Molecular dynamics simulations of free energy and conformational
transition rates of calix[4]arene in chloroform

W. K. den Otter and W. J. Briels
Chemical Physics Laboratory, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

(Received 21 May 1997; accepted 25 June 1997

In a previous article we introduced a reaction coordinate based on the unstable normal mode at the
saddle point of the potential energy surface. We here calculate the free-energy distribution along this
coordinate for the isomerization of cdli{arenein vacuo and in chloroform using umbrella
sampling, with one umbrella covering the entire range of the reaction coordinate. An excellent first
guess at this umbrella is obtained by performing a normal-mode analysis at various points along the
reaction path. The isomerization rate constant of this reaction is determined using the reactive flux
method and is found to be in good agreement with experimental data. The rate was found to be
independent of the location of the transition state, as it should bel9€¥Y American Institute of
Physics[S0021-960807)50437-3

I. INTRODUCTION Il C. The first term on the right-hand side of E{..2), the
o average positive velocity of the reaction coordinate at the

~ The forward rate constait of a reaction, i.e., the frac- yansition state, will be addressed in Sec. Il D. The particular

tion of reactants turned into products per unit of time, in &,g4ction coordinate that we will use is discussed in Sec. Il A.

solvent is_ a complicated function of the internal pqtential of Numerical results for the probability function and the TST
the reacting solute molecu®, the solute—solvent interac- 5o merization rate of a cafiglarenein vacuoand in chloro-
tions, and the solvent—solvent interactions. Molecular dyt,:m are presented in Sec. II.

namics (MD) simulations are perfectly well suited for the  ransition state theory, by focusing on the instantaneous
numerical analysis of such involved situations. Based on thg,nyarq flux, neglects the fact that some fraction of this flux
statistical mechanical ideas discussed below, it is possible il recross the transition state shortigrder of a picosec-

deduce from a total of about 10 ns simulation time a reactiorbnd) after having crossed it. Likewise, the forward flux also

rate that is slower by many orders of magnitude. The pargoniains a contribution of “product molecules” that have

ticular reaction studied here is the isomerization of &g5ged the transition state with a negative velocity shortly
calix4Jarenein vacuoand in chloroform. before they recross with a positive velocity. These recross-

In Eyrings transition state thedryTST) a hyperplane, ings are the result of the normal dynamics of a reacting mol-
the transition state, is introduced to split configuration SPac@cyle, induced by both the internal interactions of the mol-

into a reactant Space an;d a product space. This plane is chfsje and its interactions with the solvent. To a macroscopic
acterized by&({x})=¢7, where the reaction coordinate ohqerver, though, these rapid recrossings are invisible and
£({i}) is a function of the atomic coordinates. Product spacgrejevant. He defines the rate by the number of molecules
and reactant space are definedgpy¢™ and§<&7, respec-  yhat are in the reactant well at time 0 and in the product well

tively. The forward rate constant is calculated as the instang; timet, normalized by the overall number of molecules in

taneous product-bound flux through the transition state, N0l reactant well at time 0. Only if there are no recrossings
malized by the population of the reactant space: will his rate equal the TST rate, otherwise TST overestimates

#1 ; the true rate.
kaST:w[g((z)a[gi 15;(00))0][5(0)]) (1.2 In the reactive flux methodRF) the aforementioned
macroscopic definition of the rate is related to the micro-
Here the angular brackets denote a canonical average andSCopic behavior of a single molecule in a solvent by means
is the Heaviside function. of Onsager’s regression hypothe$fsThe resulting rate ex-
The TST expression is conveniently rewritten as pression is

kTST_<5[§(0>—§*]'§(0> 6[£(0)]) (S[£(0)—E7])
TST_

_(8L&(0) = £*1E0) 0L E(D) ~ £71)
GLEo =€) (Ae=eoD '

(017 —£(0)])

In comparison with TST, attention has shifted from those
The second term on the right-hand side is the probability ofnolecules that cross the transition state with a positive ve-
finding the molecule at the transition staf(¢”), divided  |ocity to those molecules that actually end up in the product
by the ffObabi”W for the molecule to be in reactant spacegpace at some time after crossing the transition state in
Pr=J% . P(£)d¢. We will discuss two techniques for the whatever direction. The rate is often expressed as
calculation of the probability distributiorP(£): normal- RE -
mode analysis in Sec. I B, and umbrella sampling in Sec. K ()=x(t)k;™", 1.4

KRF(t) 1.3
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(6[§(0)—§¢]'§(0)0[§(t)—§¢]> they leave the potential energy unchanged and therefore are
k(t)= T E0 —£7 150 0 , (1.5  eigenvectors oH with eigenvalues zero, as follows from Eq.
(AL&(0)—¢71£(0) 0L 4(0)]) (2.1) after replacing< —X° by E'. Similarly, there are three

wherex(t) is the transmission function. On the time scale ofindependentassuming a nonlinear moleculeigenvectors
the recrossings, about a picosecond, the transmission fun8* corresponding to infinitesimal rotations of the molecule. If
tion decays from unity at=0 to the so-called plateau level. r’=x’—x2  is the vector pointing from the center of mass
The true rate constant is found by inserting this plateau valuef the molecule to atom, then an infinitesimal rotation
into Eq. (1.4). Actually, the plateau is not constant but de- around an axes, through the center of mass leads to atomic
caying on the time scale of the reaction, but for most reacdisplacements
tions this is too slow to be seen in MD simulations. In our
previous articlé we discussed the calculation of the trans-(S97=(Vmy(axr) T, Jma(exrd)T,....ymy(@xrR)").
mission function of the reaction studied here. 22

