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Abstract---An earlier developed hydrodynamic model describing dense gas solid two phase flow has been 
used to study the bubble formation process at a single orifice. A systematic experimental and theoretical 
study has been conducted to investigate the effect of particle properties (i.e. particle diameter and density) 
on the bubble growth process for Geldart type B powders. Theoretical results, obtained for both two- 
dimensional and three-dimensional geometries, have been compared with experimental data and with 
predictions from approximate models reported in literature. A comparison of the theoretical results and 
experimental data shows that the advanced hydrodynamic model gives a satisfactory good description of 
the bubble growth process for several particle types which makes this model a useful tool to study the 
bubble formation process in fluidised beds. It appears that the influence of particle size and particle density 
on bubble formation can be related to the effect of the minimum fluidisation velocity on this process. At 
a constant gas injection rate through the orifice higher minimum fluidisation velocities result in larger 
bubbles and decreased leakage. Further, it has been found that coarse particles give rise to the formation of 
relatively elongated bubbles. The detachment times, on the other hand, seem to be independent of the 
particle size used. Copyright © 1996 Elsevier Science Ltd 
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l. INTRODUCTION 

Many of the characteristic features of gas-fluidised 
beds, like their excellent heat and mass transfer prop- 
erties, can be attributed to the presence of bubbles and 
are dominated by their behaviour. Therefore, the un- 
derstanding of gas bubble behaviour is of crucial 
importance for fluidised bed reactor design. 

The work of Kuipers et al. (1991), concerned with 
bubble formation at a single orifice in a two-dimen- 
sional gas-fluidised bed, has been extended to investi- 
gate the effect of solid particle properties on bubble 
formation. In addition, this process has been studied 
in a semi-circular gas-fluidised bed with one central 
orifice. 

In gas-fluidised beds of practical interest the fluidis- 
ing agent is normally injected through discrete holes 
or other orifices in the gas distributor plate which 
supports the bed. Bubble formation at discrete orifices 
has been studied experimentally and theoretically by 
a number of investigators. In the next section a short 
review will be presented of approximate bubble form- 
ation models which have been proposed in the literature. 

2. OVERVIEW OF EXISTING APPROXIMATE MODELS 

During the last few decades, several approximate 
models have been presented in the literature to de- 
scribe bubble growth in gas-fluidised beds at a single 
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orifice. The models proposed by Harrison and Leung 
(1961), Zenz (1968) and Caram and Hsu (1986) are 
based on the assumption of formation of spherical 
shaped bubbles which grow due to gas injection 
through the orifice while they exchange gas with the 
surrounding emulsion phase through the bubble 
boundary. In these models the injection flow rate Q is 
considered to be constant during the formation pro- 
cess, while the exchange velocity Uex is assumed to be 
uniform over the bubble surface. 

The differential equation describing the rate of 
change of the bubble volume V with respect to time 
t is given by: 

dV 
- -  = Q - UexA. (1) 
dt 

In eq. (1), A denotes the bubble area and Uox the super- 
ficial exchange velocity through the bubble boundary. 

The equation of motion for the bubble describes the 
position of the bubble centre s as a function of time 
and is given by: 

d_ 
CoPemV-~t  = p~glg~l  (2) 

dt  

where Peru represents the emulsion phase density, s the 
distance between the bubble centre and the orifice, 
V the bubble volume and Co the virtual mass coeffi- 
cient. The latter quantity accounts for the inertia of 
the emulsion phase which is associated with the grow- 
ing bjabble. The value of the virtual mass coefficient 
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depends on the orifice geometry (Davidson and 
Harrison, 1963) and equals 1.0 (two-dimensional case) 
or 11/16 (three-dimensional case) for the orifice type 
shown in Fig. 1. 

In terms of the approximate models, bubble detach- 
ment occurs when s = R. Except for the case of UCx = 
0, no analytical solutions of eqs (1) and (2) can be 
obtained and they must be integrated numerically to 
yield R and s as a function of time. The aforemen- 
tioned models differ only with respect to the expres- 
sions used to represent the gas exchange between the 
bubble and the emulsion phase. 

In the model proposed by Harrison and Leung 
(1961) it is assumed that there is no exchange of 
gas from the bubble to the surrounding emulsion 
phase: 

Uox = 0. 
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exchange velocity: 

- K ° ~ r  R Uox = . (5) 

The permeability of the emulsion phase K o  can in 
principle be obtained from the Blake-Kozeny equa- 
tion (Bird et al., 1960) or alternatively from the known 
minimum fluidisation velocity: 

gml  
K o  - Pemlgz[ ' (6) 

TO obtain an expression for the pressure gradient in 
eq. (5) a mechanical energy balance with respect to the 
emulsion phase is formulated. Assuming incompress- 
ible, inviscid and irrotational emulsion phase flow 
leads to the following conservation equation for 

(3) mechanical energy: 

~r \ - &  + k + = 0 (7) 

where in addition gravity has been neglected. In eq. (7) 
and k denote, respectively, the velocity potential 

and kinetic energy of the emulsion phase where k is 
given by: 

1 u 
k =~(em'Uem).  (8) 

(4) Following this approach to obtain an expression for 
the exchange velocity yields: 

v .  F!(dR/2 d2R1 
Uex = ~ LR \ dt } + - ~ J  (9) 

for a two-dimensional bubble and 

U . q ~  3 ( d R ~  2 d2R~ 
Vox = ~ L ~  k-d-;/ + -dvJ (lO) 

for a three-dimensional bubble. 
The final model discussed here is the one developed 

by Pierrat and Caram (1992). They solved reduced 
two-fluid model equations, for solid phase mass and 
momentum conservation in one dimension, assuming 
spherical bubbles. Their mass and momentum conser- 
vation equations are given by: 

Oe~ps 1 ~ 2 
~,---i- + 7 ~ r  (~sr vp~) = o (11) 

p , ~  ~ + ~ ~ = fl(u - ~) - a T [  (12) 

The last term in eq. (12) represents the normal par- 
ticle-particle interaction force, and prevents the solid 
phase volume fraction to reach unacceptably low 
values. For  the elasticity modulus G the following 
generalised form holds: 

G = - Goe ~(~*-~) (13) 

in which Go represents a normalising units factor. 
Pierrat and Caram used c = 600 and e~ = 0.376. 

