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Abstract 

The least squares criterion, as used by the backpropagation learning rule in multi-layer feed forward neural networks, 
does not always yield a solution that is in accordance with the desired behaviour of the neural network. This is for example 
the case when differentiation between different types of errors is required and the costs of the error types must be taken 
into account. In this paper the application of other error measures, specifically matched to the application, is investigated. 
The error measures used are based on the average risk, a function that is a weighted combination of the probabilities on 
the different types of errors that may occur. Special attention is payed to applications where the input patterns are not 
independent, and the average risk does not depend on the output of a single input pattern, but on its neighbourhood, or 
context. The ideas are illustrated with pulse detection in a one dimensional signal. 
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1. Introduct ion 

Multi-layer feed forward neural networks using the 
error backpropagation learning rule have been proven 
successful in numerous applications. Therefore, they 
have become a popular subject for applicative and the- 
oretic research. The ability of  these networks to real- 
ize complex functions, combined with the learning by 
example approach, makes these networks well-suited 
to many different applications in the fields of  pattern 
recognition, control, image processing etc. 

The error backpropagation learning rule, as de- 
scribed by Rumelhart, Hinton and Williams (1986) 
uses the squared error (SQE) as an error measure. 
The error backpropagation learning rule is an opti- 
misation method that is used to minimize this error 
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measure. In many cases the application of  the least 
squares criterion results in optimal or acceptable sub- 
optimal solutions. There are cases, however, where 
the optimal solution according to the least squares 
criterion does not coincide with the desired solution, 
because it does not take into acount the specific types 
of  errors for the application. This research was initi- 
ated because just that problem was encountered in the 
design of  a neural network for edge detection in grey 
level images (Spreeuwers, 1991; Spreeuwers, 1992). 
The performance measure we use for the evaluation 
of  edge detectors, the average risk (AVR) evaluation 
method (van der Heijden, 1992; Spreeuwers and van 
der Heijden, 1992a; Spreeuwers and van der Heijden, 
1992b), takes into account different types of  errors 
and weighs them in accordance with the application. 
For example, if the objective of  an image processing 
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Fig. 1. Back-propagation learning; the error of the output is min- 
imised using an iterative optimisation strategy. The error is a dif- 
ference measure between the actual and target outputs. 

system is to recognize an object in an image, it may 
be acceptable if the edges are not detected on their 
exact position as long as they are detected reliably. 
Thus, in this case small displacement errors can be 
safely ignored. The squared error measure that is used 
in the error backpropagation learning rule, however, 
appears to penalize these displacement errors very 
heavily, as will be explained in detail later. In this 
case we are looking for operators that are optimised 
for minimum AVR, rather than for minimum SQE. It 
will be shown that the SQE measure is a special case 
of the AVR error measure. 

2. Accuracy of neural network solutions 

The objective of training a neural network is to ob- 
tain a function with a certain desired behaviour. For 
this purpose, a certain size and architecture are chosen 
for the network, and the connection weights are ad- 
justed until the network approximates the desired be- 
haviour as accurately as possible. The error backprop- 
agation learning rule is an iterative numerical function 
optimisation method that is used for this task. The net- 
works are trained using examples of the desired opera- 
tion, i.e. input patterns with the desired corresponding 
output patterns. The learning rule attempts to mini- 
mize the error of the network for the example set as a 
whole. This process is illustrated in Fig. 1. The accu- 
racy of the approximation of the resulting behaviour 
to the desired behaviour depends on the following fac- 
tors: 
• quality of the used training set, 
• size and architecture of the used network, 
• optimisation criterion, 
• optimisation method. 

Since the desired behaviour is actually described by 
the training set, this determines the performance of the 
resulting network to a great extent. The training set 
should be representative of the desired behaviour. This 
means that enough training samples of good quality 
must be available to represent the desired behaviour. 
Literature addressing the dependency of neural net- 
work (and other operators) performance on the train- 
ing set is e.g. (Koplowitz and Brown, 1981; Kraai- 
jveld, 1993; Raudys and Jain, 1991). 