From Egs.(1.1) and(1.3) one could infer that the calcu- Obviously, assuming orthonormality of the eigenvectfs
lated rate depends on the definition of the transition statethe threeg, are not orthogonal. The six modes of the first two
i.e., on &7 and &({x;}) (for simplicity we will neglect the groups are degenerate, i.e., they all have eigenvalue zero, if
latter dependengeThe rate should of course depend on thisthere is no external field. Finally, the remainini-® eigen-
definition, since it is embodied in the definition of the num- vectorsQ' are the normal modes of vibration.
ber of reactant molecule®y, and hence in the therefrom At an energy minimum all vibrational modes have a
derived rate. But, provided the free-energy barrier is highnonnegative eigenvalue, but at a first-order saddle point there
and¢” lies somewhere near the top, the number of reactantwill be exactly one modeQ", with a negative eigenvalue. It
is virtually independent to the precise locationé6f, and so s this unstable normal mode that we are interested in; it
must the rate be. The TST rate obviously strongly dependpoints downhill, from the saddle point towards the reactant
on £7; in the RF method the dynamics incorporated in theand product wells, while all other modes are pointing uphill.
transmission function blurs the picture. Miffeshowed, us- Motion of the molecule along this mode, therefore, corre-
ing Liouville’s theorem, that the RF rate is independent ofsponds to a reaction. The reaction coordinate of a molecule
the precise location of the transition state. Chaffdierived  with coordinatesX might now be defined as the projection of
at the same conclusion in a discussion based on the sepatae displacement with respect to the saddle-point configura-
tion in time scales between recrossing and reactive events. bion onto the unstable normal mode,
Sec. Il C this independence is verified numerically. B 0n ~r

£=(X=X9)-Q". (2.3

Il. THEORY This coordinate, however, is not invariant under rotations of
the moleculeX. This problem is solved by making the saddle
point X° depend onX. First we note that the rotated saddle
We here briefly discuss the unstable normal-mode reagpoint AR®, where A is a 3N-dimensional rotation matrix
tion coordinate; an elaborate introduction is to be found incontainingN copies of a regular three-dimensional rotation
our previous articlé. The reasoning behind this reaction co- matrix a down the diagonal an° is a mass-weighted col-
ordinate is the fact that in a reactive system most reactant tamn vector of ther?, is also a saddle point. The normal
product trajectories will surmount the potential energy bar-modes of this rotated configuration simply &g AS¥, and
rier somewhere near the lowest point of the barrier, i.e., thé\Q!. We next define the reaction coordinate by
saddle point. It is therefore natural to construct a reaction _ 0 ;
coordinate based on the properties of the saddle point. The §=(X-AR%)-AQ". (2.4

Taylor (Oexpansion of the potential energy around a saddlghe rotation matrixA, which is a function of just three pa-
point, X", up to second order reads rameters, is determined from the three equations

P (X)=D(X%)+5(X—X)TH(X~XO). (2.9 0=(X—AR%).ASK, ke{1,2,3, 2.5

For notational convenience, we collect all coordinates of th
reacting molecule in a singleNsdimensional column vector
of mass-weighted atomic coordinatesX™=(y/m;x],
Jymoxs ... \myxf). The Hessian matrixd contains all
second-order derivatives of the potential energy with respect
to the components oX. Its eigenvectors are orthogonal, or

A. Reaction coordinate

%nd assures rotational invariance. One may check that the
above two equations are invariant under translation, as fol-
lows from the orthogonality of the eigenvectors of the Hes-

The inverse transformation reads

orthogonalizable in case of degeneracy, since the Hessian is 3 SN

symmetric. Henceforth all eigenvectors will be assumed to X=AR+|21 yE, R=R%+ 21 @;Q, (2.9
be normalized. We shall assume that there is no external - =

field. where the center of mass & evidently lies at the origin.

The set of I eigenvectors can be split into three The reaction coordinate is one of the deviatiofis,a, . At
groups. First, there are three independent vedbihat cor-  this point the reader might argue that the reaction coordinate
respond to an overall translation of the molecule. Obviouslynow is dimensionless, while in E¢2.4) it seems to have a
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dimension of kg A However, the orthonormality of the matrix A. Since the derivative of the rotation matrix with
vectorsQ! that is assumed in going from E¢R.6) to Eq.  respect to itskth argument can be written as the product of

(2.4) cancels the dimensionality. the rotation matrix and an antisymmetric matBx we find
In the following we will make use of the derivative §f 3

with respect toX. From the orthogonality of the rotation Pk=B R= 'Rc 21

matrix in combination with the derivatives of Eq2.4) and ) |=21 € Rew(¥). (2.10

(2.9) it follows that | ) . ) o
Here thee' are three Bl-dimensional matrices containiny

_ - . copies of a three-dimensional antisymmetric matrix, an in-
ng—A(Q gl dksk)' 27 finitesimal rotation generat8rdown the diagonal. The Ja-

. o o ) cobi matrix can then be written as
The expression relating, to X, A, sf, andQ' is given in

our previous articlé. c 00
J=A(R Q AEH{ 0 1 O0]. (2.12)

