel wall-cooled tubes, 1.33 m 
long and with inner diameters of 49.9, 63.5 and 99.0mm. 
The tubes were filled with packing and cooled with water at 
about 283K, flowing through a jacket. Hot air at about 
333 K, flowed upwards through the tubes and was cooled at 
the wall. Under steady-state conditions, the radial tempera- 
ture profile was measured near the top of the bed, with 7 to 
15 K-type thermocouples, 0.5 mm in diameter, fixed in a 
rectangular rod of 2 x 2 mm mounted radially through the 
centre of the bed. The rod is made of a poorly conducting 
material, so that the measured temperatures were not af- 
fected by conduction through it. The temperature of the gas 
at the inlet to the packed bed, coolant temperature at inlet 
and outlet, pressure upstream of and downstream from the 
bed and the gas flow rate were also measured. The pressure 
drop across the bed was always less than 0.1 bar and 
therefore neglected. A flow sheet of the equipment is shown 
in Fig. 1 a and a diagram of the tubes in Fig. 1 b. 
The bed height in a tube can be increased by lowering the 
piston in the bottom of the tube and adding extra packing 
material, maintaining the top surface of the packing at the 
same level in the tube. By altering the bed height in this way, 
it is possible to obtain radial temperature profiles at dif- 
ferent axial positions or bed lengths. This is shown 
schematically in Fig. lc .  Also, the tubes are designed in 
such a way that the bed can be easily repacked by fluidizing 
the packing for a short time. Care was taken to maintain the 
bed height, and thus the average bed porosity, the same 
throughout one whole experimental series. The individual 
dimensionless radial temperature profiles, obtained from 
measurements, were averaged to one mean profile for a 
given bed length. This also produced values of the standard 
deviation for every radial point. Combination of the aver- 
age radial temperature profiles, obtained for different bed 
heights at the same experimental conditions, yields the tem- 
perature field for the whole tube. 

All experiments reported here were performed with air at 
atmospheric pressure, for which the following physical 
properties applied at 1 bar and 313 K: e = 1.13 kgm-3, 
Cpg = 1014 J kg-’ K-’, qg = 1 9 . 0 4 ~  10-’Pas and Ag = 
2 7 . 2 ~  W m-’ K-’ .  Alumina cylinders with 
d i  = 5.9mm were used as the packing material in the ex- 
periments. For a more detailed description of the set-up and 
procedure, see [251. 
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Fig. 1. A - Experimental set-up, B - Wall-cooled tube, C - Altera- 
tion of bed length. 

3 Discussion 

3.1 Influence of the Boundary Condition at Outlet 

The influence of the boundary condition at the outlet was 
studied in the presence of a parabolic radial inlet tempera- 
ture profile given by Eq. (5a). Different results were ob- 
tained from the model calculations when a radial outlet 
temperature profile according to Eq. (6a) was assumed than 
when taking the second derivative of temperature in the ax- 
ial direction equal to zero as given by Eq. (6c). This is 
shown in Fig. 2. Fig. 2a was calculated with Eqs (3), (4), 
(5 a) and a fixed outlet temperature profile Eq. (6a), for ar- 
bitrarily chosen values of model parameters. Fig. 2 b was 
calculated with the outlet boundary condition given by 
Eq. (6c) for the same values of the model parameters. If a 
fixed radial temperature profile at the outlet is assumed, 
large axial gradients are observed at the outlet. The in- 
fluence of the outlet boundary conditions, given by Eqs (6a) 
and (6c), becomes very clear if the effective axial thermal 
conductivity and the resistance to radial heat transport are 
assumed to be very high. This situation is illustrated in 
Fig. 3 for arbitrarily chosen values of model parameters. If 
a fixed radial outlet temperature profile is chosen, large ax- 
ial gradients prevail, despite the radial heat transport being 
low. 

The choice of the axial position w,,~ at which the outlet 
boundary conditions, given by Eqs(6b) and (6c), can be 
used is important. The smallest value of uOut has to be 
found for which the temperatures calculated for the packed 

Fig. 2. Temperature profiles calculated with Eqs (3), (4) and (5a) for 
A = 0.5, Bo?, = 2.5, Bit = 3.0 and Pera = 1000. A - Outlet bound- 
ary condition given by Eq. (6a) with B = C = 0.1, B - Outlet bound- 
ary condition given by Eq. (6c) with w, ,~  = 1 .O. 
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Fig. 3. Temperature profiles calculated with Eqs (3), (4) and (5a) for 
A = 0.2, Bo& = 10, Bit = 1.0 and Pet ,a  = 0.1. A - Outlet boundary 
condition given by Eq. (6a) with B = C = 0.1, B - Outlet boundary 
condition given by Eq. (6c) with w,,~ = 1 .O. 

