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Abstract

Traditional kinematic wave theory neglects considerations involving free energy of a surface and nucleation at the
boundary of a surface. As a consequence, strictly speaking this theory is only applicable to freely floating perfect crystals,
and when applied to more complex situations the conclusions may be false. In this paper we argue that boundary
conditions, to be taken into account at interface junctions, affect the shape of the crystal. The effect is either microscopic
or macroscopic. In the first case, we have a “kinetic meniscus”, a curved transition of the size of the critical radius. In the
second case, the growth rate is affected macroscopically and we may consider the boundary as a “velocity source” for the
affected interface. These concepts are essential elements in a version of kinematic wave theory that is applicable to all
physically relevant situations. © 1999 Elsevier Science B.V. All rights reserved.

PACS: 81.10.Aj; 82.20.Mj
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1. Introduction

In the traditional kinematic wave theory as in-
troduced by Frank [1] and Chernov [2], shape
evolution of crystal surfaces is considered from
a continuum point of view. This description deals
with the evolution of a free surface obeying a cer-
tain R(n) function (R = perpendicular growth rate,
n = orientation vector). This is a standard text-
book subject [1,2,4,6]. However, this “traditional”
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discussion neglects boundary conditions which
might arise at boundaries of a surface, such as
3-junctions (where three interfaces meet), D-junc-
tions (where a dislocation meets an interface), 4-
junctions, edges and vertices. As a consequence,
traditional kinematic wave theory is only fully rel-
evant for “freely floating perfect single crystals”,
a fact which is not always properly recognised.
Geometrical effects due to boundary conditions as
mentioned above are neglected.

In this paper we argue that the consideration of
these boundary conditions is essential in those
cases which are not just freely floating perfect single
crystals, 1.e. the majority of technical situations. We
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show that under certain conditions, the boundaries
can prescribe the growth or etch rate of a macro-
scopic part of the crystal. In such a case we may call
them “velocity sources”. Well-known examples
avant la lettre are dislocation junctions and twin-
plane reentrant edges. In growth or etch fabrication
processes for semiconductor devices using inert
masks, the mask-junction may act as a velocity
source. In that case, the commonly accepted con-
struction by Jaccodine [7] and Shaw [8], neglect-
ing the extra boundary conditions, leads to false
conclusions. Indeed, we have found evidence for
such behaviour in etching experiments on silicon in
alkaline solutions [9].

In the following we use an operator notation for
compact formulation of shape-related equations.
The vector operators P and @ work on scalar
quantities, which are functions of orientation n,
a unit vector variable on the unit sphere:

P, polar-plotting vector operator:

P¥(n) = n¥(n). (1)
0, “Gibbs — Wulff” vector operator:

Q%(n) =n'¥(n) + 0/0n{¥(n)}. )

where 0¥/0n =e,0¥/0p +e, 0¥/09, where
e, and e, are orthonormal vectors in the plane
tangent to n, and ¢ and 9 are the related tilt angles.
There are two such functions ¥ relevant to crystal
growth. The first is ¥ = 7, the surface free energy.
0y(n) is the equilibrium shape of a crystal, which
can be obtained by applying the well-known
Gibbs—Wulff construction [3,5,10] to the polar plot
of the surface free energy Py(n). The second is
¥ =R, the growth rate. Analogously, QR(n) is
identical to the growth shape of a crystal.

Furthermore, we define the vector velocity R of
a point in a moving surface as the velocity in the
direction of the kinematic wave trajectory [1], i.e.
the trajectory that preserves orientation. The kin-
ematic wave theory presupposes that R depends on
n only, which yields the identity R = QR(n). The
motion of structural elements such as junctions,
edges and vertices can also be represented by vector
velocities R;.

Equations for the mechanical behaviour of an
interface can also be written with the aid of the

operators introduced above. The force exerted by
a surface on an edge or junction with other surfaces,
aligned with unit vector Z, is given by [3,10]

F=0yn) AL (3)

where A denotes the vector exterior product.