B. Theory of small vibrations
0 0 1

The free energy of a classical molecievacuocan be
calculated in reasonable approximation by the theory off the Euler angle$are used to parametrize the rotation ma-
small vibrations. If we assume that the potential energy functrix, then 0<y;<2m, 0<y,<m, 0<y3=<2m, and |c|
tion around the energy minimum is quadratic, and if we ne-= Sin g». Obviously,|A|=]a/N=1.
glect the coupling between rotations and vibrations, then the ~ For small vibrations we may approximak by R in
well-known semiclassical partition function of the minimum Eg. (2.11). Then€ R is of the form of Eq.(2.2), hence per-

readg pendicular to bottA*E' andQ’. Denoting the second ma-
1 trix on the right-hand side of Eq2.11) by m, and using
Q= - J dXJ dp, e~ AHPy |m|=|m"m|%?in combination with these orthogonality rela-
h tions and the orthonormality of the eigenvectors of the Hes-
_(27TM kT) 32 A (8772kT) 32 i sian, the resulting Jacobian reads
IR Rz | (atele |9 =11%*2 sin 4= (121312) 2 sin . (2.12
XST—F ;:_T - g e~ Emin/KT, 2.8 The inertia tenson® is the upper left X3 submatrix of
;

m'm, with elementd = (¢'R%) T(€“R?), and thel} are the
_ . eigenvalues of this tensor. The integrals over the generalized
Here 5=1/kT, T is the absolute temperatute,s the Bolt- ;oo rdinates are straightforward, and combination with the
zmann constant is the Hamiltonianh is the Planck con- yreviously evaluated integral over the momenta leads to Eq.
stant,fi =h/2ar, M is the total mass of the molecul,is the  ( g One should keep in mind that in a cubic box of side
volume of the boxg is the symmetry number, tg are the 6 ¢oordinates, run from 0 tol VM due to the normaliza-
momenta of inertia, the; are the eigenfrequencies of vibra- yjo of the translational eigenvectors. The integrals over the

tion (the square roots of the nonzero eigenvalues of the Hesdj are supposed to run from minus infinity to plus infinity.

sian, w. is the electronic degeneracy, aBg;, is the energy In order to be able to calculate the numerator in the
at the potential minimum. We will now give a derivation of ¢o.ond factor in Eq(1.2), we now derive an expression for

this expression, such that it later can be generalized t0 cajpq hartition function as a function of the reaction coordinate,
culate a¢-dependent partition function.

To solve the integral of Eq2.8) we use the generalized 1
coordinates of Eq(2.6), where now the configuratioR® is Q&)= 3N J dXJ dpy e PP £(x) — £ ],
assumed to be a local minimum of the potential function, and (2.13
s, E', andQ' are evaluated at this point. The obvious rea-
son is that the potential energy in terms of these coordinate4Sing the same assumptions that were used in the above deri-
reduces to a simple formu|ﬂ):Emin+%Ef‘EIij2aj2' pro- yat|on of Eq.(2.8). This partition function is often expressed
vided the vibrations are small. After the canonical transfor-n terms of a free energy by
mation of Eq.(2.8) from Cartesian coordinates to mass- *\_ "
weighted Cartesian coordinates the integration over the AE)=—kTIn Q(¢"). 214
conjugate momenta yields kT)*"2. The subsequent We first transform to mass-weighted coordinates, and define
transformation of the coordinates to the generalized coordig standard minimunR* on the hyperplang(X)=&*. This
natesiy, «j, andy, is accompanied by the Jacobi matrix minimum is found by varying thex; in Eg. (2.6), while

=1

aX ' keepinga, equal to£* . The minimumR* is not rotated with
=(9—_=A(‘Ifk Q' A'E), (2.9  respect toR%, and their centers of mass coincide. In the
U n} present partition function the configurati®® plays a role

where the matrix is expressed in terms of BN—6)+3  analogous to that oR® in Eq. (2.8). In the Appendix it is
column vectors, and the threg, parametrize the rotation shown that
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27MKT\¥2 712 (872KT)| 32 1
Q(§*>=(—h2 ) v 7( | (AR p(X) =5 e #*0 (2.17
SNST T . is the Boltzmann factor for a molecule in configuratin
x ] e e EKT | Vowg| 7t with potential®, andZ is a normalization factorX repre-
=1 R sents all coordinates, including the solvent coordinates, and
-(27kT)¥?h 1, (2.15 @ includes solvent—solvent and solute—solvent interactions.

In the barrier region this probability becomes extremely
all, too small to be sampled efficiently. Addition of an
umbrella potentiallJ, changes the Boltzmann factor into

where a superscript asterisk denotes a quantity that is to
calculated aR*. An alternative expression for the partition
function is also derived in the Appendix.
To locate the minimumR* on the hyperplang(X) Du(X) = 1 o= BP0+ U]
=¢* we used a standard minimum search routine in combi- v Zy
QSIttI; : \::vg:fiauiggztnr?/:/r:sofzrzﬂsrrree?icr;[ ;%nbcor%rg:é?:‘e. t;:se rroe_The umbrella potential is used to favor the distributmnin
9 9 y 9 PO reas that would otherwise have been difficult to sample. The

jection of the gradlent of _the potential _onto_the tangemrequested probability distribution of the reaction coordinate
hyperplane. This was achieved by an iterative Newton—

. ; . is readily obtained from the biased distribution by combining
Raphson zero-point search, using forces and Hessians calcg— 5.(2.16 through(2.18 into
lated in the plane spanned by the basis vectordefined in gs- (e ghis.
the Appendix. Since the tangent hyperplane is only locally Zy,
correct, each iterated point was reset 46X)=&* by a P(&*)=— j dXpy(X)ePU N EX) - €41, (219
SHAKE routine®® followed by a recalculation of the normal
to the hyperplaneN, and of the basis vectorE'. If these
minimizations are performed in the full NBdimensional

space, then the molecule will rotate inevitably. This is easil | licati h brell il is ch
corrected for, either by rotating the vectddsandT', or by n many app |cat|ons_t € umbretia potentla IS chosen to
e a function of the reaction coordingenly, in which case

counterrotating the molecule after each step. This effect doe% Al in the | | of Eq2.19 b
not arise if the minimum is directly located in theva-6 1€ exponential in the integral of Eq2.19 becomes a
constant®!* For molecules with more than two local

dimensionala space. . . )
minima, as in our case, it may prove necessary to use a