The neural network must also be able to approxi- 
mate the desired behaviour sufficiently accurately. If 
the desired behaviour becomes more complex, more 
processing elements and/or layers are required. How- 
ever, if the network becomes very large, this slows 
down the learning process, and it may result in bad 
generalization from the training data. One paper ad- 
dressing the problem of choosing the optimal size for 
the network for a certain application is (Kung and 
Hwang, 1988). 

Less attention in literature is given to the optimi- 
sation criterion used in error backpropagation neural 
networks. The 'standard' error backpropagation learn- 
ing rule uses the least squares error criterion, which 
minimizes the sum of the squared errors of the train- 
ing set: 

SQ E = Z Z ( tpi -- ypi ) 2 (1) 
p i 

where: 
t pi = the target output for input pattern x p, output i; 
ypi = the actual output for input pattern x p, output i; 
the summations are over all outputs i and training sam- 
ples p. 

The optimal solution with respect to the least 
squares error criterion, is the set of weights for a net- 
work that results in the smallest SQE, for the given 
training set and network. This solution, however, does 
not always correspond to the desired solution, as was 
e.g. the case for the neural network edge detector 
mentioned in the introduction. In (Holt, 1992; Holt 
and Semmani, 1990) an alternative error measure 
is proposed based on a logarithmic combination of 
the actual and target outputs. The authors show that 
this improves generalisation, reliability and conver- 
gence speed of the training process. In (Nedeljkovic, 
1992; Nedeljkovic, 1993) an error measure is pro- 
posed that minimises the probability of classifica- 
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tion errors, rather than the SQE. Neither of these 
approaches introduces a weighted cost measure of 
different types of errors like the AVR. Because of 
this cost weighting of different error types, the AVR 
can be better adapted to a specific application with its 
specific types of errors. 

The error backpropagation learning rule is a gradi- 
ent descent optimisation method. This means that the 
weights of the network are always adjusted in the di- 
rection of the negative derivative of the SQE. It should 
be remarked that this optimisation method is not very 
robust: it can easily get stuck in local minima (gradi- 
ent = 0), and learning can be very slow if the gradient 
is small. Some enhancements to error backpropaga- 
tion and some other optimisation methods for feed- 
forward neural networks can be found in (Barnard, 
1992; Dahl, 1987; Herz et al., 1991; Hush and Salas, 
1988; Jacobs, 1988; Parker, 1987). 

In this paper, the influence of the error criterion on 
the performance of neural networks is investigated. 
In the next sections first it is analysed under what 
conditions the least squares error criterion does not 
result in a correct solution and then it is shown how 
it can be replaced by a more appropriate optimisation 
criterion. In Section 5 an error criterion, the minimum 
average risk, is described that takes into account the 
costs of different types of errors. A neural network for 
pulse detection in a one dimensional signal is used as 
an illustration of choosing an error measure matched 
to the application. 

I network I \ , . "  - . I . . . . . . . . . .  I scanning direction 

I H 'H 
Fig. 2. Pulse detection with a neural network. The network scans 
the signal, taking a window of the signal as its input. Its single 
output should be 1 if at the centre of  the window a pulse is present 
and 0 otherwise. 
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Fig. 3. Double counting of errors for shifted detected pulse relative 
to target pulse. The target at time p is shifted to the right relative to 
the network output. Because the squared error does not differentiate 
between error types, these errors are counted double, whereas in 
reality they are often less serious than other types of errors. 

3. Non-optimal least squares solutions 

If the SQE measure for a network and a training set 
is exactly equal to 0, then for each training sample the 
network generates exactly the target output. Thus if 
SQE = 0, then the behaviour, as described by the train- 
ing set, is optimally realized in the neural network. 
This, however, is not necessarily equivalent to the de- 
sired behaviour. For instance if the training set does 
not represent the desired behaviour well, the perfor- 
mance on the training set may be (nearly) perfect, but 
on another independent data set the performance may 
be much worse. For example a network with too many 
processing elements and connection weights may be 
tuned to specific training samples, which often results 
in worse generalisation. 

