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Abstract

In this paper, a learning control system is considered for motion systems that are subject to two types of disturbances; reproducible
disturbances, that re-occur each run in the same way, and random disturbances. In motion systems, a large part of the disturbances
appear to be reproducible. In the control system considered, the reproducible disturbances are compensated by a learning component
consisting of a B-spline neural network that is operated in feed-forward. The paper presents an analysis of stability properties of the
configuration in case of a linear process and second-order B-splines. The outcomes of the analysis are quantitative criteria for selection
of the width of the B-splines, and of the learning rate, for which the system is guaranteed to be stable. These criteria facilitate the design
of a learning feed-forward controller. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

High-performance motion systems such as component
mounters require both accurate and robust control. To
design a model-based controller that satisfies these re-
quirements, an accurate model of the process is needed.
However, due to factors like process uncertainties, pro-
cess non-linearities or time-varying parameters, the iden-
tification and modelling that is needed might be difficult,
expensive and sometimes even impossible. To overcome
this, several learning control methods have been pro-
posed (Ng, 1997). In learning control, the controller is not
designed on the basis of a process model. The controller
is either trained on the basis of previously gathered data
or is trained during control.
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In this paper, a learning control system is considered
for the processes that are subjected to two types of
disturbances; reproducible disturbances, that depend on
the state of the process and reoccur each time a motion is
performed, and random disturbances. The learning con-
trol system has separate means for compensating both
types of disturbances (Fig. 1) (Kawato, Uno, Isobe &
Suzuki, 1988). The reproducible disturbances are com-
pensated by a neural network (F). As these disturbances
depend on the state of the process, they can be compen-
sated in feed-forward. Besides the reproducible distur-
bances, F also compensates the process dynamics. The
output of the feedback controller is chosen as a training
signal for the neural network. The random disturbances
are compensated by a model-based feedback controller
(C). When random disturbances are small compared to
the reproducible disturbances, this controller does not
determine the tracking performance of the controlled
system. Therefore, this controller can be designed for
robustness mainly.

The type of neural network that is used is a B-spline
network (BSN) (Brown & Harris, 1994). A BSN utilises
piece-wise polynomial basis functions, known as B-
splines, to store the feed-forward signal. This type of
learning controller was introduced as the learning feed
forward control scheme (LFFC) (Starrenburg, Luenen,
Oclen & Amerongen, 1996). B-spline basis functions of
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Fig. 1. Learning control system.

order n consist of piecewise polynomial functions
of order n — 1. Only second-order B-splines will be
considered. The evaluation of the B-splines is generally
called the membership and is denoted as u. To create an
I/O mapping, B-splines are placed on the domain of the
input of the BSN, in such a way that at each input value
the sum of all memberships equals 1 (Fig. 2). That part of
the input space for which p is not equal to O for a particu-
lar basis function is called its support. Note that a BSN
can also be regarded as a fuzzy logic controller that has
the B-spline functions as fuzzy premise sets and fuzzy
singletons as consequence sets (Lee, 1990).

The variable x is the input of the BSN. The out-
put of the BSN is a weighted sum of the B-spline
evaluations:

up(x) = Z wi(X)wi, (1)

where w; is the weight associated to the ith B-spline and
N is the number of B-splines. Training the network, in
other words adapting the I/O mapping in such way that
it comes closer to the desired I/O mapping, is done by
adjusting the weights of the network using a so-called
learning mechanism (to be presented later). This mecha-
nism incorporates an adaptation gain referred to as the
learning rate y, and an approximation error. LFFC
utilises the output of the feedback controller as a measure
for the approximation error (Fig. 1). This choice is based
on the intuitive reasoning that this signal is the feedback
controller’s best guess on how to decrease the tracking
error. In the design of the LFFC, the following para-
meters have to be chosen:

The inputs of the BSN. The inputs are chosen on the
basis of the plant and the type of disturbances that have
to be compensated (Otten, Vries, Amerongen, Rankers
& Gaal, 1997).

DX

Fig. 2. One-dimensional second-order B-spline distribution.

The width of B-splines on each input axis. The accuracy
of the LFFC depends on the width of the B-splines. The
smaller the width of the B-splines, the more accurate the
LFFC. However, a too small width may result in un-
stable behaviour. In the following, the effect of the width
of B-splines on the robustness of the system will be
further dealt with.

The learning rate. The learning rate y determines how
fast the weights of the BSN are adapted.

In Section 2, we discuss the type of LFFC for which the
stability will be analysed. The influence of the width of
the B-splines and the size of the learning rate on the
stability of an LFFC-controlled system is derived quant-
itatively in Section 3. Simulation results that validate the
stability analysis are presented in Section 4. We end with
conclusions in Section 5.

2. LFFC for repetitive motions

In the standard configuration (Fig. 1), the input of the
feed-forward controller consists of the reference path.
Since the reproducible disturbances depend on the state
of the process and the feed-forward signal is stored as
a function of the reference trajectories of the states, this
controller configuration is able to learn to track arbitrary
reference paths. However, when repetitive motions are
only considered, a fixed temporal sequence of combined
positions, velocities and accelerations is present, and the
control signal needed to compensate reproducible distur-
bances becomes a function of the periodic motion time.
In that case, it is beneficial to choose the periodic motion
time as the only input of the feed-forward part of the
LFFC.