However, there is considerable experimental evid- 
ence that significant gas leakage through the bubble 
boundary occurs (Nguyen and Leung, 1972; Rowe et 
al., 1979; Yang et al., 1984). Yang et al. (1984) de- 
veloped a model to describe this phenomenon by 
assuming that, similar to the Zenz (1968) assumption, 
gas leaks out through the bubble boundary at a super- 
ficial velocity equivalent to the minimum fluidisation 
velocity: 

Uex = Umf. 

Another approach for modelling the gas exchange 
between the bubble and the emulsion phase has been 
followed by Caram and Hsu (1986). They applied 
Darcy's law to obtain an expression for the superficial 

O 

Fig. 1. Simplified representation of bubble formation at a 
single orifice in gas-fluidised beds. 
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The interphase momentum transfer coefficient/3 is 
obtained from the well-known Ergun relation: 

fl =150(1 -e;. ey)2 #ydp z + 1.75(1 - ey)-~p y lu - vl. (14) 

Bubble detachment times cannot be predicted with 
the Caram-Pierra t  model because the equation of 
motion for the bubble is not included in their model. 

3. HYDRODYNAMIC MODEL 

3.1. Governin9 equations 
The motion of a system of solid particles suspended 

in a Newtonian fluid can, at least in principle, be 
completely described by the Navier-Stokes equations 
for the fluid phase and the Newtonian equations of 
motion for each suspended particle. However, due to 
the huge number of particles, the number of equations 
is far too high to permit direct solution for systems of 
practical interest on present computer facilities. 
Therefore, the two-fluid approach has been adopted 
by different authors, treating both phases as a single 
continuous phase. Reviews concerning these kinds of 
models have been given by Gidaspow (1986) and 
Kuipers (1990). More recent developments, including 
a kinetic theory to model mutual particle interactions, 
are presented in Ding and Gidaspow (1990). Adopting 
the "two-fluid" concept for each phase, separate con- 
servation equations for mass, momentum and thermal 
energy are used with appropriate interaction terms 
representing the coupling between the phases. Equa- 
tions (13) i16) show the mass and momentum conser- 
vation equations in vector form. 

Continuity equation for the fu id  phase: 

a(e lpl )  
~ + (V. e,/pfu) = 0. (15) 

Continuity equation for the solid phase: 

- -  + (V-e~p~v) = O. (16) 
8t 

Momentum equation for the fluid phase: 

~ + (V" ~ / p l u u )  

= - e rVP - fliu - v) - ( g -  e f '~ f )  -~- 8fpfg. (17) 

Momentum equation .for the solid phase: 

~(esp.,v) 
- -  + (V. ~-~p~vv) 

8t 

= -- ,~4VP + fl(u - v) - (V'es%) + espsg -- VPs. (18) 

The thermal energy equations have been omitted here 
due to the anticipated small heat effects during bubble 
formation in cold-flow fluidised beds. Due to the 
mathematical complexity of the transport equations 
a numerical solution procedure is required as de- 
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scribed in more detail by Kuipers et al. (1993). The 
computer model developed by Kuipers et al. calcu- 
lates the porosity, the pressure, the fluid phase tem- 
perature, the solid phase temperature and the velocity 
fields of both phases in two-dimensional Cartesian or 
axi-symmetrical cylindrical coordinates. These vari- 
ables constitute the primary variables. To enable the 
solution of the transport equations (13)-(16) the 
remaining unknown variables have to be specified in 
terms of the primary variables by formulating the 
constitutive equations. These equations will be 
discussed briefly in the next section. 

3.2. Constitutive equations 
3.2.1. Fluid phase density [3f and solid phase density 

Ps. The fluid phase density is related to pressure and 
fluid phase temperature by the ideal gas law: 

MIP 
Pl = Rg T I (19) 

where the fluid phase temperature T s is constant. For 
the solid phase, microscopic incompressibility has 
been assumed. As a consequence, a specified constant 
density P~.o was used: 

P~=P~,o. (20) 

3.2.2. lnterphase momentum transfer coefficient fS. 
For porosities e I < 0.80 the interphase momentum 
transfer coefficient fl has been obtained from the well- 
known Ergun equation: 

f l=150(l--r f)21~Y + d~ es)PI~lu-v l  (21) 

whereas for porosities e I ~> 0.80 the following expres- 
sion for the interphase momentum transfer coefficient 
has been derived from the correlation of Wen and Yu 
(1966): 

3 ey(1 --ei) [u _ v le f2 .65 .  fl = ~ Ca.~ ~ Pl (22) 

In eq. (20) the drag coefficient for a single particle 
Cd,s depends on the particle Reynolds number Rep as 
given by Schiller and Naumann (1935): 

t 2e4  p 3.6 -q Rep < 1000 
Ca. s = Re T M  , 

0.44, Re, >~ 1000. 
(23) 