bed are no longer influenced by the exact value of wOut. To 
this end, temperature profiles are calculated with Eqs (6b) 
and (6c) for certain values of model parameters and dif- 
ferent values of wOut. The values used for the model pa- 
rameters are: A = 0, Bo& = 3.0, Bit = 5.0 and 
Pe t ,  = 10000, 100 and 10. The influence of the choice of 
wOut was studied by examining the differences in the 
calculated temperatures at w = 1 and e = 0, 0.4, 0.7 and 
1 .O, for wOUt = a and wOut = a + 0.1, respectively. Starting 
with a value of a = 1 and increasing this value by 0.1 at each 
step, the differences are calculated as follows: 

In Eq. (8), &,(a) is the calculated temperature at w = 1 and 
e = 6,  with Eq. (6b) or Eq. (6c) taken at the axial position 
wOUt = a. Table 1 lists the calculated differences for 
a = 1.0- 1.5. It can be seen from this table that the axial 
position, where Eq. (6b) or (6c) is adopted as the outlet 
boundary condition, without influencing the profiles 
calculated for 0 < w < 1, increases with decreasing Pet,, as 
expected. It can also be seen that, for a very wide range of 
Pec,, Eq. (6c) can be safely taken at wout = 1, whereas 
wout> 1.5 is needed for Eq. (6b). Therefore, Eq. (6c) is 
preferred to Eq. (6b) as the outlet boundary condition. 
However, it should be realized that Eq. (6c) is an “open” 
boundary condition, which is fundamentally different from 
a closed one. 

3.2 Significance of Axial Dispersion of Heat 

The numerical solution of Eqs (3), (4), (5a) and (6c) was fit- 
ted to experimental temperature profiles. This produced 
&,,A,,, and a, values for three wall-cooled tubes, differ- 
ing only in inner diameter and filled with alumina cylinders, 
applying different gas flow rates. The obtained results are 
listed in Table 2 together with the so-called goodness of fit 
(GOF) data and the mean absolute error. GOF is the prob- 
ability that the chi-square value exceeds a particular value 
xkin by chance. This probability is calculated using the chi- 
square distribution for n - m degrees of freedom, where n 
is the number of measured points and m the number of ad- 
justable parameters. If GOF shows a very small probability 
for some particular data set, the apparent discrepancies are 
unlikely to be coincidental fluctuations. In this case, either 
the model is incorrect or the measurement errors are actual- 
ly larger than stated [24]. The mean absolute error is 
calculated according to: 

Table 1. Temperature differences at  w = 1 calculated with Eqs (3), (4), (5a) and (6b) or (6c), respectively, for different values of wOuf. Model 
parameters: A = 0, Bo:.~ = 3.0, Bit = 5.0. 

a =  1.0 a =  1.1 a =  1.2 a =  1.3 a =  1.4 a =  1.5 

Boundary condition Eq. (6b) Peaa - 10 
Pe’ I 100 peBa I 

h,a - loOo0 
Boundary condition Eq. (6c) Peaa - 10 <0.01% 

P e b a I  100 <0.01% 
Pe?. ~ 1 0 ~ 0  <o.o1qo 

35.22% 9.18% 2.96% 1.01 Yo 0.36% 
5.13% 0.26% 0.01 To < 0.01 070 
0.53% 0.01 070 < 0.01 070 
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Table 2. Dimensionless best fit values for and a ,  for experiments with alumina cylinders of d i  = 5.9 mm, for three different tube 
diameters and at different gas flow rates. Calculations performed with Eqs (3), (4), (5a) and (6c) ,  i.e. using a parabolic temperature profile at inlet. 

