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In a previous article we introduced a reaction coordinate based on the unstable normal mode at the
saddle point of the potential energy surface. We here calculate the free-energy distribution along this
coordinate for the isomerization of calix@4#arene in vacuo and in chloroform using umbrella
sampling, with one umbrella covering the entire range of the reaction coordinate. An excellent first
guess at this umbrella is obtained by performing a normal-mode analysis at various points along the
reaction path. The isomerization rate constant of this reaction is determined using the reactive flux
method and is found to be in good agreement with experimental data. The rate was found to be
independent of the location of the transition state, as it should be. ©1997 American Institute of
Physics.@S0021-9606~97!50437-5#
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I. INTRODUCTION

The forward rate constantkf of a reaction, i.e., the frac
tion of reactants turned into products per unit of time, in
solvent is a complicated function of the internal potential
the reacting solute molecule~s!, the solute–solvent interac
tions, and the solvent–solvent interactions. Molecular
namics ~MD! simulations are perfectly well suited for th
numerical analysis of such involved situations. Based on
statistical mechanical ideas discussed below, it is possib
deduce from a total of about 10 ns simulation time a reac
rate that is slower by many orders of magnitude. The p
ticular reaction studied here is the isomerization of
calix@4#arenein vacuoand in chloroform.

In Eyrings transition state theory1 ~TST! a hyperplane,
the transition state, is introduced to split configuration sp
into a reactant space and a product space. This plane is
acterized byj($xi%)5jÞ, where the reaction coordinat
j($xi%) is a function of the atomic coordinates. Product spa
and reactant space are defined byj.jÞ andj,jÞ, respec-
tively. The forward rate constant is calculated as the inst
taneous product-bound flux through the transition state, n
malized by the population of the reactant space:2

kf
TST5

^d@j~0!2jÞ#j̇~0!u@ j̇~0!#&

^u@jÞ2j~0!#&
. ~1.1!

Here the angular brackets denote a canonical average au
is the Heaviside function.

The TST expression is conveniently rewritten as

kf
TST5

^d@j~0!2jÞ#j̇~0!u@ j̇~0!#&

^d@j~0!2jÞ#&

^d@j~0!2jÞ#&

^u@jÞ2j~0!#&
.

~1.2!

The second term on the right-hand side is the probability
finding the molecule at the transition state,P(jÞ), divided
by the probability for the molecule to be in reactant spa

PR5*2`
jÞ

P(j)dj. We will discuss two techniques for th
calculation of the probability distributionP(j): normal-
mode analysis in Sec. II B, and umbrella sampling in S
4968 J. Chem. Phys. 107 (13), 1 October 1997 0021-9606/97
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II C. The first term on the right-hand side of Eq.~1.2!, the
average positive velocity of the reaction coordinate at
transition state, will be addressed in Sec. II D. The particu
reaction coordinate that we will use is discussed in Sec. II
Numerical results for the probability function and the TS
isomerization rate of a calix@4#arenein vacuoand in chloro-
form are presented in Sec. III.

Transition state theory, by focusing on the instantane
forward flux, neglects the fact that some fraction of this fl
will recross the transition state shortly~order of a picosec-
ond! after having crossed it. Likewise, the forward flux al
contains a contribution of ‘‘product molecules’’ that hav
crossed the transition state with a negative velocity sho
before they recross with a positive velocity. These recro
ings are the result of the normal dynamics of a reacting m
ecule, induced by both the internal interactions of the m
ecule and its interactions with the solvent. To a macrosco
observer, though, these rapid recrossings are invisible
irrelevant. He defines the rate by the number of molecu
that are in the reactant well at time 0 and in the product w
at time t, normalized by the overall number of molecules
the reactant well at time 0. Only if there are no recrossin
will his rate equal the TST rate, otherwise TST overestima
the true rate.

In the reactive flux method~RF! the aforementioned
macroscopic definition of the rate is related to the mic
scopic behavior of a single molecule in a solvent by me
of Onsager’s regression hypothesis.3,4 The resulting rate ex-
pression is

kf
RF~ t !5

^d@j~0!2jÞ#j̇~0!u@j~ t !2jÞ#&

^u@jÞ2j~0!#&
. ~1.3!

In comparison with TST, attention has shifted from tho
molecules that cross the transition state with a positive
locity to those molecules that actually end up in the prod
space at some timet after crossing the transition state
whatever direction. The rate is often expressed as

kf
RF~ t !5k~ t !kf

TST, ~1.4!
/107(13)/4968/11/$10.00 © 1997 American Institute of Physics
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4969W. K. den Otter and W. J. Briels: Conformational transition of calix[4]arene
k~ t !5
^d@j~0!2jÞ#j̇~0!u@j~ t !2jÞ#&

^d@j~0!2jÞ#j̇~0!u@ j̇~0!#&
, ~1.5!

wherek(t) is the transmission function. On the time scale
the recrossings, about a picosecond, the transmission f
tion decays from unity att50 to the so-called plateau leve
The true rate constant is found by inserting this plateau va
into Eq. ~1.4!. Actually, the plateau is not constant but d
caying on the time scale of the reaction, but for most re
tions this is too slow to be seen in MD simulations. In o
previous article5 we discussed the calculation of the tran
mission function of the reaction studied here.

From Eqs.~1.1! and~1.3! one could infer that the calcu
lated rate depends on the definition of the transition st
i.e., on jÞ and j($xi%) ~for simplicity we will neglect the
latter dependence!. The rate should of course depend on th
definition, since it is embodied in the definition of the num
ber of reactant molecules,PR , and hence in the therefrom
derived rate. But, provided the free-energy barrier is h
andjÞ lies somewhere near the top, the number of reacta
is virtually independent to the precise location ofjÞ, and so
must the rate be. The TST rate obviously strongly depe
on jÞ; in the RF method the dynamics incorporated in t
transmission function blurs the picture. Miller6 showed, us-
ing Liouville’s theorem, that the RF rate is independent
the precise location of the transition state. Chandler4 arrived
at the same conclusion in a discussion based on the se
tion in time scales between recrossing and reactive event
Sec. III C this independence is verified numerically.