Equations(2.8) and (2.15 obviously do not take into h ! d brell ”
account the anharmonicity of the force field, nor the coupling®°™Mewhat more complicated umbrella potential to suppress
unwanted side reactions.

between rotations and vibrations. The inclusion of interac- ¢ ; £ umbrell f the formbi (&)= k
tions with a solvent is difficult. In the next section an alter- Often a series oL umbrelias o the formb,(£) =3 (,5
1,...L, is used. At each a small area of configu-

_ 2 1=
native technique is discussed which does not suffer from 5,') 1= o A
these drawbacks ration space, a so-called “window,” is sampled, resulting in

a distributionP, (&) for each window. The various distribu-
tions are then combined into a single distribution, using the
overlap of successive windows to match the partial
distributions!® We use a single umbrella covering the whole
A straightforward way of obtaining the correct probabil- range ofé. Only if the diffusion along the reaction coordinate
ity distribution P(¢) of a (dissolved molecule is to calculate is relatively fast will this method work, so care must be taken
this distribution directly from a long MD run. The MD run to make the reaction coordinate distribution in the biased run
should include numerous barrier crossings to ensure thas flat as possible.
both wells and the barrier region are sampled sufficiently.
For reactions with a high barrier, exceeding sevkml such
a run would last prohibitively long. Two techniques are com-
monly employed to circumvent this probleff*?In the po- The first term on the right-hand side of E4.2) is most
tential of mean force method the derivative of the free energyasily calculated by using the mass-weighted coordinates in-
with respect to the reaction coordinate is calculated in a seifoduced above. The velocity of the reaction coordinate can
ries of &constrained runs and then integrated. We will usebe expressed in terms of the mass-weighted Cartesian mo-
the second method and apply an “umbrella potential,” amenta as
modification to the force field that can easily be corrected

(2.18

The normalization factorg; andZ do not have to be cal-
culated independently, only the factor which normalizes the
yfinal distributionP(£*) is needed.

C. Umbrella sampling

D. Transition state crossing velocity

for, to effectively reduce the barrier. §= V& X=Vx&-px. (2.20
We are interested in the probability distribution of the and the kinetic energy of the molecule reducesBg,
reaction coordinate, =1px-Px. These equations remain the same if the coordi-
nate system is rotated. We now apply a rotation such that the
P(g*):f dX p(X)S[E(X)— &% ]. (2.1 first mass-weighted coordinate axis lies paralleMtge; all
other axes are then perpendicular to the gradient. Integration
Here over the momentum conjugate to this axis, using
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bonds. The partial cone, “paco” for short, is formed by ro-
tating one phenol group, with the methyl groups acting as
hinges and the hydroxyl group moving through the central
annulus. In this process two hydrogen bonds are broken. We
will focus here on this reaction step. In a following reaction
step one of the phenol groups nearest to the rotated phenol
can rotate and form the “1,2-alternate,” or the opposing
phenol group can rotate to form the “1,3-alternate.” After
two more steps all phenol groups have rotated, and the final
“inverted cone” conformation is reached. This name will be
FIG. 1. The cone(left) and partial congpaco, right conformation of a  ysed to distinguish it from the initial “cone” configuration.
cali4Jarene. All simulations were done with a modified version of
GrRoMOs87! Several routines were adapted or added for the
handling of the normal-mode reaction coordinate. The
de —ap?_ 1 Jm dp e 2P calix4]arene was modeled with the all-atooMARMM pa-
p pe pe (2.2) :
0 2\ma J-= rameter set 22 The saddle point of the cone to paco reac-
ields the average positive crossing velocit tion was calculated with the conjugate peak refinement
y . g p g y algorithm*®9The unstable normal mode of the saddle point,
(S1£(0)—E71€(0)0[£(0)]) KT (8[&(0)— 71|V xél) Q', was chosen to point towards the paco well. All normal

(S[E(0)—€71) 21 (JE0)—€7]) modes were _normalized to 1 afnm. In the MD_ runs all
(2.2 bonds involving hydrogen atoms were constrained to con-

The length of the gradient, EGA8), is seen to act as the stant lengths usingHAKE.” The effect of this constraint on

. . . . . the sampling of phase space was shown to be very small, so
reciproke effective mass of the reaction coordinate. Combin- pling of p P y

ing Egs.(12). (2.8), (2.15, and (2.22 yields the classical we applied no corrections. We refer to our previous article

analogue to Eyrings expression for more details.
9 ynng P : . In Sec. lll A the free-energy profile of a calikarenein
It is common practice to express the rate constant in

) " vacuois calculated using the theory of small vibrations. The
terms of a free-energy difference between the transition state . ! .
and the reactant welAA* =A% — A~ as in runs with umbrella sampling, botim vacuoand in chloro-
R form, are described in Sec. Il B. Combining the free energy
kT

and the transmission function allows us to calculate the re-

_ O —AAT/KT
K= h € ' (223 4ction rate of Sec. Il C.
This free-energy difference should not be confused with theéd. Small vibrations
free-energy difference calculated by means of Efj®) and The minimum energy of a calitlarenein vacuoas a

(2.14. First, the free e”EVQN_ is based on the partﬂon function of the reaction coordinate was calculated by two
function of a molecule which is constrained &X)=¢"  series ofe-constrained energy minimizations. Starting at the
and which explicitly excludes any motion along the reactiongygje point, the value of was increaseddecreasedby
coordinate £=0. In the harmonic approximation 0.01 up to a maximum value of 2H2), and a minimum was
located at each value. The resulting function is shown in Fig.
, (2.24 2 by the dotted line, while the plot is shifted vertically to
2mkT place the saddle point at zero energy. The local minima of