3.2.3. Fluid phase viscous stress tensor zr and solid 
phase viscous stress tensor ~s, The viscous stress ten- 
sors ~s and % are expected to depend in a complex 
manner on the void fraction and the spatial deriva- 
tives of the locally averaged velocities u and v. At 
present, a unified rheological model of fluidised sus- 
pensions is not yet available and therefore it has been 
assumed that ~I is related only to the fluid motion, 
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and Cs only to the solid motion and that both have the 
general Newtonian fluid form (Bird et al., 1960): 

[(2) 
~s=-  ~ s - ~ s  (V.u)l 

-1 
+ .s((V.) + (Vu)T)J 

(24) 

E(2) t , = -  Cs-~ ,  (V.v)I 
q 

+ ~,((Vv) + (Vv)r)J 

(25) 

where ~: and ~s denote the bulk viscosities of the fluid 
phase and solid phase, respectively, and/~: and #~ de- 
note the shear viscosities of both phases. In the actual 
computations reported in this paper, the bulk viscosi- 
ties of both phases have been set equal to zero (Bird 
etal. ,  1960) whereas for the shear viscosities the 

following constant values have been taken: 

/~y = 2 × 10- 5 kg m -  t s -  1 (26) 

/t, = 1.0 kg m - 1 s -  1. (27) 

The value of the solid phase shear viscosity is based 
on measurements reported by Schgerl et al. (1961) and 
Hagyard and Sacerdote (1966). These authors show 
a slight dependence of the solid phase shear viscosity 
on particle diameter, but in this work a mean value is 
used for all particle types. A sensitivity study to the 
value of the solid phase shear viscosity, moreover, 
revealed that the viscous transport mechanism plays 
only a minor role. 

3.2.4. Solid phase pressure Ps. The constitutive 
equation for the solid phase pressure P, is expressed as 
a function of the void fraction e: by: 

VPs = G(~:)V~: (28) 

H, 

Hb 

l0 
r 

centre line 
rb 

r 

freeboard 

I U,.f 

Uln I 

centre line 

a = 1.00 

P = Pa=~ N-m-2 

U r ---- 0 m.s 1 

Uz = Ur.f m.s"  

v, = 0 m.s ~ 

v z = 0 m.s "~ 

Ap = (1-am,) (Ps" P,) gz (Hb" z) 

G e o m e t r y  In i t ia l  c o n d i t i o n s  

Fig. 2. Initial and boundary conditions for the numerical solution of bubble formation in gas-fluidised 
beds. 
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where G(~:) represents the solid phase elasticity 
modulus defined by: 

dP, 
G(~:) = -~y . (29) 

This modulus has been incorporated in the model  
according to the following generalised form: 

G(~:) = - GoeC~ -~:) (30) 

where Go represents the normalising units factor, c the 
compaction modulus and ~ the compaction gas 
phase volume fraction. To prevent unacceptable bed 
compaction, Go has been taken as 1.0 Pa, with c = 100 
and e~ = 0.45. These values result in a more gradual 
increase of the elasticity modulus for decreasing po- 
rosities below e,:.~: than the values used by Pierrat 
and Caram [eq.(13)]. Gidaspow and Ettehadieh 
(1983) performed a sensitivity study for different 
values for c and e~, but found minimal influence on 
the bubble formation process. 

3.3. Numerical simulation 
To obtain a unique solution to the system of partial 

differential equations, supplemented with the consti- 
tutive equations, unique initial and boundary condi- 
tions in terms of the basic variables are required. 
Figure 2 shows the initial and boundary conditions 
used for the numerical simulation of bubble formation 
in cold-flow gas-fluidised beds with one central orifice, 
while the corresponding numerical data are listed in 
Table 1. 

The right wall of the bed has been modelled as 
a no-slip rigid wall for both phases. At the centre of 
the bed a fictitious free-slip rigid wall was defined to 
represent symmetry around the centre line of the 
fluidised bed. At the bot tom wall the mass flux of the 
fluid phase was prescribed whereas for the solid phase 
this wall represents a no-slip rigid wall. At the top of 
the bed a continuous outflow wall and a no-slip rigid 
wall were assumed for the fluid phase and solid phase, 
respectively. As shown in Fig. 2 a freeboard of the 
same height as the initial bed height was provided to 
allow for bed expansion. 

In all computat ions reported in this paper the min- 
imum fluidisation condit ion was used as the initial 
condition. At zero time the gas injection velocity 
through the orifice was increased instantaneously 
from minimum fluidisation velocity to the required 
injection velocity uinj, where: 

Q 
Uin  j : - - .  (31) 

Ao 

3.4. Post processing of  the numerical solution 
Our  computer  model calculates the porosity, the 

pressure and the velocities of both phases at discrete 
positions in the computat ional  domain as a function 
of time. To extract bubble diameters from the numer- 
ically calculated porosity distributions it is necessary 
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Table 1. Data for numerical simulations (see also Fig. 2) 

Two-dimensional Three-dimensional 

Geometry r0 = 0.0075 m r0 = 0.0050 m 
W = 0.285 m W = 0.150 m 
Hb = 0.500 m Hb = 0.500 m 
H: = 0.500 m H: = 0.750 m 

Grid size nx = 38 nx = 60 
6x = 0.0075 m fix = 0.0025 m 

ny=80 ny= 125 
6y = 0.0125 m 6y = 0.0100 m 

Used 6t = 1.25 × 10 -4s  fit = 1.00× 10 4s 
time-step 
Injection uinj = 10ms -1 uinj = 10,20,30 ms -~ 
rates 
Bed ~,,: = 0.402 ~,,: = 0.402 
voidage 
Particles 140/~m <d,  < 750/~m 275 #m <dp < 655 #m 