Re: [ - I  A a *  [ - I  A: [ - I  am* [ - I  GOF Error [Oro] 

Tube I 122 
D, = 49.9 mm 175 

279 
426 
597 

Tube I1 105 
D, = 63.5 mm 174 

279 
426 
594 

Tube 111 73.3 
Dt = 99.0 mm 105 

175 
283 
42 1 

<0.5 
<0.5 
<0.5 
181.8 
<0.5 

<0.5 

<0.5 
<0.5 
< 0.5 

<0.5 
<0.5 
<0.5 
<0.5 

1997 

< 0.5 

14.8 
21.5 
30.2 
48.0 
66.6 

13.8 
29.0 
30.4 
44.1 
53.7 

10.3 
13.6 
21.3 
30.1 
42.2 

12.6 
15.7 
21.8 
26.2 
28.8 

13.9 
22.1 
21.4 
26.2 
37.6 

14.8 
15.2 
17.1 
22.5 
28.6 

3.6E-3 
8.5E-1 
7.7E-1 
9.OE-1 
4.7E-1 

9.3E-1 
8.7E-1 
6.7E-1 
5.5E-1 
3.OE-1 

1 .OEO 
8.4E-2 
1 .OEO 
5.5E-5 
8.9E-7 

6.3 
3.5 
4.4 
4.2 
3.8 

4.9 
4.8 
4.9 
4.0 
4.7 

3.8 
6.2 
2.9 
4.1 
3.7 

For most of the performed fit a very small effective axial 
thermal conductivity, ~ 0 . 0 1  W m- '  K-' ,  was obtained. 
The values found for and a, are practically equal to 
those obtained with an analytically solved model in which 
axial heat dispersion was neglected [26]. Only occasionally, 
was Ae,, very high, namely > 10 W m-'  K-' .  In this case, 
the values of and a ,  are somewhat higher than those 
obtained from the model with axial dispersion neglected. 
An occasionally very high A,,, may be caused by two 
phenomena. Firstly, the model calculations are quite insen- 
sitive to the value of A,,,. This is seen in Fig. 4 which shows 
the target function calculated with Eq. (7) for the tube with 
Dt = 63.5 mm, filled with alumina cylinders of 
d; = 5.9 mm and at a Reynolds number of Re: = 174. 
Moreover, is cross-correlated with and a,. This is 
shown in Fig. 5, where temperature profiles calculated with 
Eqs (3), (4), (5a) and (6c) are plotted for the best fit heat 
transfer coefficients under the same conditions as in Fig. 4. 
Fig. 5a is calculated with the best fit values for Ae,r and a,, 
neglecting axial dispersion of heat and Fig. 5 b shows the 
best fit values for all three coefficients, see also Table2. 
These diagrams indicate that almost the same temperature 
profiles are calculated for completely different values of 
A,,,, provided that the values of Ae,r  and a, are slightly ad- 
justed. The mean difference between the two profiles as 
calculated with Eq. (9) is only 4.5%, which is practically the 
same as the difference between the measured and fitted pro- 
files, see Table 2. If the temperature profile in axial direc- 
tion is not completely smooth and/or the inlet temperature 
profile is not read correctly, it is possible to obtain a slightly 
better fit with a very high value of & a  together with 
somewhat higher values of Ae,r  and a,, compared to the 
conditions where axial heat dispersion is neglected. 
The above considerations lead to the conclusion that axial 
dispersion of heat does not improve the description of heat 
transport in wall-cooled packed beds, for the conditions ap- 
plied here. To verify this, a one parameter fit, in which only 
A,,, was adjusted, was also performed on all the tempera- 
ture profiles available, using the best fit values for & and 
a ,  as obtained with the model which neglected the axial 

2 A:' = 079  WIirnxKl 

A 
0 A ?  = 543 W/lrnxK1 

R' 
Y 2  r = 079 W/(rn*Ki 

1.5 

h 
I W l h  

Fig. 4. Target function x 2  calculated for the tube with 0, = 63.5 mm, 
filled with alumina cylinders of dz = 5.9 mm and Re; = 174. A - x 2  
as a function of Ae,a and Ae,r  for a, = 120 W m-'K-', B - x 2  as a 
function of Ae,a and a, for = 0.97 W m- '  K- ' ,  C - x 2  as a func- 
tion of Ae,r  and a,  for = 46.7 W rn-' K- ' .  
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8 .  

Fig. 5. Temperature profiles, calculated with Eqs (3), (4), (5a) and ( 6 ~ )  
for best fit values of model parameters; conditions the same as in 
Fig.4. A - For Peh, ,=m, Bot ,=1.46 and Bi,=4.69, B- For 
Peh,a = 7.55, BoZr = 1.05 and Bi, = 4.10. 

dispersion of heat. Thus obtained values for A,,, were 
again very small (under 0.01 W m-l  K-') ,  yielding Pe,,h 
values of at least 50. 