II. THEORY

A. Reaction coordinate

We here briefly discuss the unstable normal-mode re
tion coordinate; an elaborate introduction is to be found
our previous article.5 The reasoning behind this reaction c
ordinate is the fact that in a reactive system most reactan
product trajectories will surmount the potential energy b
rier somewhere near the lowest point of the barrier, i.e.,
saddle point. It is therefore natural to construct a react
coordinate based on the properties of the saddle point.
Taylor expansion of the potential energy around a sad
point, X0, up to second order reads

F~X!5F~X0!1 1
2~X2X0!TH~X2X0!. ~2.1!

For notational convenience, we collect all coordinates of
reacting molecule in a single 3N-dimensional column vecto
of mass-weighted atomic coordinates,XT5(Am1x1

T ,
Am2x2

T ,...,AmNxN
T). The Hessian matrixH contains all

second-order derivatives of the potential energy with resp
to the components ofX. Its eigenvectors are orthogonal,
orthogonalizable in case of degeneracy, since the Hessi
symmetric. Henceforth all eigenvectors will be assumed
be normalized. We shall assume that there is no exte
field.

The set of 3N eigenvectors can be split into thre
groups. First, there are three independent vectorsEl that cor-
respond to an overall translation of the molecule. Obviou
J. Chem. Phys., Vol. 107,
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they leave the potential energy unchanged and therefore
eigenvectors ofH with eigenvalues zero, as follows from Eq
~2.1! after replacingX2X0 by El . Similarly, there are three
independent~assuming a nonlinear molecule! eigenvectors
Sk corresponding to infinitesimal rotations of the molecule
r i

05xi
02xcom

0 is the vector pointing from the center of ma
of the molecule to atomi , then an infinitesimal rotation
around an axesek through the center of mass leads to atom
displacements

~Sk!T5„Am1~ek3r1
0!T,Am2~ek3r2

0!T,...,AmN~ek3rN
0 !T

….
~2.2!

Obviously, assuming orthonormality of the eigenvectorsSk,
the threeek are not orthogonal. The six modes of the first tw
groups are degenerate, i.e., they all have eigenvalue zer
there is no external field. Finally, the remaining 3N-6 eigen-
vectorsQj are the normal modes of vibration.

At an energy minimum all vibrational modes have
nonnegative eigenvalue, but at a first-order saddle point th
will be exactly one mode,Qr , with a negative eigenvalue. I
is this unstable normal mode that we are interested in
points downhill, from the saddle point towards the react
and product wells, while all other modes are pointing uph
Motion of the molecule along this mode, therefore, cor
sponds to a reaction. The reaction coordinate of a molec
with coordinatesX might now be defined as the projection
the displacement with respect to the saddle-point configu
tion onto the unstable normal mode,

j5~X2X0!•Qr . ~2.3!

This coordinate, however, is not invariant under rotations
the moleculeX. This problem is solved by making the sadd
point X0 depend onX. First we note that the rotated sadd
point AR0, where A is a 3N-dimensional rotation matrix
containingN copies of a regular three-dimensional rotati
matrix a down the diagonal andR0 is a mass-weighted col
umn vector of ther i

0, is also a saddle point. The norm
modes of this rotated configuration simply areEl , ASk, and
AQ j . We next define the reaction coordinate by

j5~X2AR0!•AQr . ~2.4!

The rotation matrixA, which is a function of just three pa
rameters, is determined from the three equations

05~X2AR0!•ASk, kP$1,2,3%, ~2.5!

and assures rotational invariance. One may check that
above two equations are invariant under translation, as
lows from the orthogonality of the eigenvectors of the He
sian.

The inverse transformation reads

X5AR1(
l 51

3

g lE
l , R5R01 (

j 51

3N26

a jQ
j , ~2.6!

where the center of mass ofR evidently lies at the origin.
The reaction coordinate is one of the deviations,j5a r . At
this point the reader might argue that the reaction coordin
now is dimensionless, while in Eq.~2.4! it seems to have a
No. 13, 1 October 1997

 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



n

o
nc
e
th
m

-
e

f
ca

d

n
a

at

or
s-
th
t
rd

h
of

in-
-

a-

-

-
es-

ized
the
Eq.

the
.
he
r
te,

deri-
d

fine

he

4970 W. K. den Otter and W. J. Briels: Conformational transition of calix[4]arene
dimension of kg m2. However, the orthonormality of the
vectorsQj that is assumed in going from Eq.~2.6! to Eq.
~2.4! cancels the dimensionality.

In the following we will make use of the derivative ofj
with respect toX. From the orthogonality of the rotatio
matrix in combination with the derivatives of Eqs.~2.4! and
~2.5! it follows that

¹Xj5AS Qr2 (
k51

3

dk
r SkD . ~2.7!

The expression relatingdk
r to X, A, Sk, andQr is given in

our previous article.5

B. Theory of small vibrations

The free energy of a classical moleculein vacuocan be
calculated in reasonable approximation by the theory
small vibrations. If we assume that the potential energy fu
tion around the energy minimum is quadratic, and if we n
glect the coupling between rotations and vibrations, then
well-known semiclassical partition function of the minimu
reads7

Q5
1

h3N E dxE dpxe
2bH~x,px!

5S 2pMkT

h2 D 3/2

V•

p1/2

s S 8p2kT

h2 D 3/2

~ I AI BI C!1/2

3 )
i 51

3N26
kT

\v i
•ve e2Emin /kT. ~2.8!

Hereb51/kT, T is the absolute temperature,k is the Bolt-
zmann constant,H is the Hamiltonian,h is the Planck con-
stant,\5h/2p, M is the total mass of the molecule,V is the
volume of the box,s is the symmetry number, theI X are the
momenta of inertia, thev i are the eigenfrequencies of vibra
tion ~the square roots of the nonzero eigenvalues of the H
sian!, ve is the electronic degeneracy, andEmin is the energy
at the potential minimum. We will now give a derivation o
this expression, such that it later can be generalized to
culate aj-dependent partition function.