There is another cause for discrepancy between the 
desired behaviour and the performance of a network 
on a training set. A neural network can exhibit the de- 
sired behaviour while the SQE is relatively high. It is 
even possible that a network approximates the desired 
behaviour better for certain higher values of the SQE 
error measure. This is e.g. the case if the SQE error 
measure punishes heavily certain types of errors that 
are in fact less serious. The reverse is also possible, 
that the SQE is not sensitive to or too insensitive to 
certain types of errors. The problem and solution pre- 
sented in this paper refer to these types of inaccuracies 
of the SQE as an error measure. The above described 
problem is very likely to turn up in cases where the in- 
put patterns of a neural network are not independent, 
but have a mutual relation. This is the case e.g. in sig- 
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nal and image filtering with neural networks where a 
small neural network "scans" the signal or image. As 
an example, consider a neural network with 3 inputs 
that has to detect pulses in a one dimensional digital 
signal (see Fig. 2). In order to determine if there is a 
pulse at time t in the signal, the sample at time t and 
the neighbouring samples are presented as input pat- 
tern to the network. The single output of the network 
should be 1 if there is a pulse at time t and 0 if not. 
In this case the relation between the input patterns is 
temporal. The input patterns presented to the neural 
network pulse detector cannot simply be considered 
as independent patterns, but have a mutual relation, 
which also determines the types of errors that can oc- 
cur. Suppose that training data is available of which 
the pulses have been localised (e.g. by human inspec- 
tion) with an accuracy of 1 sample period. This means 
that if for a sample in the training set the target is 1 
(a pulse is present), it might have been the previous 
or the next sample that actually is the position of the 
pulse. Now consider the effect of this on the squared 
error. In Fig. 3 the target output of sample p is 1, but 
actually the pulse is at position p - 1. The network 
correctly detected the pulse at position p - 1, i.e. its 
output for input pattern p - 1 is 1 and for p it is 0. 
As shown in Fig. 3 this results in a contribution of 2 
to the total squared error for these two input patterns. 
Thus the error due to a one sample period displace- 
ment of the pulse is counted twice. Since the SQE 
due to simply missing the pulse is only I, the network 
will tend to suppress the pulse. Therefore, a network 
that is trained for minimum SQE for this problem will 
probably fail to detect many of the pulses. As a mat- 
ter of fact, the behaviour of a SQE minimised neural 
network can be predicted in this case. Suppose that 
the probability on a shift of one period to the left is 
f ( - I  ), a shift to the right f (  1 ) and no shift is f ( 0 ) .  
The outputs at position - 1,0 and + 1 are: y_ I, yo and 
y+j. The expectancy of the squared error for a pulse 
at the input will be: 

E{SQE}=f(-I)[(I _ y_,)2 + yg + y2+,] 
2+ 2 + f(0)[y2_, + ( 1 - Y o )  Y+,] 

+ f ( + l )  [y2_ 1 + y02 + (1 - Y+1)2]. 
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oe{sQe} oe{so.e} 
O y - i  ,920 

(2) 

The minimum squared error occurs if the derivatives 
of SQE to y_ i, yo and y+ 1 are equal to 0 thus: 

OE{SQE} 

O y + l  
0 (3) 

- 2 f ( - 1 ) ( 1  - Y-l )  + 2 f ( 0 ) Y - J  + 2 f ( + l ) y _ l  =0,  

2 f ( - 1  )Y0 - 2 f ( 0 )  (1 - Y0) + 2 f ( + l  )Y0 = 0, 

2 f ( - l ) y + l  + 2 f (0 )y+ l  + 2 f ( + l ) ( 1  - Y+I) --0 

(4) 

which leads to: 

f ( - l )  

y - i  = f ( - 1 )  + f ( 0 )  + f ( + l ) '  

f(o) 
Y ° = f ( - 1 ) + f ( 0 ) + f ( + l ) '  

f ( + l )  
(5) 