The above can also be shown graphically by taking a certain 
value of and adjusting only Ae,* and a ,  in such a way 
that best fit is obtained with the numerical solution of 
Eqs (3), (4), (5a) and (6a) or (6c), respectively. This is 
shown in Fig. 6 for the experiments in the tube with 
D, = 99.0 mm, filled with alumina cylinders of 
di = 5.9 mm and for Re; = 421. Fig. 6 a  presents the target 
function x 2  plotted against the dimensionless effective ax- 
ial thermal conductivity. The target function is reduced by 
dividing it by the target function for A,,, = 0. The two lines 
in the diagram are calculated for two different outlet 
boundary conditions, namely either with a fixed radial 
outlet temperature profile given by Eq. (6a) or taking the 
second derivative of temperature as zero in the axial direc- 
tion at  o = 1 as given by Eq. (6c). As seen from Fig. 6a ,  the 
target function increases only slightly with a large increase 
in A,,,, but this increase in the target function is larger 
when Eq. (6c) is adopted as the outlet boundary condition. 

Figs 6 b and 6c  present the best fitted dimensionless effec- 
tive radial conductivity and wall heat transfer coefficient, 
respectively. As a rule, both coefficients increase slightly 
with increasing effective axial conductivity. 

Fig. 7 shows the same profiles as Fig. 6 for the tube with 
D, = 63.5 mm and Re: = 174, calculated with the outlet 

x2 T 2 0 0 '  c-c-c = o u t l e t  bound cond E q  (6al 

D, = 990 rnm 

G = 1.36 kp*m-2*s-' 

0 500 1000 1500 2000 2500 3000 3500 4000 
___j. 

= nutlet bound. cond Eq. (6a) 

1.20 i 

0.00' " ' " " ' ' " " " ' 
0 500 1000 1500 2000 2500 3000 3500 4000 

__i 

o--o--o = cutlet bound cond. E q  (6a) 

0 40 1 ,TI "; , = ,28.3 , , , , , , , 
+-+-+ = 28.6 

i 0.00 
0 500 1000 1500 2000 2500 3000 3500 4000 

Fig.6. Target function x 2  and regression values for Ae , ,  and a,  as 
functions of ,Ie, ,  for a tube with Dl = 99.0mm and Re; = 421. A - 
Target function, B - Effective radial thermal conductivity, C - Wall 
heat transfer coefficient. 

boundary condition given by Eq. (6c). In this experiment, 
the target function reached a minimum at A,* = 1997, see 
also Table2. However, this minimum is not very pro- 
nounced as seen from Fig. 7a. It should be realized that 
A,* = ReiPr/Pe,,h, where in our case P r  = 0.71. For axial 
mass dispersion in the turbulent regime, say for Re;> 50, 
the axial Peclet number was found to be between 1 and 2. 
If we also assume that, for axial heat dispersion, the Peclet 
number does not become less than unity, the relevant range 
for in Fig. 7 is O<A,*< 123. 
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- I  
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Fig. 7. The same profiles as in Fig. 6 for a tube with D, = 63.5 mm and 
Re; = 174. A - Target function, B - Effective radial thermal con- 
ductivity, C - Wall heat transfer coefficient. 

3.3 Influence of the Boundary Condition at Inlet 

So far, only a fixed radial temperature profile as given by 
Eq. (5a) has been used as the inlet boundary condition. 
With this condition, no significant improvement was ob- 
tained by incorporating axial heat dispersion. Let us now 
consider the consequence of assuming the inlet temperature 
profile to be radially constant while the actual profile is 
curved. In addition, let us examine the effect of a Danck- 
werts type inlet boundary condition. 

- Flat radial inlet temperature profile 

The measured radial temperature profiles at the axial posi- 
tion o = 0 were always parabolic in shape, yielding values 
for the constant A in Eq. (5a) of between 0.5 and 0.8. 
Measuring the temperature only at the centre of the bed and 
assuming it to be constant over the radius, the inlet bound- 
ary condition given by Eq. (5a) transforms into: 

This inlet boundary condition is often used in literature as 
that for an open system. Values of a,,,, and a ,  can 
again be obtained by fitting the solution of Eqs (3), (4), (6c) 
and (10) to the experimental temperature profiles. Table 3 
lists the results for the three tubes, filled with alumina 
cylinders, at different gas flow rates. Remarkably, now the 
optimum values of are no longer around zero and an 
improvement in the description of the temperature profiles 
is achieved by inclusion of axial dispersion of heat. Com- 
paring the results of Table 3 with those in Table 2, it can be 
seen that the values of Ae,r and a ,  are slightly higher. Prob- 
ably, the large axial temperature gradients, especially near 
the inlet and near the wall of the tubes, introduced by 
overestimation of inlet temperature, lead to an apparent ax- 
ial thermal conductivity. 