To solve the integral of Eq.~2.8! we use the generalize
coordinates of Eq.~2.6!, where now the configurationR0 is
assumed to be a local minimum of the potential function, a
Sk, El , andQj are evaluated at this point. The obvious re
son is that the potential energy in terms of these coordin
reduces to a simple formula,F5Emin1

1
2(j51

3N26vj
2aj

2, pro-
vided the vibrations are small. After the canonical transf
mation of Eq. ~2.8! from Cartesian coordinates to mas
weighted Cartesian coordinates the integration over
conjugate momenta yields (2pkT)3N/2. The subsequen
transformation of the coordinates to the generalized coo
natesck , a j , andg l is accompanied by the Jacobi matrix

J5
]X

]$ck ,a j ,g l%
5A~Ck Qj A21El !, ~2.9!

where the matrix is expressed in terms of 31(3N26)13
column vectors, and the threeck parametrize the rotation
J. Chem. Phys., Vol. 107,
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matrix A. Since the derivative of the rotation matrix wit
respect to itskth argument can be written as the product
the rotation matrix and an antisymmetric matrixBk we find

Ck5Bk~c!R5(
l 51

3

e lRclk~c!. ~2.10!

Here thee l are three 3N-dimensional matrices containingN
copies of a three-dimensional antisymmetric matrix, an
finitesimal rotation generator,8 down the diagonal. The Ja
cobi matrix can then be written as

J5A~ekR Qj A21El !S c 0 0

0 1 0

0 0 1
D . ~2.11!

If the Euler angles8 are used to parametrize the rotation m
trix, then 0<c1<2p, 0<c2<p, 0<c3<2p, and ucu
5sinc2. Obviously,uAu5uauN51.

For small vibrations we may approximateR by R0 in
Eq. ~2.11!. ThenekR is of the form of Eq.~2.2!, hence per-
pendicular to bothA21El andQj . Denoting the second ma
trix on the right-hand side of Eq.~2.11! by m, and using
umu5umTmu1/2 in combination with these orthogonality rela
tions and the orthonormality of the eigenvectors of the H
sian, the resulting Jacobian reads

uJu5uI0u1/2 sin c25~ I A
0 I B

0 I C
0 !1/2 sin c2. ~2.12!

The inertia tensorI0 is the upper left 333 submatrix of
mTm, with elementsI lk

0 5(e lR0)T(ekR0), and theI X
0 are the

eigenvalues of this tensor. The integrals over the general
coordinates are straightforward, and combination with
previously evaluated integral over the momenta leads to
~2.8!. One should keep in mind that in a cubic box of sideL
the coordinatesg l run from 0 toLAM due to the normaliza-
tion of the translational eigenvectors. The integrals over
a j are supposed to run from minus infinity to plus infinity

In order to be able to calculate the numerator in t
second factor in Eq.~1.2!, we now derive an expression fo
the partition function as a function of the reaction coordina

Q~j* !5
1

h3N E dxE dpx e2bH~x,px!d@j~x!2j* #,

~2.13!

using the same assumptions that were used in the above
vation of Eq.~2.8!. This partition function is often expresse
in terms of a free energy by

A~j* !52kT ln Q~j* !. ~2.14!

We first transform to mass-weighted coordinates, and de
a standard minimumR* on the hyperplanej(X)5j* . This
minimum is found by varying thea j in Eq. ~2.6!, while
keepinga r equal toj* . The minimumR* is not rotated with
respect toR0, and their centers of mass coincide. In t
present partition function the configurationR* plays a role
analogous to that ofR0 in Eq. ~2.8!. In the Appendix it is
shown that
No. 13, 1 October 1997
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4971W. K. den Otter and W. J. Briels: Conformational transition of calix[4]arene
Q~j* !5S 2pMkT

h2 D 3/2

V•

p1/2

s S 8p2kT

h2 D 3/2

~ I A* I B* I C* !1/2

3 )
i 51

3N27
kT

\v i*
•ve e2E* /kT

•u¹R* ju21

•~2pkT!1/2h21, ~2.15!

where a superscript asterisk denotes a quantity that is t
calculated atR* . An alternative expression for the partitio
function is also derived in the Appendix.

To locate the minimumR* on the hyperplanej(X)
5j* we used a standard minimum search routine in com
nation with a constraint on the reaction coordinate. The
sulting configuration was further refined by reducing the p
jection of the gradient of the potential onto the tange
hyperplane. This was achieved by an iterative Newto
Raphson zero-point search, using forces and Hessians c
lated in the plane spanned by the basis vectorsT l defined in
the Appendix. Since the tangent hyperplane is only loca
correct, each iterated point was reset toj(X)5j* by a
SHAKE routine,5,9 followed by a recalculation of the norma
to the hyperplane,N, and of the basis vectorsT l . If these
minimizations are performed in the full 3N-dimensional
space, then the molecule will rotate inevitably. This is eas
corrected for, either by rotating the vectorsN andT l , or by
counterrotating the molecule after each step. This effect d
not arise if the minimum is directly located in the 3N26
dimensionala space.

Equations~2.8! and ~2.15! obviously do not take into
account the anharmonicity of the force field, nor the coupl
between rotations and vibrations. The inclusion of inter
tions with a solvent is difficult. In the next section an alte
native technique is discussed which does not suffer fr
these drawbacks.

C. Umbrella sampling

A straightforward way of obtaining the correct probab
ity distributionP(j) of a ~dissolved! molecule is to calculate
this distribution directly from a long MD run. The MD run
should include numerous barrier crossings to ensure
both wells and the barrier region are sampled sufficien
For reactions with a high barrier, exceeding severalkT, such
a run would last prohibitively long. Two techniques are co
monly employed to circumvent this problem.10–12 In the po-
tential of mean force method the derivative of the free ene
with respect to the reaction coordinate is calculated in a
ries of j-constrained runs and then integrated. We will u
the second method and apply an ‘‘umbrella potential,’
modification to the force field that can easily be correc
for, to effectively reduce the barrier.

We are interested in the probability distribution of th
reaction coordinate,

P~j* !5E dX p~X!d@j~X!2j* #. ~2.16!