Y+1 = f ( - l )  + f ( 0 )  + f ( + l ) "  

Thus if e.g. f ( - 1 )  = f ( 0 )  = f ( + l  ) = l ,  then y_~ = 
J also. Y0 =Y+l = g 

Because the target output is 1, the error is quite high 
and will never be close to O. Furthermore, if there is 
noise present in the signal, detection of the pulses be- 
comes very difficult, because the output is so weak. 
The conclusion that can be drawn from this is that an 
error measure for a certain application should be able 
to differentiate between the different types of errors 
that can occur for this application and can take into 
account the seriousness of the different types (gener- 
ally called costs). The application of the SQE error 
measure in this light is rather limited. 

4. Use of other optimisation criteria in error 
backpropagation 

The derivation of the error backpropagation learning 
rule by Rumelhart et al. (1986), begins with the intro- 
duction of the error measure, which is almost equal to 
the the least squares error criterion. The error criterion 
they use is defined as: 

1 E = - ~ E Z ( t p i - y p ' ) 2  (6) 
p i 

where: 
t pi = the target output for input pattern x p, output i; 
ypi = the actual output for input pattern x p, output i; 



L. Spreeuwers/ Pattern Recognition Letters 16 (1995) 1221-1236 1225 

the summations are over all outputs i and training sam- 
ples p. 

For a multi-layer feed forward network Rumelhart 
et al. (1986) derived the following weight update rule 
for a gradient descent optimisation method: 

AW~k ij = 7]¢~PkiOI;i_, (7) 

where: 
Aw~k ij = the weight update of a connection between 

processing element j in layer k - 1 to processing 
element i in layer k for an input pattern xP; 

r /=  the learning rate; 
~pi = an error measure local to the processing element 

i in layer k for input pattern xP; 
oPJj = the output value of processing element j in 

layer k - 1 for input pattern x p. 
The 6's in Eq. (7) are determined recursively from 

the output in the direction of the input (hence the name 
error backpropagation). For the output layer (layer 
L) the 6's can be calculated directly from the error 
tPi _ ypi: 

~ i  = ( tPi _ ypi) f ,  (ne t~i ) .  (8) 

For each lower layer, the 6's can be calculated from 
the tS's in the higher layers: 

t~Pi = Z pi hi , pi 6k+lWk+lf ( n e t  k ) (9) 
h 

where: 
f / ( )  = the derivative of the transfer function of a 

processing element; 
ne t  pi = the weighted sum of the inputs of processing 

element i in layer k for input pattern xP; 
hi = the connection weight of the connection be- Wk+l 
tween processing element i in layer k to processing 
element h in layer k + 1; 

summation is over all processing elements h in layer 
k + l .  

Note that since L is the last (output) layer, ypi pi = 0 L . 
The question now is how these equations change if 

an error measure other than the S QE of Eq. (6) is used. 
Since the t~'s in the lower layers are calculated from 
the t~'s in the higher layers, it follows that the error 
measure is only explicitly present in the calculation of 
the t~'s of the output layer. If the SQE error measure of 
Eq. (6) is not substituted into the calculation of the 6's 

of the output layer, instead of Eq. (8) the following 
expression is obtained: 

t~pi a E ! n i 
= - 3 o P i  f ( n e f ~ ) .  (1o) 

This is a general formula for the calculation of the 
8's of the output layer, for any error measure E. Thus 
other error measures require only a slight modification 
of the learning rule. 

5. Average risk, an error measure matched to the 
application 

In order to obtain an error measure that can be used 
to evaluate the performance of an operator for a certain 
application, the types of errors that can occur should 
be analysed. Furthermore the seriousness of each type 
of error should be investigated or defined and the prob- 
ability of occurrence of the errors must be determined. 
The latter can be estimated by the frequency of occur- 
rence of each type of error in the training set: 

~ ( e i  ) N ( e i )  (11 )  
N 

where: 
P ( e i )  = the estimated probability (frequency) of 

error type el; 
N ( e i )  = the number of occurrences of error type ei 

in the training set; 
N = the number of samples in the training set. 