Using this result, the transition state theory value of the ratéh® cone and paco conformations are seen to be at 15.2 and

constant in the harmonic approximation takes the form of-6 kcal/mol, respectively, below the saddle point, in agree-
Eq.(2.23. Second, in the literature on experiments & ment with the results of previous unconstrained minimization

includes the transmission factor. runs® At both extremes of thé axis, with energies exceed-
ing the saddle-point value, the minimum search algorithm
ran into problems. In these areas, as a result of the constraint
on the reaction coordinate, the strain on the molecules was so
The techniques introduced above are now applied to thextreme that the molecule “spontaneously” changed into an-
isomerization reaction of cali#]arene'® This molecule con-  other conformation. These areas are irrelevant to the problem
sists of four phenol groups, each of which is connected t@t hand, so these problems are of no consequence. For ener-
two neighboring phenols by methyl bridges located ortho togies below the saddle-point value, in the rangé.71<¢
the hydroxyl group, see Fig. 1. In supramolecular chemistry<1.53, the minimization produces a smooth energy profile.
they are being used as building blocks. The interesting prop- Next, each minimum in the intermediate range was re-
erty in the current context is the fact that they have fourfined by a Newton—Raphson zero-point searchfhdmen-
stable conformations. The “cone” conformation, with all sions, as described in Sec. Il B. After each iteration step
phenol groups pointing in the same direction, is most abunsHAKE was applied to prevent the molecule from slowly
dant. It is stabilized by a cyclic array of four hydrogen drifting away from the hyperplane. The Hessidii, as de-

A*=—KkT In

Q(¢7)

Ill. RESULTS
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4 +0.25 kcal/mol for the cone te-0.2 kcal/mol for the paco.
However, now the two expressions for the partition function
differ by at most 0.02 kcal/mol. Omission of the 24 highest
frequencies, i.e., those resulting from the hydrogen stretching
modes which will be constrained in the MD runs, is of little
influence, namely of the order of 0.06 kcal/mol for the quan-
tized partition function and 0.008 kcal/mol for the semiclas-
sical partition function.

N L

B. Umbrella sampling

As the initial trial umbrella for the umbrella samplitirgy
vacuo served the above calculated minimum energy
function!® U(X)=f(£). At first a tenth-order polynomial

4 ; was used to fit the function in the interval whefganges
16~ 025 0 0.25 from —1.7 to +1.5, i.e., the region in which the potential
energy is less than the saddle-point energy. The umbrella
F'Gi ZiSmg‘gﬂ“gg‘aize;?eﬁdgﬁZ?’ ff:scgr‘;ggytaccgfgrigﬁato ”n(:rfl‘(“:"“fg)(’de was supplemented with two Fermi—Dirac functions at both
z)r:aayscali>{4]arenein vacua Thegi)rllset showg tﬁeuthree funsgioﬁs r?ear the extremes to delimit the range OT accegs@l_ealues to those
saddlepoint. values that are relevant to the isomerization rate. The least-

squares fitted polynomial oscillated around the minimum en-

ergy function with an amplitude of about 0.25 kcal/mol.
fined in the Appendix, of the converged configurations wereThese oscillations were clearly visible in the sampled prob-
diagonalized to obtain the eigenfrequencies of vibration. Allability distribution, which contained corresponding maxima
frequencies were positive, so E(.15 could be used to and minima. Upon examination of the trajectory it became
evaluate the partition function. The absolute values of thelear that the molecule was hopping from one local mini-
rotational eigenfrequencies, which should have been zerdnum to the next. Since the time spent in the evaluation of the
were found to be smaller than the lowest vibrational eigenumbrella potential is negligible in comparison with the over-
frequency by 4 to 5 orders of magnitude for most configura-all execution time, a more complicate umbrella, which rep-
tions, indicating that the constrained minima were indeedesented the minimum energy function better, was used next.
well converged. The cone well and the paco well were both fitted with a

The free-energy functiorin vacuo was calculated by fifteenth-order polynomial. In the saddle-point region, which
means of Eq(2.15. In Fig. 2 this function is shown as a was covered by both fits, a third-order “switch” polynomial
dashed line, shifted vertically in order to make it passwas used to make a smooth transition from one fit to the
through the origin. The difference with the minimum energyother. With this umbrella the time evolution of the reaction
function is considerable, ranging from 1.2 kcal/mol near coordinate was effectively smoothed.
the cone minimum to—0.5 kcal/mol near the paco mini- A second problem arose during the simulations. When
mum. This difference is predominantly of vibrational origin, the reaction coordinate reached a value of about 0.7, it
i.e., it reflects thet dependence of the eigenfrequencies ofproved possible for a phenyl ring neighboring the freely ro-
vibration perpendicular to the gradient &f The other two tating ring to flip over. Thus the cali¢larene reached the
é&-dependent terms, due to rotation and due to the gradient df,2-alternate configuration, where it was captured for the rest
& vary by just 2.9% and 0.8%, respectively, of the variationof the MD run. The reason for this problem was that the
of the vibrational contribution. The top of the free-energy umbrella not only lowers the energies of the paco and the
function has shifted from the origin towards= —0.06, as barrier conformations to the energy of the cone conforma-
can be seen in the inset of Fig. 2. The transmission functiotions, but it also lowers other saddle points to within a few
calculatedn vacuowith £ =0 must therefore yield a trans- KT of the cone conformations. We therefore located the
mission coefficient less then unity, as was indeed found. saddle point of the paco to 1,2-alternate transition, in the