0.02 < Urn: < 0.44 m s - a 0.08 < Urn: < 0.40 m s- 1 

to define a bubble contour. For  the two-dimensional 
geometry an equivalent bubble diameter is defined as 
the diameter of a circle possessing the same area as the 
numerically computed area S for which e: > 0.85. For  
the three-dimensional geometry the equivalent bubble 
diameter was defined as the diameter of a sphere with 
the same volume as the numerical computed volume 
V for which e: > 0.85. These definitions lead to the 
following expressions for the equivalent bubble dia- 
meters in the two-dimensional and three-dimensional 

Dr = X/(5~) ~ 

cases: 

In two dimensions: 

(32) 

In three dimensions: 

3 / 3  V 
Dr = ~/[ l /o)  ]7777z,~, • (33) 

4. EXPERIMENTAL 

4.1. Equipment and experimental procedure 
The experiments were carried out in a thin two- 

dimensional gas-fluidised bed and in a semicircular 
three-dimensional gas-fluidised bed as shown sche- 
matically in Fig. 3. A two-dimensional bed offers the 
possibility of visual observation of the bed behaviour, 
for instance, by photography. However,  the front and 
rear walls influence the fluidisation behaviour to some 
extent which might complicate the experimental vali- 
dation of two-dimensional hydrodynamic models 
since these models do not take the front and rear wails 
into account. In comparison with the two-dimen- 
sional bed the semicircular bed offers the possibility to 
observe gas bubble behaviour in a geometry which 
is closer to the geometry of real life fluidised beds. In 
the semicircular bed there is only one smooth glass 
plate influencing the bed hydrodynamics, whereas 
there are two plates in the two-dimensional bed. 
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sintered porous plate 

(average pore size 14/~m) 

1.5 cm 
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sintered porous plate 

(average pore size 10/~m) 
semi circular orifice 

(covered with wire) 

(covered with wire) 

J P 

1.5 cm 1.0 cm 

50 cm 

50 cm 

20 cm 

75cm 

50 cm 

25 cm 

30 cm 

I free boar~ 

air to orifice air to orifice 

I 

Fig. 3. Schematic representation of the experimentally used two-dimensional and three-dimensional gas- 
fluidised beds. 

The two-dimensional bed consists of a fluidised bed 
section built of 0.015 m thick glass plates (internal bed 
dimensions: 0.57 m width, 1.00 m height and 0.015 m 
depth) and a gas distributor section made of 0.015 m 
thick Plexiglas plates. The gas distributor section has 
a height and depth of 0.25 m and 0.015 m, respectively. 
The primary fluidising gas (i.e. air) is supplied through 
4 inlets which are equally distributed over the bottom 
section of the gas distributor. This section is filled with 
3 mm glass beads to promote a homogeneous gas flow 
distribution over the distributor cross section. Pri- 
mary fluidisation gas is introduced in the fluidised bed 
section through a porous sintered stainless steel plate 
with a mean pore diameter of 14 #m. The porous plate 
which serves as the main distributor of the primary 
fluidising gas was provided with a central rectangular 
pipe, covered with a stainless steel wire mesh, to inject 

secondary fluidising gas. During the experiments 
three different gas flow rates were adjusted indepen- 
dently by means of calibrated thermal mass flow con- 
trollers: a gas flow through the distributor section to 
keep the bed under conditions of minimum fluidisa- 
tion, a gas flow through the rectangular orifice to 
fluidise the particles above the orifice and a gas flow 
to form the bubble at the orifice. Prior to bubble 
injection, the secondary gas was purged, while the 
support gas flowed through the gas distributor and 
orifice to keep the bed under conditions of minimum 
fluidisation. Rapidly responding magnetic valves, 
controlled by a micro computer (DOS-XT), were used 
to inject gas into the fluidised bed and purge the 
support gas during the injection. 

The semicircular gas-fluidised bed was constructed 
from a glass tube with a wall thickness of 0.005 m and 
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an internal diameter of 0.30 m. This tube was cut in 
the axial direction into two equal parts. A 0.005 m 
thick glass plate was mounted at the open side to form 
a semicircular fluidised bed section 1.25 m in height. 
A stainless steel semicircular gas distributor section, 
filled with 4 mm glass beads, was connected to the 
semicircular fluidised bed section. Gas was supplied 
to the distributor at 3 positions, equally distributed 
over the bottom section, and entered the fluidised bed 
through a sintered stainless steel bottom plate (mean 
pore diameter: 10 pm). A semicircular orifice (0.01 m) 
was used to inject gas into the fluidised bed. Gas flows 
were controlled with a technique similar to the one 
applied for the two-dimensional bed. The bed materi- 
al consisted of spherical solid particles with a narrow 
size range. All important particle properties are listed 
in Table 2 for both the two-dimensional bed and the 
semicircular bed. For convenience, the experimentally 
determined minimum fluidisation has been included 
in this table. This quantity was obtained in the usual 
way by determining the point of intersection of the 
bed pressure drop vs fluidising velocity curves for 
fixed bed and fluidised flow regimes. 

4.2. Measurement of bubble properties 
In this study flash photography in a darkened room 

was applied to register the process of bubble forma- 
tion. The shutter of a camera (Nikon, F301), which 
was positioned in front of the equipment, was opened 
just before the gas injection was started. At the rear 
side of the fluidised bed a flashlight was generated 
with an accurately known time delay with respect to 
the moment of initiation of gas injection. After the 
light flash the shutter of the camera was closed. By 
applying increasing time delays between the gas injec- 
tion and the triggering of the flashlight, the whole 
process of bubble formation could be registered. 
A transparent measuring grid on the front side made 
it possible to determine the size of the developing 
bubble surface from the photographs. Equivalent 
bubble diameters were defined as the diameter of 
a circle with equal surface as the experimentally deter- 
mined bubble area [eq. (32)]. 