Here
J. Chem. Phys., Vol. 107,

Downloaded 04 Nov 2008 to 130.89.112.87. Redistribution subject to AIP
be

i-
-
-
t
–
cu-

y

y

es

g
-

at
.

-

y
e-
e

d

p~X!5
1

Z
e2bF~X! ~2.17!

is the Boltzmann factor for a molecule in configurationX
with potentialF, andZ is a normalization factor.X repre-
sents all coordinates, including the solvent coordinates,
F includes solvent–solvent and solute–solvent interactio
In the barrier region this probability becomes extreme
small, too small to be sampled efficiently. Addition of a
umbrella potential,U, changes the Boltzmann factor into

pU~X!5
1

ZU
e2b@F~X!1U~X!#. ~2.18!

The umbrella potential is used to favor the distributionpU in
areas that would otherwise have been difficult to sample.
requested probability distribution of the reaction coordin
is readily obtained from the biased distribution by combini
Eqs.~2.16! through~2.18! into

P~j* !5
ZU

Z E dXpU~X!ebU~X!d@j~X!2j* #. ~2.19!

The normalization factorsZU and Z do not have to be cal-
culated independently, only the factor which normalizes
final distributionP(j* ) is needed.

In many applications the umbrella potential is chosen
be a function of the reaction coordinatej only, in which case
the exponential in the integral of Eq.~2.19! becomes a
constant.13,14 For molecules with more than two loca
minima, as in our case, it may prove necessary to us
somewhat more complicated umbrella potential to suppr
unwanted side reactions.

Often a series ofL umbrellas of the formF l(j)5 1
2k(j

2j l)
2, l 51,...,L, is used. At eachl a small area of configu-

ration space, a so-called ‘‘window,’’ is sampled, resulting
a distributionPl(j) for each window. The various distribu
tions are then combined into a single distribution, using
overlap of successive windows to match the par
distributions.15 We use a single umbrella covering the who
range ofj. Only if the diffusion along the reaction coordina
is relatively fast will this method work, so care must be tak
to make the reaction coordinate distribution in the biased
as flat as possible.

D. Transition state crossing velocity

The first term on the right-hand side of Eq.~1.2! is most
easily calculated by using the mass-weighted coordinates
troduced above. The velocity of the reaction coordinate
be expressed in terms of the mass-weighted Cartesian
menta as

j̇5¹Xj•Ẋ5¹Xj•pX , ~2.20!

and the kinetic energy of the molecule reduces toEkin

5 1
2pX•pX . These equations remain the same if the coor

nate system is rotated. We now apply a rotation such that
first mass-weighted coordinate axis lies parallel to¹Xj; all
other axes are then perpendicular to the gradient. Integra
over the momentum conjugate to this axis, using
No. 13, 1 October 1997
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4972 W. K. den Otter and W. J. Briels: Conformational transition of calix[4]arene
E
0

`

dp pe2ap2
5

1

2Apa
E

2`

`

dp e2ap2
~2.21!

yields the average positive crossing velocity

^d@j~0!2jÞ#j̇~0!u@ j̇~0!#&

^d@j~0!2jÞ#&
5AkT

2p

^d@j~0!2jÞ#u¹Xju&
^d@j~0!2jÞ#&

.

~2.22!
The length of the gradient, Eq.~A8!, is seen to act as the
reciproke effective mass of the reaction coordinate. Comb
ing Eqs. ~1.2!, ~2.8!, ~2.15!, and ~2.22! yields the classical
analogue to Eyrings expression.

It is common practice to express the rate constant
terms of a free-energy difference between the transition st
and the reactant well,DAÞ5AÞ2AR , as in

kf5
kT

h
e2DAÞ/kT. ~2.23!

This free-energy difference should not be confused with t
free-energy difference calculated by means of Eqs.~1.2! and
~2.14!. First, the free energyAÞ is based on the partition
function of a molecule which is constrained toj(X)5jÞ

and which explicitly excludes any motion along the reactio
coordinate,j̇50. In the harmonic approximation

AÞ52kT lnFQ~jÞ!
h

A2pkT
G . ~2.24!

Using this result, the transition state theory value of the ra
constant in the harmonic approximation takes the form
Eq. ~2.23!. Second, in the literature on experiments theDAÞ

includes the transmission factor.

III. RESULTS

The techniques introduced above are now applied to t
isomerization reaction of calix@4#arene.16 This molecule con-
sists of four phenol groups, each of which is connected
two neighboring phenols by methyl bridges located ortho
the hydroxyl group, see Fig. 1. In supramolecular chemist
they are being used as building blocks. The interesting pro
erty in the current context is the fact that they have fou
stable conformations. The ‘‘cone’’ conformation, with al
phenol groups pointing in the same direction, is most abu
dant. It is stabilized by a cyclic array of four hydrogen

FIG. 1. The cone~left! and partial cone~paco, right! conformation of a
calix@4#arene.
J. Chem. Phys., Vol. 107,
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bonds. The partial cone, ‘‘paco’’ for short, is formed by r
tating one phenol group, with the methyl groups acting
hinges and the hydroxyl group moving through the cen
annulus. In this process two hydrogen bonds are broken.
will focus here on this reaction step. In a following reactio
step one of the phenol groups nearest to the rotated ph
can rotate and form the ‘‘1,2-alternate,’’ or the opposi
phenol group can rotate to form the ‘‘1,3-alternate.’’ Aft
two more steps all phenol groups have rotated, and the fi
‘‘inverted cone’’ conformation is reached. This name will b
used to distinguish it from the initial ‘‘cone’’ configuration

All simulations were done with a modified version o
GROMOS87.17 Several routines were adapted or added for
handling of the normal-mode reaction coordinate. T
calix@4#arene was modeled with the all-atomCHARMM pa-
rameter set 22.18 The saddle point of the cone to paco rea
tion was calculated with the conjugate peak refinem
algorithm.18,19The unstable normal mode of the saddle poi
Qr , was chosen to point towards the paco well. All norm
modes were normalized to 1 amu1/2 nm. In the MD runs all
bonds involving hydrogen atoms were constrained to c
stant lengths usingSHAKE.9 The effect of this constraint on
the sampling of phase space was shown to be very smal
we applied no corrections. We refer to our previous artic5

for more details.
In Sec. III A the free-energy profile of a calix@4#arenein

vacuois calculated using the theory of small vibrations. T
runs with umbrella sampling, bothin vacuoand in chloro-
form, are described in Sec. III B. Combining the free ener
and the transmission function allows us to calculate the
action rate of Sec. III C.