- Danckwerts inlet boundary condition. 

As already pointed out, assumption of a temperature jump 
at o = 0 is unusual with our set-up, because the inlet profile 
is taken at a location within the packed bed. However, since 
Eq. (5b) is often used in literature, its effect on was 
studied. As expected, if constant A (in Eq. (5 b)) was ob- 
tained by fitting a parabola to the measured temperature 
profile at o = 0, the fitting of the model including axial 
dispersion, using Eq. (5 b) as the inlet boundary condition, 
nearly always yielded very small values for If the tem- 
perature profile at o = 0 is again assumed to be radially 
flat, Eq. (5 b) transforms into: 

Again, values for Ae,r ,  and a ,  can be obtained by fit- 
ting the numerical solution of Eqs (3), (4), (6c) and (1 1) to 
experimental temperature profiles. Table 4 lists the results 
obtained for the three different tubes, filled with alumina 
cylinders of d i  = 5.9 mm and the corresponding values of 
Re;. Again, discrete values were obtained for the effective 
axial conductivity and even a good fit as follows from the 
high values for GOF and low mean errors. Thus, incorpora- 
tion of axial dispersion into the heat balance and using a 
Danckwerts inlet boundary condition leads to an apparent 
improvement in the description of heat transport in wall- 
cooled packed beds, in the case of incorrectly assuming a 
radially flat temperature profile immediately in front of the 
inlet while the actual profile is curved. 

Elsewhere [27], we have shown that adoption of a radially 
flat inlet temperature profile, while the actual profile is 
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curved, may imply a length dependence of ,le,r and a,. 
This is due to overestimation of temperature at the inlet, in 
the case of cooling. The inlet boundary condition, given by 
Eq. (1 I), can compensate for this overestimation, by in- 
troducing a temperature jump at the inlet. This is illustrated 
by the pseudo-homogeneous one-dimensional model for the 
description of heat transport in wall-cooled packed beds. 
The well-known solution of this model is given by: 

BMC = OF' exp (-4St'o) . 

and 6 = ( T -  T,)/( To - T,), where To is the temperature 
measured in the centre of the packed bed at o = 0. If the 
temperature profile at o = 0 is radially flat, 07' equals 
unity, otherwise it would be less than one. Let us assume 
that the actual axial mean-cup temperature profile, mea- 
sured in the packed bed, can be described by the following 
equation: 

0 ~ ' = 0 . 7 e x p ( - 2 ~ )  . (12a) 

Thus, 6,"' = 0.7 and St@ = 0.5. 

In Eq. (12), BMC is the-so-called "mean-cup'' averaged tern- 
perature, calculated according to: 

Now, assuming that this profile is described by Eq. (12), in- 
correctly taking the inlet temperature profile to be radially 
flat, or: 

BMC = 2290d9 
0 

Table 3. Dimensionless best fit values for A,,,, I , , r  and a, for alumina cylinders, for three different tube diameters and at different gas flow 
rates. Calculations performed with Eqs (3), (4), (6c) and (10). whereby a radially flat inlet temperature profile was incorrectly assumed. 

Re: [ - I  A,* 1-1 I ;  [ - I  a,* [ - I  GOF Error [Yo] 

Tube I 122 
D, = 49.9 mm 175 

279 
426 
597 

Tube I 1  105 
D, = 63.5 mm 174 

279 
426 
594 

Tube I11 73.3 
D, = 99.0 mm 105 

175 
283 
42 1 

642.4 
770.6 

1218 
1642 
2946 

712.6 
1270 
1884 
2770 

> 3675 

132.2 
493.3 

209 1 
2319 

> 3675 

19.2 
47.2 
48.8 

127.1 
88.3 

14.5 
31.0 
42.5 
71.2 

107.9 

12.9 
18.2 
28.3 
36.9 
55.1 

21 .o 
15.6 
25.4 
24.2 
42.8 

>215 
26.0 
34.2 
32.1 
34.9 

21.9 
25.5 
37.0 
41.3 
46.5 

4.5E-12 
3.6E-20 
9.6E-18 
4.7E-20 
1.8E-14 

6.6E-20 
2.8E-20 
4.2E-20 
5.4E-20 
3.5E-20 

3 .OE- 1 5 
6.3E-17 
5.4E-20 
3.9E-20 
4.OE-20 

21.5 
25.3 
18.4 
21.1 
14.7 

21.6 
25.3 
20.0 
18.4 
16.5 

12.3 
9.6 

11.4 
8.8 
8.3 

Table4. Dimensionless best fit values for I,,,, and a, for alumina cylinders, for three different tube diameters and at different gas flow 
rates. Calculations performed with Eqs (3), (4), (6c) and (1 1) using a Danckwerts inlet boundary condition and incorrectly assuming a radially 
flat temperature profile directly in front of the inlet 