For the semicircular gas-fluidised bed a slightly 
modified photographic technique was used. In this 

Table 2. Particle properties of the bed material used in the 
experiments 

dp p~ Umf 
(#m) (kg m- 3) (m s- 1) Material 

Two-dimensional bed 
140 2920 0.019 glass 
285 3060 0.080 glass 
500 2930 0.219 glass 
750 2900 0.413 glass 
460 1435 0.096 PVC 

Semicircular bed 
275 3060 0.075 glass 
550 2940 0.258 glass 
655 2900 0.338 glass 

orifice in gas-fluidised beds 4093 

case the bed was illuminated at the front side. Short 
shutter times (<1/2000 s) could be applied by using 
ISO-400 films in combination with illumination of the 
fiat face of the bed by a powerful 500 W halogen lamp. 
Bubble volumes could be determined from the photo- 
graphs, by assuming that the observed width at a cer- 
tain height equals the diameter of a circular slice of the 
bubble with vertical dimension Ayi: 

2 V = ~ rcdi Ayi. (34) 
i=1 

An equivalent bubble diameter was defined as 
the diameter of a sphere with equal volume as the 
experimentally derived bubble volume, obtained from 
eq. (33). 

All experimental data presented in this study are 
based on two or more measurements for a fixed set of 
operating conditions. 

5. R E S U L T S  

Bubble formation at a single orifice has been 
studied experimentally, varying injection velocities 
through the orifice, particle sizes and particle densi- 
ties. Physical properties of the particles which have 
been used in this study are listed in Table 2. Injection 
velocities through the orifice were varied from 5 to 
15 m s -  1 for the two-dimensional bed and from 10 to 
30 m s-1 for the semicircular bed. Theoretically cal- 
culated and experimentally observed bubble forma- 
tion in both the two-dimensional and semicircular 
gas-fluidised bed will be discussed for several particle 
types and gas injection rates through the orifice. 
In addition, the theoretical and experimental 
results will be compared with data obtained from the 
approximate bubble formation models discussed in 
Section 2. 

5.1. The bubble formation process 
As stated in Section 3.4, the bubble contour is taken 

at ~I = 0.85. Figure 4 shows a number of porosity 
contours (0.80, 0.85 and 0.90, respectively) for a 
bubble, which has just detached from the orifice 
(dp = 500 #m, p~ = 2930 kg m-  3 and uinj = 10.0 m s- 1). 
From this figure it can be seen that very strong poros- 
ity gradients exist near the bubble base whereas these 
gradients are considerably weaker near the bubble 
roof. Despite the fact that some sensitivity with re- 
spect to the selected porosity contour exists, in the 
present study el = 0.85 has been chosen to define the 
bubble contour. 

In Fig. 5 the e I = 0.85 contour is given for calcu- 
lations with a coarse (38 × 80 = 3040 cells) and a fine 
(76 x 160 = 12 160 cells) grid. It can be seen that the 
differences are sufficiently small to justify the use of 
the coarse grid. 

Figure 6 shows a comparison of photographs with 
corresponding density plots for bubble formation in 
a two-dimensional gas-fluidised bed of 285/~m glass 
beads. In this case a gas injection velocity of 10 m s- 1 

was applied through the orifice. The density plots 
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have been obta ined  according to a procedure  de- 
scribed in more  detail  elsewhere (Kuipers et al., 1992). 
F r o m  Fig. 6 a reasonable  similarity between the 
pho tographs  and  the density plots can be observed. 
However,  the agreement  between theory and  experi- 
ment  is not  perfect which can be a t t r ibuted  to the 
relatively coarse computa t iona l  grid (6x = 0.75 cm, 
~y = 1.00 cm) applied in the computat ions .  

J. J. NIEUWLAND et al. 

Figure 7 allows a quant i ta t ive  compar ison  of the 
theoretically calculated and  experimental ly deter- 
mined bubble  sizes as a funct ion of time. The results 
obta ined  from the approximate  models, discussed in 
Section 2, are also included in this figure. To ob ta in  
the bubble  d iameter  from the numerical ly calculated 
porosi ty distr ibut ion,  the bubble  con tour  was defined 
as a void fraction of 0.85. This part icular  choice 

0.25 

~0£ 

(M) 

! 
s ) 

-0.10 .0.05 0.05 0.10 

Fig. 4. Different bubble contours for a bubble in a two- 
dimensional fluidised bed which has detached from the ori- 

fice; dp = 500 #m, ps = 2930 kgm -3, ui,j = 1 0 m s  -1. 

0.25 I (i) Y 

0.20 

fine grid 

- ' ~  / /  X --  ' (M) 

-0.10 -0.05 0.05 0.10 

Fig. 5. The ~ = 0.85 contours for a detached bubble in 
a two-dimensional fluidised bed calculated using a coarse grid 
(3040 cells) and a fine grid (12360 cells); dp = 500 #m, p~ = 

2930 kgm -3, u~,j =10ms-~ .  

t = 0 .100 S t --- 0.175 s 

Fig. 6. Photographically observed and theoretically calculated bubble in a two-dimensional gas-fluidised 
bed; dp = 285/~m, Ps = 3060kgm -3, ui.j = 1 0 m s  1. 
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defines the bubble boundary as a contour with very 
strong porosity gradients, especially near the bubble 
base. The end of the curves shown in Fig. 7 corre- 
spond to the moment of bubble detachment, except 
for the Caram-Pierra t  model which does not predict 
a detachment time. From Fig. 7 it can be seen that the 
theoretically calculated bubble size from the two-fluid 
model agrees well with the experimental data. A sim- 
ilar degree of agreement has been obtained for the 
other particles used. Comparison of the experimental 
data with the results predicted by the Harrison and 
Leung model leads to the conclusion that consider- 
able gas leakage through the bubble surface occurs. 
Through the introduction of the integral leakage frac- 
tion ~(t) defined by 