A. Small vibrations

The minimum energy of a calix@4#arenein vacuoas a
function of the reaction coordinate was calculated by t
series ofj-constrained energy minimizations. Starting at t
saddle point, the value ofj was increased~decreased! by
0.01 up to a maximum value of 2 (22), and a minimum was
located at each value. The resulting function is shown in F
2 by the dotted line, while the plot is shifted vertically t
place the saddle point at zero energy. The local minima
the cone and paco conformations are seen to be at 15.2
5.6 kcal/mol, respectively, below the saddle point, in agr
ment with the results of previous unconstrained minimizat
runs.18 At both extremes of thej axis, with energies exceed
ing the saddle-point value, the minimum search algorit
ran into problems. In these areas, as a result of the const
on the reaction coordinate, the strain on the molecules wa
extreme that the molecule ‘‘spontaneously’’ changed into
other conformation. These areas are irrelevant to the prob
at hand, so these problems are of no consequence. For
gies below the saddle-point value, in the range21.71<j
<1.53, the minimization produces a smooth energy profi

Next, each minimum in the intermediate range was
fined by a Newton–Raphson zero-point search in 3N dimen-
sions, as described in Sec. II B. After each iteration s
SHAKE was applied to prevent the molecule from slow
drifting away from the hyperplane. The HessianH* , as de-
No. 13, 1 October 1997
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4973W. K. den Otter and W. J. Briels: Conformational transition of calix[4]arene
fined in the Appendix, of the converged configurations we
diagonalized to obtain the eigenfrequencies of vibration.
frequencies were positive, so Eq.~2.15! could be used to
evaluate the partition function. The absolute values of
rotational eigenfrequencies, which should have been z
were found to be smaller than the lowest vibrational eige
frequency by 4 to 5 orders of magnitude for most configu
tions, indicating that the constrained minima were inde
well converged.

The free-energy functionin vacuo was calculated by
means of Eq.~2.15!. In Fig. 2 this function is shown as a
dashed line, shifted vertically in order to make it pa
through the origin. The difference with the minimum ener
function is considerable, ranging from11.2 kcal/mol near
the cone minimum to20.5 kcal/mol near the paco mini
mum. This difference is predominantly of vibrational origi
i.e., it reflects thej dependence of the eigenfrequencies
vibration perpendicular to the gradient ofj. The other two
j-dependent terms, due to rotation and due to the gradien
j, vary by just 2.9% and 0.8%, respectively, of the variati
of the vibrational contribution. The top of the free-ener
function has shifted from the origin towardsj520.06, as
can be seen in the inset of Fig. 2. The transmission func
calculatedin vacuowith jÞ50 must therefore yield a trans
mission coefficient less then unity, as was indeed found.5

In an alternative calculation the potential energy as
function of thea j , Eq. ~2.6!, was minimized using Newton–
Raphson, at intervals of 0.01 forj. The partition function
was then calculated according to Eq.~A13! of the Appendix.
The resulting minimum energy and free-energy distributio
are identical to the ones discussed above, but the two m
ods are clearly different in the assignment of the rotatio
and vibrational free energy.

Replacing the vibrational partition function by its qua
tized version is of little effect on the free-energy functio
after forcing the function to pass through the origin, the d
ferences with the semiclassical result range from ab

FIG. 2. Minimum energy~dotted!, free energy according to normal-mod
analysis~dashed!, and free energy according to umbrella sampling~solid!
for a calix@4#arenein vacuo. The inset shows the three functions near t
saddlepoint.
J. Chem. Phys., Vol. 107,
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10.25 kcal/mol for the cone to20.2 kcal/mol for the paco.
However, now the two expressions for the partition functi
differ by at most 0.02 kcal/mol. Omission of the 24 highe
frequencies, i.e., those resulting from the hydrogen stretch
modes which will be constrained in the MD runs, is of litt
influence, namely of the order of 0.06 kcal/mol for the qua
tized partition function and 0.008 kcal/mol for the semicla
sical partition function.

B. Umbrella sampling

As the initial trial umbrella for the umbrella samplingin
vacuo served the above calculated minimum ener
function,13 U(X)5 f (j). At first a tenth-order polynomia
was used to fit the function in the interval wherej ranges
from 21.7 to 11.5, i.e., the region in which the potentia
energy is less than the saddle-point energy. The umbr
was supplemented with two Fermi–Dirac functions at bo
extremes to delimit the range of accessiblej values to those
values that are relevant to the isomerization rate. The le
squares fitted polynomial oscillated around the minimum
ergy function with an amplitude of about 0.25 kcal/mo
These oscillations were clearly visible in the sampled pr
ability distribution, which contained corresponding maxim
and minima. Upon examination of the trajectory it becam
clear that the molecule was hopping from one local mi
mum to the next. Since the time spent in the evaluation of
umbrella potential is negligible in comparison with the ove
all execution time, a more complicate umbrella, which re
resented the minimum energy function better, was used n
The cone well and the paco well were both fitted with
fifteenth-order polynomial. In the saddle-point region, whi
was covered by both fits, a third-order ‘‘switch’’ polynomia
was used to make a smooth transition from one fit to
other. With this umbrella the time evolution of the reactio
coordinate was effectively smoothed.