The average risk (AVR) (Devijver and Kittler, 
1982; Spreeuwers and van der Heijden, 1992a; 
Spreeuwers and van der Heijden, 1992b) is an error 
measure that takes into account these three factors: 
types of errors, their costs and their probabilities. The 
average risk for a certain type of error is defined as 
the product of the probability of this type of error and 
its cost. The average risk of all errors is the sum of 
average risks of the individual errors: 

= Z P ( e i ) A ( e i )  (12 )  A VR 
i 

where: 
P ( e i )  = the probability of error type el; 
A(ei )  = the cost of an error type ei; 
summation is over all error types i. 
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The probabilities of the different error types can be 
estimated from a training set using Eq. (11 ). Thus, 
for a given set of costs A, the AVR can be estimated 
from the training set. A neural network should be op- 
timised for the average risk in order to obtain the best 
approximation of the desired behaviour. Incidentally, 
for classification this leads to the Bayes decision rule, 
which is generally accepted as the optimal classifier 
(see e.g. (Devijver and Kittler, 1982) ). 

From Eq. (10) it is clear that the error measure for 
error backpropagation must be a continuous and dif- 

pi the output of the network. ferentiable function in o L , 
Because the average risk error measure of Eq. (12) is 
neither continuous nor differentiable, in order to train 
a neural network for minimum average risk, an ap- 
proximation of Eq. (12) must be derived that is con- 
tinuous and differentiable. The solution to this prob- 
lem, presented below, is based on the assumption that 
for classification problems at the end of the learning 
process for most input patterns the outputs of the neu- 
ral network will be either close to 0 or close to 1. The 
method is best explained by first analysing the SQE 
error measure under these assumptions. 

Consider a two-class problem that is to be solved 
with a neural network with a single output, that should 
be 0 for class 0 and 1 for class 1. The squared error 
for a certain training set of this network is: 

SQE = Z ( t  p - yp)2. (13) 
p 

Because the desired output t p can only be 0 or 1, 
the right term can be split into two parts: 

SQE= Z ( y P )  2 + Z ( 1 - y P ) 2 .  (14) 

plt=O plt=l 

If  it is assumed that yt' is always close to 0 or 1, 
the following approximations are valid: 

~--'~ (yp)2 ~ Z ( y p )  ,~ N(y = 1,t = 0 )  

plt=O plt=O 

,~ N P ( y  = 1,t = 0) (15) 

Z (  1 _ yp)2 ~ ~--~(1 - yP) ~ N(y = 0, t = 1) 
plt=,O plt=O 

~ N P ( y  =0 ,  t =  1) (16) 

where: 

N(y  = 1, t = 0) -- the number of incorrectly classified 
samples of class 0; 

N(y  = 0, t = 1 ) -= the number of incorrectly classified 
samples of class 1; 

N = the number of samples in the training set; 
P(y  = 1, t = 0) = the probability of incorrectly 

classifying a sample of class 0; 
P(y  = 0, t = 1 ) = the probability of incorrectly 

classifying a sample of class 1. 
In this simple problem, two errors can be distin- 

guished: incorrectly labelling of a sample as class 0 
or as class 1. The squared error can be approximated 
using Eq. (15) and Eq. (16), by: 

S Q E ~ N ( P ( y . = I , t = O ) + P ( y = O , t = I ) )  (17) 

which, except for the factor N, is equal to the average 
risk if the costs of both types of errors are set to 1. 

For this example, the error measure can easily be 
adjusted to incorporate different costs for the two dif- 
ferent types of errors: 

A V R ~ A ( y  = l , t  = 0 )  ~ ( y p ) 2  
plt=O 

+ a ( y  = 0 , t  = 1) ~--'~ (1 _y~,)2 (18) 
plt=l 

where: 
a ( y  = 1, t = 0) = the cost of incorrect assignment of 

label 1; 
h(y = 0, t = 1 ) = the cost of incorrect assignment of 

label 0. 
The resulting error measure is an approximation of 

the AVR and a continuous and differentiable function 
in the output y of the network. 