Re: [ - I  I,* [ - I  1: [ - I  a,* [ - I  GOF Error [Vo] 

Tube I 122 
D, = 49.9 rnm 175 

279 
426 
597 

Tube I 1  105 
0, = 63.5 mm 174 

279 
426 
594 

Tube I11 73.3 
Dt = 99.0 mm 105 

175 
283 
42 1 

61 1.6 
1131 
1447 
2950 
3619 

907.7 
2087 
2481 

> 3675 
> 3675 

662.7 
798.5 

1465 
1814 
2379 

18.7 
27.2 
38.3 
56.5 
81.6 

17.1 
27.3 
38.8 
59.0 
74.8 

12.6 
16.5 
24.3 
34.9 
50.5 

16.4 
21.8 
27.3 
34.2 
37.0 

22.1 
25.6 
31.1 
33.1 
41.7 

20.0 
21.1 
23.5 
30.0 
36.2 

2.6E-2 8.2 
3.OE-2 5.9 
4.5E-1 6.4 
1 .OE-2 7.3 
5.1E-1 6.1 

2.5E-1 8.1 
2.7E-1 5.8 
1 .OE-2 6.1 
5.5E-2 5.5 
8.2E-4 6.0 

9.4E-1 5.4 
9.3E-1 5.6 
8.5E-1 5.1 
1.2E-2 4.6 
1.3E-3 4.8 
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The mean-cup temperature, calculated with Eq. (12b) can 
be set equal to the “measured” temperature described by 
Eq. (12a), at different bed lengths. This yields for example: 

o = 0.2 + St@ = 0.95 and o = 0.8 -+ St@ = 0.61 . 

In other words, St@ or U,, decreases with increasing bed 
length, i.e. manifesting the so-called “length effect”. 

Supposing that the profile, given by Eq. (12a), is described 
by a one-dimensional model with axial heat dispersion and 
using a Danckwerts inlet boundary condition: the dimen- 
sionless equation for this model can be written as follows: 

Subject to: 

o = o ,  -- aeMC - - P e t , ( ~ - e  MC ) , 
am 

o+ co , OM‘ is bounded . 
Eq. (14) is solved together with Eq. (15) to yield: 

xexp [ OSPet ,  (1 - Jl +g) oj 

Eq. (16) can be fitted to the temperatures calculated with 
Eq. (12a), yielding best fit values for St@ and Pet,. 
Thereby, the following values are obtained: 

St@= 0.71 and Pe?,,= 4.67 . 

The axial temperature profile calculated with Eq. (16) from 
these values can be mathematically proven to be exactly 
equal to the profile described by Eq. (12a). It should be 
noted that Eq. (16) was derived by incorrectly assuming that 
OFC equals unity, as expressed by Eq. (15a). Thus, the 
temperature drop at the inlet caused by dispersion at low 
values of Pe t ,  can compensate for the overestimation of 
the actual inlet temperature. The value found for U,, is a 
factor of l/Byc higher than the actual value. If Eq. (16) is 
fitted to the “measured” temperatures calculated with 
Eq. (12a) at different axial positions, no length dependence 
of St@ or U,, is observed. The above is illustrated in Fig. 8. 

Similar results to those with the Danckwerts inlet boundary 
condition are obtained if the following inlet boundary con- 
dition is used instead: 

0“ T 
1.00 b I 

temperature drop 

E q  112b) with Ste= 095 

-. Eq 112b) with Ste= 061 

- Eq (161 with St’= 0 7 1  

.- 

0.20 - 

c -.-. - * ‘measures temperatures as-.+,-.-.-, 
calculated b y  Eq.  (12a) 

n 00 . .. 
000 0.20 0 40 0.60 0.80 1 .oo 

Ld 
Fig. 8. Illustration of elimination of the so-called “length effect” of 
heat transport coefficients, applying the outlet boundary condition 
given by Eq. (1 1). 

Eq. (17) is often employed in literature to obtain an 
analytical solution of Eq. (3). Also, now the temperature at 
o = 0 is lowered by increasing the value of A,,,, thereby 
compensating for the overestimation of the temperature at 
o = 0 in the case of cooling. This was also observed by 
Dixon [I91 in the case of heating. He solved this problem by 
taking into account heat leakage to the section of the bed 
where w < 0. Thus, inclusion of axial heat dispersion was no 
longer needed to eliminate the apparent length dependence 
of Ae,r  and a,. 