In an alternative calculation the potential energy as eabsence of an umbrella, using theAvEL algorithm and
function of thea;, Eq.(2.6), was minimized using Newton— refined it with Newton—Raphson. Because of the circular ori-
Raphson, at intervals of 0.01 f@& The partition function entation of the hydrogen bonds at the lower rim of the
was then calculated according to E413) of the Appendix. ~ cali{4]arene there are two saddle points, depending on
The resulting minimum energy and free-energy distributiongvhich neighboring phenyl ring is being rotated. One saddle
are identical to the ones discussed above, but the two metlpoint is located ag=1.02 with an energy of 0.5 kcal/mol
ods are clearly different in the assignment of the rotationabelow the saddle point of the cone to paco transition, the
and vibrational free energy. other saddle point is located &t 0.96 with an energy of 0.3

Replacing the vibrational partition function by its quan- kcal/mol above the saddle point of the cone to paco transi-
tized version is of little effect on the free-energy function: tion. This second saddle point was not mentioned by Fischer
after forcing the function to pass through the origin, the dif-et al'® The umbrella potential was next extended to
ferences with the semiclassical result range from about y(X)=f(&)+f,(&)+ (&), (3.

-12 4

A [ kcal mol™

J. Chem. Phys., Vol. 107, No. 13, 1 October 1997

Downloaded 04 Nov 2008 to 130.89.112.87. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



4974 W. K. den Otter and W. J. Briels: Conformational transition of calix[4]arene

were cut off beyond 1.3 nm, and the periodic box was a
truncated octahedron containing 324 rigid solvent molecules.
The system was equilibrated for 150 ps, followed by a pro-
duction run of 2 ns. The sampled probability distribution
P;(¢) is shown in Fig. 3 as a solid line. Comparison with the
vacuum distribution shows that the solvent environment in-
duces a preference for the cone and the saddle-point configu-
rations. Fortunately, the differences with the vacuum run are
fairly small since otherwise it would have been impossible to
make the leap from vacuum to solvent without breaking up
the range of the umbrella into smaller parts. Once more, the
probability distribution was turned into a potential and added

{ to the umbrella. This umbrella was then usedi5 nssimu-

2 lation to sample the conclusive distribution of the reaction
coordinate of the dissolved molecule.

FIG. 3. Probability distribution®¢(£) in vacuo(dotted and in chloroform
(solid), calculated with the same umbrella potential. The areas under botit Rate constants
graphs are identical.

In this section the free-energy profiles of the previous
two sections are used to calculate rate constants according to

wheref; andf, are two Fermi—Dirac functions used to de- transition state theory. The transmission coefficient is calcu-
limit the range of accessible values of the reaction coordilated next, and the reactive flux rate is obtained by multipli-
nates¢; andé, calculated with respect to the saddle points ofcation of this coefficient with the transition state theory rate
the paco to 1,2-alternate transitions. Analysis of the configueonstant.
rations sampled in simulations showed that these two reac- We first discuss the isomerization rate of a dajarene
tion coordinates are well behaved and of constant sigin vacua The partition function of the cone welQ g, is
throughout the cone and paco wells. Inclusion of the twoequal to the integral of the partition functioQ(¢), Eq.
potentials hardly effected the motion of the molecule for(2.13, over the interval from minus infinity t§”. Because
most of the time, but it effectively suppressed the rare bubf the depth of the well the result is virtually independent of
fatal transitions to the 1,2 alternate. Of course, the two addié”. With ¢ =0 and the approximation of small vibrations
tional potential functions were corrected for in the evaluationwe find A¢,ne=172.7 kcal/mol, and similarlyA,,.;=180.6
of the probability distribution ok, see Eq(2.19. kcal/mol. Direct evaluation of the free energies with the full

A calix[4]arenein vacuowith the above described um- normal-mode analysis of Eq2.8) yields almost identical
brella potential was equilibrated at a temperature of 300 Kvalues. Next, we look at the transition state theory rate con-
using velocity scaling. When a steady temperature wastant as a function of”. Approximating|V ¢ =|Q'|, which
reached the velocity scaling was turned off, the angular veis exact at the saddle point, we find that transition state
locity was eliminated and the molecule was simulated for 3@heory predicts a minimum rate constant of 167 it ¢
ns. The resulting biased probability distributi®q(&), cor-  =-—0.06, corresponding to the maximum of the free energy
rected forf, andf, but not forf, contained some strongly in Fig. 2. If, following Eyring, we us&” =0 as the transi-
preferred regions. The vast majority of the sampled configution state, we find A(O)=185.9 kcal/mol and k{°"
rations was distributed over the paco well, and a peak was-174 s . Using the free-energy,. obtained with Eq.
found at the outer extreme of the cone well. The cone well2.9) in this case, i.e., using the textbook equation in which
itself, i.e., the region with the highest population in the un-the rate constant is expressed in terms of the energies and the
biased distribution, was sampled very poorly. To improveeigenfrequencies of the reactant well and the saddle péint,
the sampling of this region, the probability distribution waswe find a value of 177°¢.
transformed into a potential which was added to the existing The changes of the free-energy profile in going from the
umbrella. A second 30 ns run and a repeat of this recip@ormal-mode analysis to the umbrella sampling method are
eventually lead to the relatively flat distributiéh (£) of Fig.  found to be fairly small. Nevertheless, the population of the
3. The resulting free-energy profile after correction fois  paco well nearly doubles from 1:8107° to 3.4x10 ¢,
shown in Fig. 2 as a solid line. Note the excellent resemwhile Ap,co—Acone Changes from 7.9 to 7.5 kcal/mol. At
blance to the normal-mode based free-energy function, they 0 the population rises by about 50%, WhA€O) — A.gne
differ by less than 0.3 kcal/mol, and the less striking resemehanges from 13.1 to 12.9 kcal/mol, and the rate rises to
blance to the minimum energy function. k{S"=256 s'*. Combination with the previously established