Note. If the assumption that yP ,.~ 0 or yP ~ 1 is not 
valid, it can be shown that the squared error measure 
and the average risk for unity costs, although differ- 
ent, do have the same minimum (provided that the 
training set is sufficiently representative for the desired 
behaviour). This is also valid for the cost weighted 
squared error measure of Eq. (18) (Devijver, 1973). 
This follows from the fact that for a sufficiently repre- 
sentative training set and correct training the outputs 
of the neural network converge to the a posteriori con- 
ditional class probability density functions (Devijver, 
1973; Spreeuwers, 1995). Choosing the output with 
the maximum value (or, for problems with 2 classes, 
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in networks with a single output, thresholding at 0.5) 
then results in the minimum error classifier (i.e. min- 
imum average risk with unity costs) (Devijver and 
Kittler, 1982; Spreeuwers, 1992). 

Next consider the pulse detection problem described 
earlier in this paper. In this case three types of errors 
can be distinguished: 
• the network detects a pulse but in reality there is no 

pulse; 
• the network does not detect a pulse, but in reality 

there is one; 
• the network detects a pulse, but displaced over one 

period relative to the target. 
The first error type (false alarm) occurs if the net- 

work output yP = 1 ,  and all the target outputs within 
a one period distance are zero: 

( t  p - I  = 0) A (t  p = 0) A (t  p+I = 0) and (yP = l ). 

(19) 

The second error type (missed pulse) occurs if the 
target output tP = 1, and all network outputs for the 
patterns within a one period distance are zero: 

( t  p = 1) and (yP-J = 0 )  A (yP = 0 )  A (yp+l = 0 ) .  

(20) 

The third type of error (displacement) occurs if: 

( t  p-I  = 1) V ( t  p+j ffi 1) and (yP = 1). (21) 

If it is assumed that there will always be at least 
two periods between successive pulses, the V and A 
can be substituted by additions. The average risk can 
then be approximated in a similar way as in Eq. ( 18): 

A V R ~ A I  Z (yp)2 
pltP-t +tP +tp+l---O 

+ A2 Z ( 1 - yp- I  _ yp _ yp+l )2 
pltP=l 

Z (1 _ y p ) 2  (22) 
PltP-I +tp+l=l 

where: 
3.1, A2, 3.3 the costs of the three types of errors. 

As an alternative, the A's can be substituted by mul- 
tiplications. The approximation for the AVR then be- 
comes: 

1227 

AVR ~ AI ~ (yp)2 

pltP -I +tP+tp+l=O 

+ a 2  Z ( ( 1 - - y p - l ) ( l - - y P ) ( 1  - -yp+ l ) )  2 
plte=J 

(1 _ y p ) 2 .  (23) +A3 
pltP -I +tP +1 •l 

The difference between the two error measures of 
Eq. (22) and Eq. (23) is in the way missed pulses 
are detected. In Eq. (22) the sum of the output for 
three sequential periods is used for the estimation of 
the missed pulse error. This only works correctly if 
there are no multiple responses on a single input. For 
example, if the sum of the output for three successive 
periods is close to 1 (e.g. t p = 1 and yp- l  = yp = 
yP+J = ½), this may result in a lower missed pulse 
error (in the example it is even 0). On the other hand, 
if for three successive periods the output is high, so 
that the sum is greater than 1 (e.g. t p = 1 and yp - i  = 
yp = yp+l = 1), the second term of Eq. (22) gives 
rise to a missed pulse error that in fact is incorrect. 

Eq. (23) handles the missed errors more correctly. 
For multiple responses the missed pulse error (2nd 
term of Eq. (23))  becomes smaller but it cannot dis- 
appear like in Eq. (22), nor do multiple responses with 
high output give rise to incorrect missed pulse errors. 