A second problem arose during the simulations. Wh
the reaction coordinate reached a value of about 0.7
proved possible for a phenyl ring neighboring the freely
tating ring to flip over. Thus the calix@4#arene reached the
1,2-alternate configuration, where it was captured for the
of the MD run. The reason for this problem was that t
umbrella not only lowers the energies of the paco and
barrier conformations to the energy of the cone conform
tions, but it also lowers other saddle points to within a fe
kT of the cone conformations. We therefore located
saddle point of the paco to 1,2-alternate transition, in
absence of an umbrella, using theTRAVEL algorithm and
refined it with Newton–Raphson. Because of the circular o
entation of the hydrogen bonds at the lower rim of t
calix@4#arene there are two saddle points, depending
which neighboring phenyl ring is being rotated. One sad
point is located atj51.02 with an energy of 0.5 kcal/mo
below the saddle point of the cone to paco transition,
other saddle point is located atj50.96 with an energy of 0.3
kcal/mol above the saddle point of the cone to paco tra
tion. This second saddle point was not mentioned by Fisc
et al.18 The umbrella potential was next extended to

U~X!5 f ~j!1 f 1~j1!1 f 2~j2!, ~3.1!
No. 13, 1 October 1997
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4974 W. K. den Otter and W. J. Briels: Conformational transition of calix[4]arene
where f 1 and f 2 are two Fermi–Dirac functions used to d
limit the range of accessible values of the reaction coo
natesj1 andj2 calculated with respect to the saddle points
the paco to 1,2-alternate transitions. Analysis of the confi
rations sampled in simulations showed that these two re
tion coordinates are well behaved and of constant s
throughout the cone and paco wells. Inclusion of the t
potentials hardly effected the motion of the molecule
most of the time, but it effectively suppressed the rare
fatal transitions to the 1,2 alternate. Of course, the two ad
tional potential functions were corrected for in the evaluat
of the probability distribution ofj, see Eq.~2.19!.

A calix@4#arenein vacuowith the above described um
brella potential was equilibrated at a temperature of 300
using velocity scaling. When a steady temperature w
reached the velocity scaling was turned off, the angular
locity was eliminated and the molecule was simulated for
ns. The resulting biased probability distributionPf(j), cor-
rected for f 1 and f 2 but not for f , contained some strongl
preferred regions. The vast majority of the sampled confi
rations was distributed over the paco well, and a peak
found at the outer extreme of the cone well. The cone w
itself, i.e., the region with the highest population in the u
biased distribution, was sampled very poorly. To impro
the sampling of this region, the probability distribution w
transformed into a potential which was added to the exis
umbrella. A second 30 ns run and a repeat of this rec
eventually lead to the relatively flat distributionPf(j) of Fig.
3. The resulting free-energy profile after correction forf is
shown in Fig. 2 as a solid line. Note the excellent rese
blance to the normal-mode based free-energy function, t
differ by less than 0.3 kcal/mol, and the less striking rese
blance to the minimum energy function.

The final vacuum umbrella was also used in a run o
calix@4#arene dissolved in chloroform (CHCl3). The run was
performed at a constant temperature of 300 K and a cons
pressure of 1 bar, bonds containing hydrogen atoms w
constrained, the time step was 2 fs, long-range interact

FIG. 3. Probability distributionsPf(j) in vacuo~dotted! and in chloroform
~solid!, calculated with the same umbrella potential. The areas under
graphs are identical.
J. Chem. Phys., Vol. 107,
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were cut off beyond 1.3 nm, and the periodic box was
truncated octahedron containing 324 rigid solvent molecu
The system was equilibrated for 150 ps, followed by a p
duction run of 2 ns. The sampled probability distributio
Pf(j) is shown in Fig. 3 as a solid line. Comparison with t
vacuum distribution shows that the solvent environment
duces a preference for the cone and the saddle-point con
rations. Fortunately, the differences with the vacuum run
fairly small since otherwise it would have been impossible
make the leap from vacuum to solvent without breaking
the range of the umbrella into smaller parts. Once more,
probability distribution was turned into a potential and add
to the umbrella. This umbrella was then used in a 5 nssimu-
lation to sample the conclusive distribution of the reacti
coordinate of the dissolved molecule.

C. Rate constants

In this section the free-energy profiles of the previo
two sections are used to calculate rate constants accordin
transition state theory. The transmission coefficient is cal
lated next, and the reactive flux rate is obtained by multip
cation of this coefficient with the transition state theory ra
constant.

We first discuss the isomerization rate of a calix@4#arene
in vacuo. The partition function of the cone well,Qcone, is
equal to the integral of the partition functionQ(j), Eq.
~2.13!, over the interval from minus infinity tojÞ. Because
of the depth of the well the result is virtually independent
jÞ. With jÞ50 and the approximation of small vibration
we find Acone5172.7 kcal/mol, and similarly,Apaco5180.6
kcal/mol. Direct evaluation of the free energies with the f
normal-mode analysis of Eq.~2.8! yields almost identical
values. Next, we look at the transition state theory rate c
stant as a function ofjÞ. Approximatingu¹ju5uQr u, which
is exact at the saddle point, we find that transition st
theory predicts a minimum rate constant of 167 s21 at j
520.06, corresponding to the maximum of the free ene
in Fig. 2. If, following Eyring, we usejÞ50 as the transi-
tion state, we find A(O)5185.9 kcal/mol and kf

TST

5174 s21. Using the free-energyAcone obtained with Eq.
~2.8! in this case, i.e., using the textbook equation in wh
the rate constant is expressed in terms of the energies an
eigenfrequencies of the reactant well and the saddle poin2,20

we find a value of 177 s21.
The changes of the free-energy profile in going from t

normal-mode analysis to the umbrella sampling method
found to be fairly small. Nevertheless, the population of t
paco well nearly doubles from 1.831026 to 3.431026,
while Apaco2Acone changes from 7.9 to 7.5 kcal/mol. Atj
50 the population rises by about 50%, whileA(O)2Acone

changes from 13.1 to 12.9 kcal/mol, and the rate rises
kf

TST5256 s21. Combination with the previously establishe
transmission coefficient5 of 0.923 att50.6 ps yields the re-
active flux method rate of 237 s21. The transmission coeffi-
cient after 2 ps is slightly lower,k50.82, and leads tokf