The final vacuum umbrella was also used in a run of aransmission coefficiehtof 0.923 att=0.6 ps yields the re-
calix4]arene dissolved in chloroform (CH! The run was  active flux method rate of 237 '8 The transmission coeffi-
performed at a constant temperature of 300 K and a constantent after 2 ps is slightly lowerx=0.82, and leads tk?F
pressure of 1 bar, bonds containing hydrogen atoms were209 s'1.
constrained, the time step was 2 fs, long-range interactions In principle the rate constant should be independent of
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FIG. 5. Transmission functioffiopen and reactive flux ratésolid) as a
FIG. 4. Transition state theory ra(solid), transmission coefficiertopen), function of the location of the transition state of a cidilarene in chloro-
and reactive flux ratésolid) as a function of the location of the transition form.
statein vacuq for t=0.6 ps(squaresandt=2.0 ps(circles.

the precise choice of the transition state, as long as this staf@® Gaussian and the weight factor as the new probability
is close enough to the top of the free-energy barrier. To tedistribution from which velocities were drawn. Between 500

this requirement in the case of the reactive flux method an@nd 1000 relaxations runs were found to suffice for an accu-
to verify our results, we have calculated the rate constant d&te calculation of the transmission coefficient. The effects of
a function of£*. At various values the transmission function the transition state on the transmission function and the re-

was evaluated by performing 2000 relaxation runs following2ctive flux rate are shown in Fig. 5. In the range &f
the procedure outlined in our previous article. These transP€tweent0.45 and—0.45 the transmission function is seen

mission functions behaved as expected. For positeir- to vary by a factor of 10. The reactive flux rate constant, on

tually all molecules with a positive transient velocit(0),  he other hand, is fairly c?nstant. i vari »
ended up as a paco. A considerable amount of those with a 'SOmerization rates of calitjarenes with various side-

negative transient velocity also ended up as paco, and theffuPs and in yr;\]rlcr)]us slglvents havfeht_)een mez;sured with
number increased with increasiéig. For negativet” itwas ~ NMR.“"="With the cali{4]arene of this paper, however,

the other way around: many molecules with a positive tran_(:omparison of the theoretical and experimental transition

sient velocity were found to recross the transition state, whildates I complicated by the fact that the paco conformation is

molecules with a negative transient velocity recrossed onl;?nly very shprt-hved. Hence pnly thg cone tq inverted cone
rarely. As reported earlier, a significant fraction of the mol-ate IS expe'rlmentally accessﬂ;le. Th!s Inversion resu'lts frgm
ecules entering the paco well was found to return to the con@ Seres Of independent re_actlons W'Fh one phenyl ring flip-
after a single oscillation of about 0.7 ps in the paco well. wePind Over in each stef, as illustrated in Fig. 6. Because of
therefore calculated the reactive flux rate constant using twsYMmetry, the flowchart can be reduced to

transmission coefficients, namely the valuex¢f) at 0.6 ps,

as if the wells are perfect sinks, and the one at 2.0 ps. In Fig.
4 it is evident that the rates hardly depend on the transition
state, as it should be. C

The effect of the chloroform solvent on the cafifarene
is to shift the probability distribution to the cone conforma- ko 9 ks kq
tion, leading to an equilibrium constant of X40 7 and
Apaco Acone= 9-1 kecal/mol. With A(O) —Acone=13.6 keal/
mol the transition state rate decreases to 84 $he trans-
mission function for this systehwas found to be 0.43, so HereC denotes the cone with all four phenyl rings pointing
the reactive flux rate equals 36" The solvent is thus seen upwards,P denotes the set of four conformations with three
to reduce the reaction rate by a factor of 6. phenyl rings pointing upward#) denotes the set of six al-

In our previous article we calculated the transmissionternate conformations with two phenyl rings pointing up-
coefficient from a set of 2000 relaxation runs. The transitionyards, andC’ andP’ are defined likewise as inverted paco
velocities £(0) were sampled from a Gaussian distributionand inverted cone. The five time constants of the relaxation
and according to Eq(1.5 these velocities were used as processes of this system are obtained as the eigenvalues of
weight factor in an average over all runs. In order to reducehe matrix of the transition probabilities. The relevant eigen-
the number of relaxation runs we here used the product ofalue is

Ky ks kg ko

—_— —_—

(3.2
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4976 W. K. den Otter and W. J. Briels: Conformational transition of calix[4]arene

FIG. 6. Flowchart of the various stable conformations and the possible interconversions of &laane. In the cone conformatig@) all phenyl rings are
pointing upwards, in conformation “1” the ring numbered 1 is pointing downwards, etc. The entire outer circle corresponds to the invertet) came (C
which all phenyls are pointing downward. The 1,3-alternate conformations are not shown.