In the beginning of the learning process the output 
generally is quite low. When it starts to grow, the first 
situation (i.e. the sum of the output for three succes- 
sive periods is close to 1 ) may occur and the missed 
error is suppressed. Therefore in the beginning of the 
learning process, just after the outputs have started to 
grow, one could expect that in some cases Eq. (23) 
would result in faster convergence. The other effect, 
incorrect detection of missed pulses by Eq. (22) may 
result in the reverse situation: because the error is 
larger, the rate of convergence might increase. 

Normally both error measures should converge to 
the same minimum, however. 

6. Experimental verification 

6.1. Description o f  the experiments 

In order to test the validity of the proposed method, 
a number of experiments for the pulse detection prob- 
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lem were set up. Eq. (22) and Eq. (23) were used as 
error measures. For these experiments, the cost of dis- 
placements was set to 0 and the costs of missed pulses 
and false alarms were both set to 1: 
• AI = A2 = 1, 

• A 3 = 0 .  

As a training set, a signal similar to the one in Fig. 
2 was used, i.e. pulses with some low frequency noise. 
In the target output signal, shifts of 1 period in random 
directions were artificially generated with a probabil- 

l ity of 7 for both directions left and right. A total of 
3 experiments was carried out. Each experiment was 
repeated without shifted pulses. 

The experiments carried out were: 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

probability on shift left/right is ½; no noise; 
fixed pulse amplitude~1.0 
probability on shift left/right is 0; no noise; 
fixed pulse amplitude=1.0 
probability on shift left/right is ½; 
additive noise; fixed pulse amplitude~1.0 
probability on shift left/right is 0; 
additive noise; fixed pulse amplitude~l.0 
probability on shift left/right is ½; 
additive noise; pulse amplitude random 
uniform between 0.0 and 1.0 
probability on shift left/right is 0; 
additive noise; pulse amplitude random 
uniform between 0.0 and 1.0 

The noise in the experiments was obtained by filter- 
ing Gaussian noise with amplitude 1.0 with a Gaus- 
sian filter with ~rpsf ~ 2.0. For each experiment the 
training set contained 10000 patterns. In the figures 
successively the following graphs are shown (for the 
signals (a), (b), (c), (d) only the first fifty samples 
of the 10000 are shown): 

(a) the input signal (solid) and target output signal 
(dotted); 

(b) the output signal of the SQE trained network; 
(c) the output signal of the network trained with the 

error criterion of Eq. (22); 
(d) the output signal of the network trained with the 

error criterion of Eq. (23); 
(e) the SQE error during training of the SQE trained 

network (solid), the network optimised for AVR 
according to Eq. (22) (dotted) and the network 

(f) 

optimised for the AVR according to Eq. (23) 
(dashed); 
the AVR during training of the SQE trained net- 
work (solid), the network optimised for AVR ac- 
cording to Eq. (22) (dotted) and the network 
optimised for the AVR according to Eq. (23) 
(dashed). 

Note 1. For clarity and because it has a different am- 
plitude range, in Figs. 4(a)-9(a) the input signal is 
given in a different scale than the other signals. 

Note 2. The AVR and SQE in the graphs (e) and (f) 
are divided by the number of training samples in the 
training set. 

The network used for the detection of pulses is a 
network with three layers: an input buffer layer with 7 
inputs, a hidden layer with 4 processing elements and 
an output layer with a single element. The network 
was trained with 5000 cycles through the training set 
(5000 epochs). The learning rate was set to 0.001 to 
avoid problems with convergence, that sometimes oc- 
cur for high learning rates. No momentum term was 
used. For the initialisation of the networks weights 
random values with a uniform distribution between 
0.0 and 0.1 were used. The networks were operated in 
the so-called parallel training mode, which means the 
errors are accumulated and the weights are updated 
only after the whole training set has been processed 
once. Similar results were, however, obtained with se- 
quentially trained networks. All evaluations were per- 
formed with independent evaluation sets with the same 
statistics as the training sets. 