4 Conclusions 

The inclusion of axial dispersion of heat in the heat balance 
does not significantly improve the description of heat trans- 
port without reaction in wall-cooled or heated packed beds, 
if the correct radial inlet temperature profile is used and the 
employed Reynolds numbers exceed 50. Only occasionally, 
an extremely high effective axial thermal conductivity is 
found which yields a slightly better fit. The sensitivity of 
model calculations to the effective axial thermal conductivi- 
ty is very low and this parameter is cross-correlated with the 
effective radial thermal conductivity and the wall heat 
transfer coefficient. This leads to the conclusion that it is 
not possible to obtain reliable values for the effective axial 
conductivity from cold-flow experiments in wall-cooled or 
heated packed beds. 

Although axial dispersion of heat can as a rule be neglected 
in the description of steady-state experiments in wall-cooled 
or heated packed beds, it cannot be neglected, e.g. if a dy- 
namic heat transport process is described by a pseudo- 
homogeneous model. In this case, axial dispersion of heat 
is needed to take into account the influence of the particle- 
to-gas heat transfer coefficient [28, 291. 

If axial dispersion is included, the following expression for 
the outlet boundary condition is proposed, to interpret 
cold-flow experiments: 

i n2n 
0 o = l ,  a l l @ ,  --= 

I w u  

Pef, a a o  
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No physical justification exists for this boundary condition, 
see also Kalthoff and Vortmeyer [30], but it gave good 
results. The influence of this boundary condition on ae 1 a2e 

small, compared to e.g. setting the first derivative equal to 
zero at a certain axial position outside the packed bed. The 

outlet temperature equal to that of the coolant at that loca- 
tion. Furthermore, for this boundary condition, model 
calculations are more sensitive to the value of the axial 
dispersion coefficient, compared to the conditions given by 
Eqs (6a) and (6b). 

Eq. (3) can also be written as 

calculated temperatures in the packed bed is always very G - ~ K  , - F ( e , w )  - 9 

latter is, for the system studied, equivalent to setting the 
I l a  (e:) = G(e ,w)  

B ~ &  ae 
and 

F(e ,w)+G(e ,o)  = 0 . 
Discrete values of the effective axial conductivity are ob- 
tained if the temperature measured in the centre of the 
packed bed at w = 0 is adopted as the inlet temperature, 
assuming a flat radial temperature profile at this axial posi- 
tion, while the actual profile is curved. If, in this case, a 
Danckwerts boundary condition is used, values are also 
found for &, and an apparent improvement in the descrip- 
tion of the experimental temperature profiles is observed. 

Eq. (A 1) is solved with an upwind finite differences method 
and Eq. (A2) by an interior collocation method, subse- 
quently both solutions being combined using Eq. (A3). 

Finite Differences in Axial Direction 

This is due to the fact that the temperature drop at the inlet 
can compensate for the overestimation of inlet temperature, 
in the case of cooling. This temperature drop at the inlet 

For the first and second derivatives in axial direction, the 
following Taylor series are used: 

may also apparently eliminate the length dependence of the 
radial heat transfer coefficients. Thus obtained coefficients 
slightly differ from the true values. am h 

ae e;-e;-I 
n = 1 ,  - = +OW) , (A 4) 

+O(h2)  , (AS) 
Thus, when modelling heat transport in wall-cooled or ae 3 e; - 4 e;- + e;- 

aw 2h heated packed beds, adequate attention must be given to the I N +  9 - = 
choice of the inlet boundary condition, especially if axial 
heat dispersion is taken into account. If possible, the radial 
temperature profile, measured at a given position in the 
packed bed, should be used as the inlet temperature profile. 

a2 e e;+ - 2 e; + e;- 
l i n s N ,  -- - +O(h2)  . (A6) 

aw h2 
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Appendix 

The following set of equations is to be solved: 

ae e = O  , a l lw , - = 0  , 
ae 

- -Bite , @ = I ,  a l l w ,  -- 
ae 
ae 

i a2e  
Pef,, aw2 

o = l ,  a l l e ,  --= 

In Eqs (A4) - (A6), N+ 2 is the total number of axial finite 
difference points including the boundaries, thus: 
h = L/(N+ 1). These Taylor series lead to the following set 
of difference equations for Eqs (Al), (5a) and (6c): 

n = O ,  O , = l - A e  , (A 7) 0 2 

- ( L ) e ; = F m ,  1 

h2Pez, 

+ ( z + k )  h 2 P e t ,  e;- 
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Collocation in Radial Direction 