RF

5209 s21.
In principle the rate constant should be independen

th
No. 13, 1 October 1997
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4975W. K. den Otter and W. J. Briels: Conformational transition of calix[4]arene
the precise choice of the transition state, as long as this s
is close enough to the top of the free-energy barrier. To t
this requirement in the case of the reactive flux method a
to verify our results, we have calculated the rate constant
a function ofjÞ. At various values the transmission functio
was evaluated by performing 2000 relaxation runs followin
the procedure outlined in our previous article. These tran
mission functions behaved as expected. For positivejÞ vir-
tually all molecules with a positive transient velocity,j̇(0),
ended up as a paco. A considerable amount of those wit
negative transient velocity also ended up as paco, and th
number increased with increasingjÞ. For negativejÞ it was
the other way around: many molecules with a positive tra
sient velocity were found to recross the transition state, wh
molecules with a negative transient velocity recrossed on
rarely. As reported earlier, a significant fraction of the mo
ecules entering the paco well was found to return to the co
after a single oscillation of about 0.7 ps in the paco well. W
therefore calculated the reactive flux rate constant using t
transmission coefficients, namely the value ofk(t) at 0.6 ps,
as if the wells are perfect sinks, and the one at 2.0 ps. In F
4 it is evident that the rates hardly depend on the transiti
state, as it should be.

The effect of the chloroform solvent on the calix@4#arene
is to shift the probability distribution to the cone conforma
tion, leading to an equilibrium constant of 2.431027 and
Apaco2Acone59.1 kcal/mol. With A(O)2Acone513.6 kcal/
mol the transition state rate decreases to 84 s21. The trans-
mission function for this system5 was found to be 0.43, so
the reactive flux rate equals 36 s21. The solvent is thus seen
to reduce the reaction rate by a factor of 6.

In our previous article we calculated the transmissio
coefficient from a set of 2000 relaxation runs. The transitio
velocities j̇(0) were sampled from a Gaussian distributio
and according to Eq.~1.5! these velocities were used a
weight factor in an average over all runs. In order to redu
the number of relaxation runs we here used the product

FIG. 4. Transition state theory rate~solid!, transmission coefficient~open!,
and reactive flux rate~solid! as a function of the location of the transition
statein vacuo, for t50.6 ps~squares! and t52.0 ps~circles!.
J. Chem. Phys., Vol. 107,
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the Gaussian and the weight factor as the new probab
distribution from which velocities were drawn. Between 5
and 1000 relaxations runs were found to suffice for an ac
rate calculation of the transmission coefficient. The effects
the transition state on the transmission function and the
active flux rate are shown in Fig. 5. In the range ofjÞ

between10.45 and20.45 the transmission function is see
to vary by a factor of 10. The reactive flux rate constant,
the other hand, is fairly constant.

Isomerization rates of calix@4#arenes with various side
groups and in various solvents have been measured
1H-NMR.21–24With the calix@4#arene of this paper, howeve
comparison of the theoretical and experimental transit
rates is complicated by the fact that the paco conformatio
only very short-lived. Hence only the cone to inverted co
rate is experimentally accessible. This inversion results fr
a series of independent reactions with one phenyl ring fl
ping over in each step,18 as illustrated in Fig. 6. Because o
symmetry, the flowchart can be reduced to

W
k1

W
k3

W
k4

W
k2

C P A P8 C8

Q
k2

Q
k4

Q
k3

Q
k1

.

~3.2!

HereC denotes the cone with all four phenyl rings pointin
upwards,P denotes the set of four conformations with thr
phenyl rings pointing upwards,A denotes the set of six al
ternate conformations with two phenyl rings pointing u
wards, andC8 andP8 are defined likewise as inverted pac
and inverted cone. The five time constants of the relaxa
processes of this system are obtained as the eigenvalu
the matrix of the transition probabilities. The relevant eige
value is

FIG. 5. Transmission function~open! and reactive flux rate~solid! as a
function of the location of the transition state of a calix@4#arene in chloro-
form.
No. 13, 1 October 1997
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FIG. 6. Flowchart of the various stable conformations and the possible interconversions of a calix@4#arene. In the cone conformation~C! all phenyl rings are
pointing upwards, in conformation ‘‘1’’ the ring numbered 1 is pointing downwards, etc. The entire outer circle corresponds to the inverted cone8), in
which all phenyls are pointing downward. The 1,3-alternate conformations are not shown.
r

e
al-
the

to
k5
1

2
@~k11k21k3!2A~k11k21k3!224k1k3#

'k1

k3

k21k3
, ~3.3!

where in the second line it is assumed thatk1 is much
smaller than the otherk’s. The corresponding eigenvecto
describes the exchange of molecules betweenC andC8 with
accompanying changes inP smaller by a factor ofk1 /(k2
J. Chem. Phys., Vol. 107,

Downloaded 04 Nov 2008 to 130.89.112.87. Redistribution subject to AIP
1k3) and no changes inA. In Fig. 6 the rates of going from
one particular conformation~e.g., a paco with phenyl ring
number 2 rotated! to another particular confirmation ar
marked by~double! primes. These primed rates can be c
culated with the techniques described in this paper, while
unprimed rates are the experimentally accessible rates.24 We
now want to find a relation betweenk andk18 .

There are four possible routes leading from the cone
the paco, sok154k18 . Rather than calculatingk2 and k3
No. 13, 1 October 1997
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4977W. K. den Otter and W. J. Briels: Conformational transition of calix[4]arene
exactly, we will estimate their values from transition sta
theory based on normal-mode analysis. The rate of the p
to cone transition then isk25k2851.13108 s21, DAÞ56.6
kcal/mol. The rate of the paco to alternate transition equ
the sum of the two different paco to 1,2-alternate transitio
k35k381k39 , with k3852.13108 s21, DAÞ56.2 kcal/mol
and k3951.13108 s21, DAÞ56.6 kcal/mol. With DAÞ

512.4 kcal/mol, the paco to 1,3-alternate transition is
slow to be of any influence. Substitution of these rates in
second line of Eq.~3.3! yields k52.99k18 , so as a rule of
thumb the experimentally observed cone to inverted c
ratek equals three times the cone to paco reaction ratek18 .
Of course, this estimate should not be taken for granted,
it gives a reasonable approximation of the effect that is to
expected in exact calculations.