2. Boundary conditions relevant to junctions

The interfaces meeting at a junction are in gen-
eral different and therefore have their own growth
rate and surface free energy functions R;(n) and
y{n). The following boundary conditions (BC) ap-
ply in general:

(1) The connectivity BC, ensuring that the junction
keeps contact with all, say n, interfaces connected in
the junction: (n; is the orientation of interface i)

‘.Rj'n,- = R,-(ni) (l = 1, 2, ceey n) (4)

(2) The following BCs (2a) and (2b) are mutually
exclusive. They are related with the free energy or
the step-generating activity of interfaces and dislo-
cations. Both are based on the difference in bond
structure between boundary- and nonboundary
positions. The BC (2a) applies to the case that
nucleation is negligible which may be considered as
the near-equilibrium case, and is to be replaced by
the BC (2b), if necessary, which can be seen as the
kinetic extension of (2a).

(2a) Mechanical-equilibrium BC: For simplicity
we restrict to the case of a linear 3-junction where
three interfaces meet in a line. In a plane perpen-
dicular to this line the force-equilibrium condition
reads [3,10]

Z 0ydn;) = 0. (5)

When all three y;(n) functions and the junction-line
direction are given, only one orientational degree of
freedom is left for the system.

(2b) Nucleation BC: In the case of faceted interfa-
ces growing or dissolving below the roughening
temperature, interface motion is essentially related
with step motion and a boundary may have an
active role in the nucleation of new steps. Such
step-nucleation imposes an interface velocity and
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as a consequence also an orientation, just as BC
(2a). However, it cannot be expressed in a kineti-
cally extended version of Eq. (5), because the junc-
tion is a hybrid object that is not really continuous.
At the junction “atomistic” phenomena like the
nucleation of steps take place intermittently. The
statistical result is an imposed point on the QR
curve, to be obtained from experiment or from
Monte Carlo simulation. The mathematical effect is
identical as for BC (2a).

3. The wall-junction or “‘single-mobile 3-junction”

The simplest possible case of a mobile 3-junction
is the contact line between a moving crystal inter-
face and an immobile wall, i.e. the wall of a growth
vessel or a mask as used in growth or etch tech-
niques for semiconductor devices. This case, with
only one mobile interface and a single orientation
variable ¢, has been considered by Shaw [8]. We
use his analysis as a point of departure. We start
from a situation where a crystal/parent phase inter-
face of orientation ¢, extends towards the wall, see
Fig. 1 (inset). Such a situation may occur, for in-
stance, when a freely growing single crystal has just
hit the wall of the growth vessel. We assume that
the orientations ¢, and ¢, (that of the wall) can
both be chosen freely relative to the crystal. In the
approach followed by Shaw, the QR(¢) curve is
drawn with its origin in the junction at ¢t = 0, see

] wall

{wall junction

wall
or mask

Fig. 1. Relative orientation and shape of wall and QR curve for
the wall-junction.

Fig. 1. Shaw’s procedure to construct the shape
after unit time is as follows. The ¢, half-plane is
translated along the vector QR(¢ ). From the point
OR(¢p,) the shape is continued along the QR(¢p))
curve. “Ears” beyond self-intersections of the curve,
if any, are cut off because they are nonphysical.
Finally the shape obtained by this procedure is
confronted with the wall which acts as a knife. This
means that it is a “wall” in the sense that it prevents
the interface to extend beyond it, but it does not
affect the orientation of the interface.

For further discussion, we make two special
choices which together can illustrate all phe-
nomena induced by boundary conditions: one for
the shape of QR(¢) and one for the orientation of
the wall relative to that shape, see Fig. 1. In Fig. 2,
we have drawn the function S(¢) = R(¢p)/| sin ¢, i.e.
the velocity of the wall junction if the orientation
@ of a moving interface would extend throughout the
wall; i.e. a possibly “virtual” velocity. The real velo-
city is called R;. The angle ¢, ranging from 0 to
180°, is defined so that ¢ = 0 describes an interface
parallel to the wall and approaching it. The maxi-
ma and minima of this function correspond with
the intersections of the @QR(¢p) curve in Fig. 1 with
the wall.