Q t -  V(t) 
~J(t) (35) 

Q t  

this phenomenon can be quantified. In expression (35) 
Q denotes the injection flow rate (orifice area times 
orifice velocity). The integral leakage fraction denotes 
the fraction of the injected gas which has leaked from 
the bubble to the emulsion phase during its formation. 
In Fig. 8 this quantity is shown as a function of time 
for the discussed models and for the experimental 
data. The experimental data clearly show that the 
strongest leakage occurs during the initial stage of 
bubble formation, and that the leakage decreases with 
time. The Harrison and Leung model, of course, does 
not account for this phenomenon. The Zenz model, 
which assumes a constant exchange velocity during 
the formation process, produces in deviation from 
experimental results an increasing leakage fraction as 
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a function of time. This increase is due to the increas- 
ing exchange area during evolution of the bubble 
formation process. The models proposed by Caram 
and Hsu and Pierrat and Caram qualitatively agree 
with the experimental data, but in general the Two 
Fluid Model (TFM) provides a better quantitative 
description. 

All approximate bubble formation models assume 
a uniform exchange velocity over the bubble surface. 
This assumption is incorrect as discussed by Hailu 
et al. (1993) and as evident from Fig. 9 which shows 
the superficial exchange velocity at the bubble bound- 
ary. From this figure it can be seen that emulsion 
phase gas flows into the bubble at its base, whereas 
bubble gas flows into the emulsion phase at the 
bubble roof. Figure 10 shows a comparison between 
the theoretically obtained results and the experi- 
mental data for bubble formation in the three-dimen- 
sional situation. The experimentally determined 
bubble diameters fall considerably below the theoret- 
ically calculated bubble diameters. This might be due 
to the presence of the front wall which restricts the 
movement of the emulsion phase and thereby induces 
penetration of the cavity in a direction away from the 
fiat front wall. A similar degree of agreement has been 
obtained for the other particles used. 

Of all the theoretical models considered here the 
TFM predicts the smallest bubbles and therefore gives 
the best agreement with the experimental data. 

5.2. Influence of particle properties 
5.2.1. Influence on bubble dimensions. The influence 

of the particle properties has been studied both 
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Fig. 7. Experimentally observed and theoretically calculated bubble growth in a two-dimensional gas- 
fluidised bed; dv = 285 pm, Ps = 3060 kg m- 3, u~,j = 10 m s- 1. 
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Fig. 9. Theoretically calculated interstitial exchange velocity 
over the bubble boundary in a two-dimensional gas-fluidised 
bed for a bubble which just detaches. Not shown is the 
velocity at the bottom (10.3ms-~}; dp=285/tm, p , =  

3060 kgm -a, uinj = 10 ms -z, t = 0.2 s. 

theoretically and experimentally. All models, except 
the model  suggested by Harrison and Leung, predict 
smaller bubbles with increasing particle diameters 
which is in agreement with the experimental observa- 
tions. Figure 11 shows the theoretically calculated 
leakage fraction during bubble growth in a two-di- 
mensional gas-fluidised bed. Computat ions were car- 
ried out for glass particles (dp = 140, 285, 500 and 
750 #m) and PVC-particles (dp = 460 #m). A com- 
parison of the curves for the 460 #m PVC powder and 
the 500 #m glass beads shows the effect of particle 
density: the leakage increases with increasing particle 
density, resulting in smaller bubbles. 

The dominant  forces, related to the particulate 
phase, during the bubble formation process are grav- 
ity and the interphase momentum transfer. Because 
these forces determine the minimum fluidisation veloc- 
ity Uml as well, the effect of this parameter has been 
studied in more detail. Several calculations were per- 
formed, using the TFM,  for series with different par- 
ticle properties, whereas the minimum fluidisation 
velocity remained constant within a series. 

Table 3 lists the particle properties for two of these 
series. These data have been used to construct Fig. 12, 
displaying the integral leakage as a function of time. 
The close agreement between the curves of a certain 
series demonstrates the determinative role of the min- 
imum fluidisation velocity. This conclusion is con- 
firmed by the results of other series as well. 

5.2.2. Influence on bubble shapes. The T F M  also 
predicts the bubble shape, in contrast with the other 
models which only consider spherical or  circular bub- 
bles. Therefore, the effect of particle diameter on 
bubble shape has been studied theoretically and 
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Fig. 11. Calculated leakage fraction during bubble growth in a two-dimensional gas-fluidised bed. Particle 
properties are listed in Table 2; ui,j = 10 m s- 1. 

experimentally. Figures 13 and 14 show, respectively, 
the theoretically calculated bubble shape factor and 
the corresponding experimental counterpart  during 
bubble growth in a three-dimensional gas-fluidised 
bed. The bubble shape factor tr is defined as the 
maximum distance in vertical direction divided by the 

maximum distance in the horizontal direction: 

a = - - .  (36) 
Dh 

From Figs 13 and 14 it can be concluded that bubbles 
tend to become more elongated for coarser particles. 
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The sharp decrease in the curves is caused by develop- 
ment of the bubble wake after bubble detachment. 