Gutsche and Bauer21 measured aDAÞ of 14.9 kcal/mol,
k5189 s21, at the coalescence temperature of 36 °C. Ar
et al.22 found a slightly higher coalescence temperature
44 °C, and a rate of 20 s21, DAÞ515.7 kcal/mol, at 25 °C.
With the rule of thumb they yield a cone to paco ratek18 of
63 and 7 s21, respectively. These figures compare surp
ingly well with the 36 s21 calculated with the reactive flux
method. The various rate constants are summarized
Table I.

IV. CONCLUSIONS

The reaction coordinate based on the unstable nor
mode at the saddle point of the potential energy surfac
shown to be a very convenient reaction coordinate, both
the calculation of the probability distribution along the rea
tion coordinate and in the calculation of transmission coe
cients. The free-energy function obtained by a normal-m
analysis as a function ofj proves to be an excellent firs
guess at the umbrella function. The reaction rates calcul
with the reactive flux method for a calix@4#arenein vacuo
and in chloroform are virtually independent of the chos
transition state. The isomerization rate of the solvated m
ecule is in good agreement with experimental data.

APPENDIX: NORMAL-MODE ANALYSIS AND Q„j…

In this Appendix we will calculate the partition functio
Q(j* ), defined by Eq.~2.13!, within the harmonic approxi-
mation. To this end we first locate the minimum energy co
figurationR* , as indicated in Sec. II B. We next perform
normal-mode analysis in the neighborhood ofR* . We ap-

TABLE I. Computed and experimental reaction rates.

Method kTST/s21 k kRF/s21

Vacuum normal modes 174
Vacuum umbrella sampling,t50.6 ps 256 0.92 237
Vacuum umbrella sampling,t52.0 ps 256 0.82 209
Chloroform umbrella sampling 84 0.43 36
1H-NMR experiment 7–63
J. Chem. Phys., Vol. 107,
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proximate the hyperplanej(X)5j* by a tangent plane a
R* . The unit vector normal to this hyperplane atR* follows
from the gradient ofj, Eq. ~2.7!,

N5
Qr2(k51

3 dk
r Sk

11(k51
3 ~dk

r !2 . ~A1!

The tangent plane is spanned by a set of 3N21 unit vectors
perpendicular toN,

T l5H Ek, k51,2,3
Qj , j 51,...,3N26, j Þr ,
Sk1dk

r Qr , k51,2,3
~A2!

where the final three vectors still need to be orthonormaliz
The eigenfrequencies of vibration,v j* , in the hyperplane

X5R* 1 (
l 51

3N21

t lT
l ~A3!

are found by diagonalizing the 3N21 dimensional Hessian
at R* ,

Hkl* 5
]2F

]tk]t l
. ~A4!

Each 3N21-dimensional eigenvector is next transform
into a 3N-dimensional atomic displacements vector by su
ming over theT l using the components of the eigenvector
weight factors. The displacement vectors are again su
vided into three groups, the translational vectorsE* l , iden-
tical to theEl , and the rotational vectorsS* k, of the form of
Eq. ~2.2! with r i

0 replaced byr i* , all having eigenfrequency
zero, and the vibrational vectorsQ* j all having positive
eigenfrequencies. Analogously to Eq.~2.6!, we now express
any configuration as

X5A* R1(
l 51

3

g l* E* l , R5R* 1 (
j 51

3N27

a j* Q* j1b* N,

~A5!

where the rotation matrixA* is determined by

05~X2A* R* !•A* S* k, kP$1,2,3%. ~A6!

It is obvious thatj(X) ~with j still defined with respect to
R0! is a function of thea j* and b* only, and does not de
pend onA* . Because of the construction of theQ* j , we
have

j~X!5j* 1b* u¹R* ju, ~A7!

up to first order ina j* andb* , where it was used thatN is a
unit vector parallel to¹xj.

The integrals of the partition function in Eq.~2.13! are
solved analogously to those in Eq.~2.8!. The sole exception
is the integral overb* which, because of the delta function
yields not a frequency factor butu¹R* ju21, with

u¹R* ju5F(
i 51

N S ]j

Ami]xi
D 2G 1/2

5F11 (
k51

3

~dk
r !2G1/2

. ~A8!

We then arrive at
No. 13, 1 October 1997
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4978 W. K. den Otter and W. J. Briels: Conformational transition of calix[4]arene
Q~j* !5S 2pMkT

h2 D 3/2

V•

p1/2

s S 8p2kT

h2 D 3/2

~ I A* I B* I C* !1/2

3 )
i 51

3N27
kT

\v i*
•ve e2E* /kT

•u¹R* ju21

•~2pkT!1/2h21. ~A9!

We end this appendix with the derivation of an altern
tive expression for the above integral. Rather than introd
ing a new set of coordinates based onR* , we keep on using
the coordinates defined with respect toR0. The delta func-
tion in the partition function is then trivially dealt with. Th
Jacobi matrix of the transformation from mass-weighted
ordinates to generalized coordinates is again given by
~2.11!. However, for small vibrations aroundR* the approxi-
mation ofR by R* leads to three vectorsekR* that are no
longer orthogonal to theQj . Expressing these vectors in th
R0-based vectors yields

J5A~ekR0 Qj A21El !S ~ I0!21s* 0 0

r* 1 0

0 0 1
D

3S c 0 0

0 1 0

0 0 1
D , ~A10!

uJu5us* u~ I A
0 I B

0 I C
0 !21/2 sin c2, ~A11!

where

s lk* 5~e lR* !•~ekR0!, r l j* 5~e lR* !•Qj , ~A12!

and the (I0)21 arises because theekR0 are not orthogonal.
Performing the integration over the generalized coordina
and multiplying with the integral over the momenta gives

Q~j* !5S 2pMkT

h2 D 3/2

V•

p1/2

s S 8p2kT

h2 D 3/2

~ I A
0 I B

0 I C
0 !21/2

3 )
i 51

3N27
kT

\v i**
•ve e2E* /kT

•us* u~2pkT!1/2h21.

~A13!
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q.

s

The required eigenfrequencies are found as the square
of the eigenvalues of the 3N27-dimensional Hessian atR* ,

H jk** 5
]2F

]a j]ak
, j ,kÞr , ~A14!

and differ from the eigenfrequencies used in Eq.~2.15!.
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