0° ?, Py 180°

¢ —

Fig. 2. Virtual and actual wall-junction velocities correspond-
ing with Fig. 1. Continuously curved and partly dotted
line = S(¢); solid line = N () = actual wall-junction velocity;
regions B and C: velocity source behaviour, no kinetic meniscus;
regions A, D and E: kinetic meniscus, “classical” behaviour of
junction velocity.
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Now we make a third special choice: i.e. the
orientation ¢, as imposed by BC (2) is chosen in the
first ascending section of the S function, as in-
dicated in Fig. 2. The total ¢ range between 0 and
180° can now be divided into the five regions A, B,
C, D and E which are defined by the position of
o and of the extrema in the S function as indicated
in Fig. 2. Special cases of the interface shapes
emerge when ¢, is situated in each of these ranges,
see Fig. 3a—Fig. 3e:

Incase A (¢, < @0, S(@) > S(@y)) the construc-
tion according to Shaw predicts a value Rj¢.,)
which exceeds S(¢o). So there is obviously a para-
dox with BC (2). The solution of this paradox is
that the basic assumption of kinematic wave the-
ory, i.e. that the growth rate depends on orientation
only, is not obeyed in the vicinity of the junction.
The ¢q-oriented interface at the junction cannot
stay behind physically; this induces a concave cur-
ved section that joins the orientation ¢, at the wall
with the orientation ¢, further on. The curvature
induces a pressure difference between the bulk
phases and therefore increases the driving force for
crystallisation or etching (Gibbs—Thomson effect).
This curvature-induced shift in the driving force
provides a mechanism that accelerates the ¢o-
oriented interface automatically, until it keeps up
with the ¢ -oriented interface. But this implies that
in this curved part of the interface, the prerequisite
of the traditional version of kinematic-wave theory,
1.e. constant driving force all over the surface, is no
longer obeyed. When R is known as a function of
n and the driving force, the stationary shape of the
curved part can in principle be calculated from the
identity R = R{¢p,,) for all points on the curve. In
Ref. [11] we have shown that the size of the curved
part is roughly the size of the critical nucleus for the
applied driving force. Such a curved part may

properly be called a kinetic meniscus, in analogy
with a gravity-induced meniscus in a fluid surface
near a container wall.

In case B (¢, < @o, S(¢,) < S(pg) the ¢-
oriented interface at the wall can escape from the
value S(¢,,) predicted in the absence of BC (2). The
re-entrant edge between ¢, and ¢, moves away
from the junction and a growing, i.e. macroscopic
part of the interface is “nucleated” with orientation
@o. This interface is planar in the vicinity of the
junction: there is no kinetic meniscus. The vectors
OR(¢o) and R; diverge. This case is an example of
a velocity source that accelerates the junction and
the velocity of the interface.

In case C (¢, > @o, S(@) > S(po)) we have
a similar effect as in case B but now the edge
between ¢, and ¢, is protruding. Consequently,
the junction is a velocity source that decelerates the
junction and the velocity of the interface.

In case D (¢, > @o, S(@4) < S(py)) we have
a kinetic meniscus again: now S(¢o) > S(¢.) but
the @o-interface cannot overtake the junction phys-
ically. Again, a kinetic meniscus is generated.

Finally, in case E (¢, > @43 > @0, S(¢0) < S(¢0)
but S(¢.,) > S(¢,3)) the construction according to
Shaw does no longer predict the orientation ¢, to
occur at the wall but rather ¢,3, the orientation of
the @R/wall intersection with the lowest velocity.
As S(@o) is faster, we have a kinetic meniscus.

4. Generalisations and conclusions

As it is impossible to work out a complete picture
of velocity-source phenomenology for all possible
junctions within the framework of a short paper, we
have restricted ourselves to a single tailored
example. For a more thorough discussion we refer

Fig. 3. Shape evolution for cases A-E of Fig. 2.



J. van Suchtelen et al. | Journal of Crystal Growth 198/199 (1999) 17-21 21

to [11,12]. General remarks derived from these
extended discussions include:

Velocity source behaviour is not a property of
a junction as such; it is a property of a junc-
tion + interface pair. A junction can nucleate
none, one or more of the interfaces attached to it.
The casuistics of more complex cases than the
example used above (2- and 3-mobile 3-junc-
tions, 4-junctions, vertices etc.) is quite extended.
The concepts “velocity source” and ‘“kinetic
meniscus” and their phenomenology, however,
are generally applicable.

Certain cases of edges and vertices in single crys-
tals seem to show velocity-source behaviour too.
This case arises in cases where 7 + 0%y/dp* < 0
which destabilises a planar surface (“zigzag insta-
bility” [11]).
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