5.2.3. Influence on bubble detachment times. Figure 
15 shows the influence of particle size on bubble 
detachment times for several theoretical models. Con- 
sidering the TFM, bubble detachment times are de- 
fined as the times at which the bubble contour closes 
above the orifice. The model proposed by Zenz pre- 
dicts decreasing detachment times for increasing par- 
ticle size, while the model of Caram and Hsu predicts 
slightly increasing values. The TFM predicts, together 
with the model of Harrison and Leung, a detachment 
time of approximately 0.2 s, independent of particle 
size, which is in agreement with experimental observa- 
tions. 

5.3. Influence of injection rate 
The influence of the injection velocity through the 

orifice on the process of bubble formation has been 

Table 3. Particle properties; two series with the same min- 
imum fluidisation velocity 

de Ps U=f 
Series (/~m) (kgm 3) (ms l) 

IA 425 4000 0.22 
1B 500 2930 0.22 
IC 750 1365 0.22 

2A 603 4300 0.41 
2B 750 2900 0.41 

investigated for the three-dimensional case. Here a 
comparison will be presented between theoretical re- 
sults obtained from the TFM and the experimental 
data. In Fig. 16 the calculated bubble diameter is 
plotted as a function of the injected volume (Qt) for 
several gas discharge rates through the orifice. All 
curves follow the same path of growth; the only differ- 
ence is the faster expansion at higher injection rates. 
This is in agreement with experimental data which are 
shown in Fig. 17. 

Although the models proposed by Harrison and 
Leung, and Zenz also predict the correct dependence 
for higher injection rates these models are unfortu- 
nately less suitable due to their incorrect description 
of the leakage, as shown before. The model proposed 
by Caram and Hsu produces bubble diameters which 
appear to be fully independent of the injection rate 
through the orifice, which is in contradiction with 
experimental observations. Of all approximate mod- 
els only the model proposed by Pierrat and Caram 
produces the correct results. However, this model is of 
less practical value because no bubble detachment 
time is predicted. 

As evident from eq.(31) the injection flow rate 
Q also depends on the orifice diameter. A theoretical 
study using the TFM indicated that the influence of 
this parameter yielded similar results as depicted in 
Fig. 16. 

6. CONCLUSIONS 

A hydrodynamic model based on the two-fluid con- 
cept has been used to study bubble formation at 
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Fig. 14. Experimentally determined bubble shape factor a for different particle sizes during bubble growth 
in a three-dimensional gas-fluidised bed; u~,j = 20 m s -1. 

a single orifice in gas-fluidised beds. The theoretical 
results obtained from this model have been compared 
with experimental data and with results obtained 
from approximate bubble formation models, pub- 
lished in literature previously. To validate the hydro- 
dynamic model (TFM) two cold-flow gas-fluidised 

beds (two-dimensional and three-dimensional) were 
constructed in which the bubble formation process 
could be observed photographically. The T F M  ap- 
peared to be superior to the other models in predic- 
ting the bubble growth process and detachment times. 
Therefore, it is a valuable tool to predict bubble 
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Fig. 16. Calculated bubble growth in a three-dimensional gas-fluidised bed for several gas discharge rates 
through the orifice; dp = 275/~m, Ps = 3060 kgm -3. 

formation in gas-fluidised beds theoretically. In con- 
trast to the approximate models the T F M  yields valu- 
able information about the nonuniform gas exchange 
profile between a bubble and the surrounding emul- 
sion phase. This information is useful to quantify the 
leakage which is of importance to predict grid zone 

conversion for fast heterogeneously catalysed reac- 
tions. 

A systematic study has been conducted in which the 
effect of particle properties on the bubble formation 
process has been investigated. Large particles cause 
increasing leakage during bubble formation, resulting 
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in smaller bubbles. The detachment time, however, is H 
insensitive to the particle size. The influence of particle I 
size and solid density on bubble growth appears to be k 
determined by their effect on minimum fluidisation K o  
velocity: if Umy is constant, the bubble growth process M 
will be unaltered. Furthermore,  the influence of par- nx 
ticle size on bubble shape has been studied. The T F M  
is the only model in which no specific assumption ny 
with respect to bubble shape has been made. This 
model predicts more elongated bubbles with increas- N 
ing particle sizes, which is in agreement with experi- P 
mental observations. Q 

A theoretical study using the T F M  to quantify the r 
influence of injection flow rate (by varying both orifice R 
velocity and orifice aperture) showed that growing Rg 
bubbles follow the same path of growth; i.e. bubble Rev 
diameter vs injected volume possesses a similar func- 
tional dependency. Because the detachment times are s 
independent of the injection flow rate, higher injection S 
flow rates result in larger bubbles. This finding was in t 
quantitative agreement with experimental data, ob- 3t 
tained in a semicircular gas-fluidised bed. 

T 
N O T A T I O N  U 

A bubble area, m 2 U 
c compact ion modulus v 
Co virtual mass coefficient V 
Ca,s drag coefficient for a single particle W 
dv particle diameter, m 6x 
D bubble diameter, m 
g gravitational force per unit mass, m s - 2  by  
G particle-particle interaction modulus, 

kg m -  1 s-Z Ay 

height, m 
unit tensor 
kinetic energy, m 2 s-  2 
Darcy's constant, k g -  1 m 3 s 
molecular mass, k g m -  3 
number of computat ional  cells in the 
horizontal direction 
number of computat ional  cells in the ver- 
tical direction 
number of slices 
pressure, kg m -  1 s - 2 
gas flow rate through the orifice, m 3 s -  1 
radial coordinate, m 
bubble radius, m 
gas constant, kg m 2 s -  2 mol ~ K -  
particle Reynolds number [Re  v = ( p l e l u 