1 +k3) and no changes iA. In Fig. 6 the rates of going from
k=5 [(kytkatks)— V(ky+ kot Ka)?— 4kyks] one particular conformatiofe.g., a paco with phenyl ring
number 2 rotatedto another particular confirmation are
~k, Ks 3.3 marked by(double primes. These primed rates can be cal-
ko+ks' culated with the techniques described in this paper, while the

where in the second line it is assumed thatis much unprimed rates are the experimentally accessible fatate
smaller than the othek’s. The corresponding eigenvector Now want to find a relation betwednandk; .

describes the exchange of molecules betweemdC' with There are four possible routes leading from the cone to
accompanying changes i smaller by a factor ok,/(k, the paco, sock;=4k;. Rather than calculating, and k;
J. Chem. Phys., Vol. 107, No. 13, 1 October 1997
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TABLE |. Computed and experimental reaction rates. proximate the hyperplane(x)=§* by a tangent plane at
Method KTST/g 1 B st R*. The unit \_/ector normal to this hyperplaneRit follows
from the gradient ok, Eq. (2.7),
Vacuum normal modes 174
Vacuum umbrella sampling=0.6 ps 256 0.92 237 Q- Ei: 1drkSk
Vacuum umbrella sampling= 2.0 ps 256 0.82 209 N= 1453 (g2 (A1)
Chloroform umbrella sampling 84 0.43 36 k=1(0)
N )
H-NMR experiment =83 The tangent plane is spanned by a set NE-3L unit vectors
perpendicular toN,
EX, k=1,2,3
exactly, we will estimate their values from transition state  T!={ QI, j=1,....,3N—-6, j#r, (A2)
theory based on normal-mode analysis. The rate of the paco $+diQ, k=1,2,3

to cone transition then ik,=k,=1.1x10% s™}, AA*=6.6 _ _ _
kcal/mol. The rate of the paco to alternate transition equal¥/here the final three vectors still need to be orthonormalized.
the sum of the two different paco to 1,2-alternate transitions] Ne eigenfrequencies of vibratiow; , in the hyperplane

ks=ki+Kj3, with k3=2.1x10® s71, AA*=6.2 kcal/mol aN-1
and k3=1.1x10° s!, AA*=6.6 kcal/mol. With AA* X=R*+ > xT! (A3)
=12.4 kcal/mol, the paco to 1,3-alternate transition is too =1

slow to be of any influence. Substitution of these rates in they.e found by diagonalizing theN8—1 dimensional Hessian
second line of Eq(3.3) yields k=2.9%;, so as a rule of 4 R*

thumb the experimentally observed cone to inverted cone
ratek equals three times the cone to paco reaction kate *_ "
Of course, this estimate should not be taken for granted, but " K™ o797
it gives a reasonable approximation of the effect that isto b
expected in exact calculations.

Gutsche and Baugrmeasured & A* of 14.9 kcal/mol,

(A4)

%ach N - 1-dimensional eigenvector is next transformed
into a 3N-dimensional atomic displacements vector by sum-

k=189 s}, at the coalescence temperature of 36 °C. Arakimir,]g over theT' using t.he components of the eigenvgctor as
etal? found a slightly higher coalescence temperature 01we|ght factors. The displacement vectors are again subdi-
44 °C. and a rate of 204 AA*=15.7 kcal/mol. at 25 °C vided into three groups, the translational vectais, iden-

With the rule of thumb they yield a cone to paco rafeof :l:cal t202theErI], %nd tTe rc:j'tak':loE:aI \/I:e(r:]tolS‘ ' qf thi form of
63 and 7S, respectively. These figures compare surpris- 9. (2.2 with ri’ replaced by, all having eigenfrequency

. . *J' - s
ingly well with the 36 s calculated with the reactive flux Zero, and the. vibrational vectoiQ™’ all having positive
method. The various rate constants are summarized iﬁlgenfrequenues. Analogously to H@.6), we now express

Table | any configuration as
3 3N-—-7
X=A*R+2 yE*, R=R*+ X ofQ*l+p*N,
IV. CONCLUSIONS =1 i=1

(A5)
The reaction coordinate based on the unstable normal : ks :

mode at the saddle point of the potential energy surface ig/here the rotation matrih™ is determined by
shown to be a very convenient reaction coordinate, both in  0=(X—A*R*).A*S*K, ke{1,2,3. (A6)
the calculation of the probability distribution along the reac- . . ) . ) .
tion coordinate and in the calculation of transmission coeffi-'tC:S Obvious that£(X) (Wlth 3 St"l defined with respect to
cients. The free-energy function obtained by a normal-mod& ) iS & function of theaj" and 8* only, and does not de-
analysis as a function of proves to be an excellent first P€nd OnA*. Because of the construction of ti@"’, we
guess at the umbrella function. The reaction rates calculated®Ve
with the reactive flux method for a calklarenein vacuo EX) =&+ B*|Vru &, (A7)
and in chloroform are virtually independent of the chosen
transition state. The isomerization rate of the solvated molUp o first order inaj andg*, where it was used that is a

ecule is in good agreement with experimental data. unit vector parallel tov,¢. o
The integrals of the partition function in ER.13 are

solved analogously to those in E@.8). The sole exception
APPENDIX: NORMAL-MODE ANALYSIS AND Q(¢) is the integral ove* which, because of the delta function,

) ) ) N _yields not a frequency factor b{i¥ g+ & 1, with
In this Appendix we will calculate the partition function ,
N 0"§
>,

Q(&*), defined by Eq(2.13), within the harmonic approxi-

mation. To this end we first locate the minimum energy con- [Veeé|= =\ Vmax
figurationR*, as indicated in Sec. Il B. We next perform a o
normal-mode analysis in the neighborhoodRif. We ap- We then arrive at

1/2 3

1/2
1+ >, (dL)Z} . (A8)
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. 2a-MkT\32  FY2 [ 872kT\ 32 ‘% e 12 The required eigenfrequencies are found as the square roots
Q=7 V' - | 2 (Ialgle) of the eigenvalues of theNs— 7-dimensional Hessian &*,
3N-7 9
kT N Moo

% g € F T V] P L (Al4)

i1 Ao

' and differ from the eigenfrequencies used in E15.

-(27kT)Yh 1, (A9)
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