For the collocation method in radial direction, the follow- 
ing polynomial was chosen: 

= a o ( o ) + a l ( o > e 2 + .  . . + a M ( o ) e 2 M  ( A l l )  

where M + 2  is the total number of collocation points, in- 
cluding the boundaries. Eq. (4b) together with Eq. (A 11) 
yields the following expression at e = 1 : 

or 

. .  + 2 M a ;  = 

a;  . 2 n  2 M  e;+l = -- a l  - .  . . -- 
Bit Bit 

Eq. (A12) can be used to eliminate the term a o ( o )  from 
Eq. (A 11) and the following set of equations is obtained in 
the radial direction for the interior collocation points 
el . . . @ M :  

Substitution of Eq. (A 13) into Eq. (A 14) yields the desired 
relationships for 6; at every interior collocation point. For 
radial positions of these collocation points, those suggested 
by Villadsen and Stewart [31] were used. The obtained set 
of equations can be combined with Eqs (A7) - (A9), using 
the relationship: 

Subsequently, the equations for the temperatures at axial 
finite differences points and interior radial collocation 
points can be solved numerically. For the numbers of 
points, N, = 15 and Mrad = 3 were chosen as a rule. 

Interpolation 

The presented method yields M x  N calculated temperatures 
at axial finite difference points and radial collocation 
points. The locations of these points are never the same as 
the axial and radial locations of temperature measurements 
in the experimental set-up. Therefore, for the fitting of tem- 
peratures, an interpolation method has to be employed. 

A cubic spline interpolation (see Press et al. [24]) is applied 
in axial direction, at radial positions of the collocation 
points. This yields the calculated temperatures at the desired 
axial positions. Thus obtained temperatures at the radial 
collocation points are then used, together with Eq. (A 12), 
to calculate the coefficients al . . . aM from Eq. (Al l ) ,  us- 
ing the collocation method backwards. With these values 
and Eq. (A 1 l),  it is then possible to calculate the tempera- 
tures at the desired radial positions. 

Substitution of Eq. (A 1 1 )  into Eq. (A2), for all collocation points except the boundaries, yields the following set of equa- 

X 
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Symbols used 

[ - I  

[-I 

[kgm-'s-'] 

[ml 

[ - I  

[ - I  

[-I 

constants in parabolic expressions 
external surface area of particle 

, tube Biot number awRt 

&,I 

QPCP, Ud; 

-- - 

, Bodenstein number for 
*e,r radial 

dispersion of heat 

Q C v R 2  Bo,,,N 
, modified g Pg 1 -  - 

4,4 4 r  Bodenstein num- 
ber for radial 
dispersion of 
heat 

specific heat capacity of gas at constant 
pressure 
tube diameter 

-2 - , equivalent diameter of a sphere 

function 
e,u, gas mass flux 
function 
bed length 
number of collocation points - 2 
index in radial direction 

6 V  

AP 

, number of particles on a Dt 

d ;  diameter 
=- 

index in axial direction 

-L - , Peclet number for axial 
4 , a  dispersion of heat -- - , Peh,, NT, modified axial 

Q C udg 

p c UL 

&,a Peclet number for heat 

!!& , Prandtl number 
1, 
e g  Ud; -- - , Reynolds number based on 

tube radius 
radial coordinate 

'Ig superficial velocity 

, Stanton number for U O V  -- - 

QgCPgu overall heat transfer coef- 
ficient 

- S t f  , modified Stanton UOJ - 

e g  c p g  VDt number 
temperature 
temperature in the centre of packed bed 
a t w = O  
overall heat transfer coefficient, in one- 
dimensional model 
particle volume 
superficial gas velocity 
axial coordinate 
wall heat transfer coefficient 

, dimensionless wall heat awd'p 
1, transfer coefficient 

chi-square target function defined by 
Eq. (7) 
viscosity of gas 

[ - I  

Subscripts 

a 
cl 
e 

g 
0 
out 
P 
r 
t 
W 

Superscripts 

e 
S 
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L 
- , aspect ratio 

thermal conductivity of gas 
effective axial thermal conductivity 

, dimensionless effective axial 
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- "" , dimensionless effective radial 
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2 
- , dimensionless axial coordinate 
L 
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(""- T c I )  , dimensionless temperature 
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