- v l dr)~ ~I] 
axial position bubble centre, m 
area, m 2 

time, s 
time step used in numerical solution pro- 
cedure, s 
temperature, K 
interstitial gas velocity, m s-x 
superficial gas velocity, m s 1 
solids velocity, m s -  
bubble volume, m 3 
width, m 
horizontal dimension of a computational  
cell, m 
vertical dimension of a computat ional  
cell, m 
thickness of bubble slice, m 
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Greek symbols 
fl in terphase m o m e n t u m  transfer coeffi- 

cient, kg m -  3 s - 1 

phase volume fraction 
shear viscosity, kg m -  ~ s -  1 
bulk viscosity, kg m -  ~ s -  2 

p density, kg m -  3 
a shape factor 

viscous stress tensor, kg m -  ~ s -  2 
~b velocity potential ,  m 2 S- 1 

~b integral  leakage fraction 

Subscripts 
det de tachment  
b bed 
e equivalent  
em emulsion phase  
ex exchange 
f fluidum or  free-board 
h hor izonta l  
inj injected 
mf  min imum fluidisation 
o orifice 
p particle 
R at posi t ion r = R 
s solid phase  
v vertical 
0 initial value 
oo infinitely away 

Superscripts 
T t ransposed 

REFERENCES 

Bird, R. B., Stewart, W. E. and Lightfoot, E. N., 1960, 
Transport Phenomena, pp. 79, 199. Wiley, New York. 

Caram, H. S. and Hsu, K. K., 1986, Bubble formation and 
gas leakage in fluidized beds. Chem. Engn9 Sci. 41(6), 
1445-1453. 

Davidson, J. F. and Harrison, D., 1963, Fluidised Particles, 
pp. 128-129. Cambridge University Press, Cambridge, 
U.K. 

Ding, J. and Gidaspow, D., 1990, A bubbling fluidisation 
model using kinetic theory of granular flow. A.I.Ch.E.J. 
36(4), 523-538. 

Gidaspow, D., 1986, Hydrodynamics of fluidization and heat 
transfer: supercomputer modelling. Appl. Mech. Rev. 39(1), 
1-15. 

Gidaspow, D. and Ettehadieh, B., 1983, Fluidization in two- 
dimensional beds with a jet; part 2: hydrodynamic model- 
ling. Ind. Engng Chem. Fundam. 22, 193-201. 

Hagyard, T. and Sacerdote, A. M., 1966, Viscosity of suspen- 
sions of gas-fluidized spheres. Ind. Engng Chem. Fundam. 
5, 500 508. 

Hailu, L., Plaka, F., Clift, R. and Davidson, J. F., 1993, 
Measurement of gas flow through a two-dimensional 
bubble in a ftuidised bed. Trans lnstn Chem. Engrs 71, Part 
A, 382 389. 

Harrison, D. and Leung, L.S., 1961, Bubble formation at an 
orifice in a fluidised bed. Trans lnstn Chem. Engrs 39, 
409 414. 

Kuipers, J. A. M., 1990, A two-fluid micro balance model of 
fluidized beds. Ph.D. dissertation, Twente University, 
Enschede, The Netherlands. 

Kuipers, J. A. M., Prins, W. and van Swaaij, W. P. M., 1991, 
Theoretical and experimental bubble formation at a single 
orifice in a two-dimensional gas-fluidized bed. Chem. 
Engng Sci. 46(11), 2881-2894. 

Kuipers, J. A. M., Tammes, H., Prins, W. and van Swaaij, 
W. P. M., 1992, Experimental and theoretical porosity 
profiles in a two-dimensional gas-fluidized bed with a cen- 
tral jet. Powder Technol. 71, 87-99. 

Kuipers, J. A. M., van Duin K. J., van Beckum, F. P. H. and 
van Swaaij, W. P. M., 1993, Computer simulation of the 
hydrodynamics of a two-dimensional gas-fluidized bed. 
Comput. Chem. Engng 17(8), 839-858. 

Nguyen, X. T. and Leung, L. S., 1972, A note on bubble 
formation at an orifice in a fluidised bed. Chem. Engng Sci. 
27(7), 1748-1750. 

Pierrat, P. and Caram, H. S., 1992, Bubble formation and gas 
leakage in beds at minimum fluidization conditions, in 
Fluidization VII (Edited by O. E. Potter and D. J. Nicklin), 
pp. 93-101. Engineering Foundation, New York. 

Rowe, P. N., MacGillivray, H. J. and Cheesman, D. J., 1979, 
Gas discharge from an orifice into a gas fluidized bed. 
Trans lnstn Chem. Engrs 57, 194-203. 

Schiller, L. and Naumann, A., 1935, fSber die grundlegenden 
Berechnungen bei der Schwerkraftaufbereitung. Z. Ver. 
Dtsch. Ing. 77, 318-326. 

Schiigerl, K., Merz, M. and Fetting, F., 1961, Rheologische 
Eigenschaften yon gasdurchstr6mten Fliessbettsystemen. 
Chem. Engn 9 Sci. 15(1), 1-38. 

Wen, Y. C. and Yu, Y. H., 1966, Mechanics of fluidization. 
Chem. Engng Prog. Syrup. Ser. 62(62), 100 111. 

Yang, W. C., Revay, D., Anderson, R. G., Chelen, E. J., 
Keairns, D. L. and Cicero, D. C., 1984, Fluidization phe- 
nomena in a large-scale cold flow model, in Fluidization 
IV (Edited by D. Kunii and R. Toei), pp. 77-85. Engineer- 
ing Foundation, New York. 

Zenz, F. A., 1968, Bubble formation and grid design. Instn 
Chem. Engng Syrup. Ser. 30, 136-139. 