6.2. Discussion o f  results 

The first experiment (Fig. 4) shows the results for 
fixed pulse amplitude and shifted pulses. Fig. 4(a) 
shows the reference and input signal. Clearly some of 
the pulses are shifted to the left and some to the right. 
Fig. 4(b) shows the output of the SQE trained net- 
work. As predicted in Section 3, the output is three- 
fold for each pulse and the amplitude is about ½. Both 
AVR-trained networks (Figs. 4(c) and 4(d) ) show a 
nearly perfect output. Fig. 4(e) shows the squared er- 
ror for each of the three networks. The network that 
was trained for minimum SQE (solid curve) has the 
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lowest SQE and it is quite clear that the networks 
that were trained for minimum AVR do not attempt to 
minimise the SQE. Fig. 4(f) shows the AVR of the 
networks during training. Both the networks that were 
trained for minimum AVR reach a value of almost 0. 
The network trained for Eq. (22) appears to converge 
slower than the network that minimises Eq. (23). As 
described in Section 5, this is probably caused by the 
suppression of the missed pulse errors of Eq. (22) dur- 
ing the first phase of the training process. The network 
trained for minimum SQE clearly performs worse ac- 
cording to the AVR error measure. 

Fig. 5 shows the results of the same experiment 
but without the shifts. All three networks now show 
almost equal behaviour. 

In Fig. 6 and Fig. 7 the results of the experiments 
with additive noise are given. As expected the network 
trained for minimum SQE is more sensitive to the 
noise if there are displacement errors. The networks 
trained for minimum AVR almost perfectly suppress 
the noise in this case. If there are no displacement 
errors (Fig. 7), the networks show equal performance. 

In the last experiment (Fig. 8) the amplitude of the 
pulses is random with a uniform distribution between 
0 and 1. In this case the difference between the per- 
formance of the networks trained for minimum SQE 
and AVR is even more apparent. Again for the signal 
without pulses (Fig. 9) the three networks perform 
nearly the same. 

Note that the SQE of the networks trained for mini- 
mum AVR does not decrease monotonically in the case 
that there are displacement errors (Figs. 4(e) ,  6(e) ,  
8 (e ) ) .  The SQE even increases during the training 
process. However, in these cases the SQE is not a reli- 
able measure of the effectiveness of the training phase. 
The AVR, which is adapted specifically to the types 
of errors that occur, does decrease monotonically. 

6.3. Conclusions 

The results of the experiments accurately follow the 
predictions of Section 3. Therefore it is likely that 
for problems like these, where the training vectors 
are not independent, and/or where a cost weighted 
error criterion is required, using an AVR-based error 
criterion for a neural network instead of the SQE will 
give a significant improvement in performance. 

7. Conclusions 

In this paper it is shown that under certain circum- 
stances the sum of squared errors criterion (SQE), as 
is used in the standard backpropagation learning rule, 
does not always lead to a correct solution. This is e.g. 
the case if training patterns are not independent. The 
sum of squared errors cannot differentiate between the 
different types of errors that occur in these signals. 
Also the SQE does not take into account different costs 
of errors. The average risk (AVR) is proposed as an 
alternative error measure. An important advantage of 
the AVR is that it can be adjusted to a certain prob- 
lem to take into account those errors that are specific 
for the problem and assign costs to the errors in ac- 
cordance with the demands of the user. 

It is shown how the error backpropagation learning 
rule can be adjusted to work with other error measures 
and an example is given of how to use the AVR with 
the error backpropagation learning rule. This involves 
finding an approximation for the AVR that is both 
continuous and differentiable. The proposed approach 
is demonstrated with an example of a pulse detection 
problem, where the pulses in the training set have been 
determined with a positional accuracy of one period. 
A neural network trained for minimisation of an ap- 
propriately chosen AVR appears to operate correctly 
in this case, while a network trained with 'standard' 
error backpropagation fails. 
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