Consider a periodic motion with period T (s), and a
BSN with uniformly distributed second-order B-splines
with support width d(s). The membership of the ith B-
spline is then defined as

2R por di—2) <t <%i— 1),
W) ={"7"  fordi-1)<t<4¥ . 2)
0 elsewhere.

The learning mechanism according to which the weights
of the BSN are adapted is given by

T/h

Awi =7 Y, pilkhyuc(kh), 3)

where Aw; is the adaptation of weight i, and h is the
sample time.

An LFFC that has the periodic motion time as input
closely resembles another learning control system int-
ended for processes that perform repetitive tasks, namely
the iterative learning control scheme (ILC) (Moore, 1992)
(Fig. 3).
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Fig. 3. Iterative learning control.

In an ILC the feed-forward signal is stored in a
memory instead of a neural network. The feed-forward
signal is adapted on the basis of the output of the
learning filter, L, which filters the tracking error. In
LFFC the feedback controller fulfils the role of the learn-
ing filter.

A stability analysis (Kavli, 1992; Moore, Dahleh
& Bhattacharyya, 1992) shows that the control system
is stable if

)

1 LP
1+CP

0

To design an L such that (4) is satisfied for all frequen-
cies, detailed knowledge of the process is required. For
low-frequency dynamics, a competent model of the pro-
cess often exists. However, for high frequencies this is
usually not the case. This may result in an L that does not
satisfy (4) and thus causes unstable behaviour. Several
methods have been proposed to improve the stability
robustness for unmodelled dynamics. This involves some
alternation of the memory loop such that the high
frequencies are not stored (Messner, Horowitz, Kao
& Boals, 1991). In Hara, Yamamoto, Omata and
Nakano (1988) this is realised by incorporating a low-
pass filter in the memory loop, known as the Q-filter. The
Q-filter is designed such that it suppresses the frequency
components at which the process model was inaccurate.
The lower frequencies, at which the model was accurate,
are passed. This way, stability can be guaranteed. In
time-indexed LFFC, a similar approach is pursued to
cope with unstable behaviour. Here, the B-splines act as
a low-pass filter. The approximation of a BSN consists of
a linear interpolation between function evaluations at the
centres of each two neighbouring B-splines. Therefore,
the width of the B-splines determines the frequencies
that can be approximated. To guarantee stability of
time-indexed LFFC, the width of the B-splines
should be chosen such that the BSN only stores the
low-frequency signals for which (4) is satisfied. In the next
section, rules are derived according to which the width
and the learning rate can be chosen such that this is
accomplished.

3. Stability analysis of LFFC

Firstly, to be able to analyse the stability of the
LFFC, a number of (rather strong) assumptions were
made.

(1) The process under control P is linear and time-
invariant.

(2) The feedback controller C is linear, time-invariant
and chosen such that the feedback loop is stable.

(3) A continuous version of the discrete learning rule (3)
is used:

Aw; = ch\Tﬂi(t)uC(t) dr. )

This implies that learning is linear in uc(t), and hence the
feed-forward adaptation loop is linear. Since the feed-
back loop is also linear, the reference path may be taken
equal to zero in the analysis. This system is stable if an
arbitrarily chosen initial feed-forward signal will not re-
sult in an unbounded output of the process. The (initial)
feed-forward signal is determined by the (initial) values of
the weights in the B-spline network. As the feedback
controlled system is stable, the output can only become
unbounded when the feed-forward signal ur(t) becomes
unbounded, which implies that at least one weight has
become infinitely large. So, if the weights are adapted in
such way that their value remains bounded, the system is
stable; otherwise the system is unstable. The weights
remain bounded if each weight adaptation satisfies the
following condition:

OSAWLS _2Wi for W,'SO,

(6)

—2w; < Aw; <0 for w; > 0.

The problem is to select width d and learning rate 7y, in
accordance with this. We will first consider the selection
of d; after that, the learning rate 7. is dealt with. In order
to select d, we assume the following initial feed-forward
signal.

(4a) The shape of the initial feed-forward signal, ug(t)
is triangular. This choice is motivated by the fact that
experiments showed that when unstable behaviour oc-
curs, the output of the neural network has a triangular
shape (Velthuis, Vries & Amerongen, 1996). This I/O
mapping can be realised by choosing the weights as
w; =afori=135,...,and w; = —a fori=246,...,
where aeR™.

Under this assumption the signal ug(f) can be written
as a Fourier series:

8a & cos(wyt)
up)=— ) 3 (7)
n=1,3,5,...

T n
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with
w, = 7" (rad s~ 1), @®)

The relation between the output of the feed-forward
controller Ug(jw) and the learning signal Uc(jw) is
given by the negative closed loop transfer function
— T(jw). — T(jw) amplifies each frequency component
w, of (7) by a factor a, and introduces a phase shift ¢,, so
uc(t) can be written as

8a a, cos(w,t + ¢,)

uct) = _1;5 - ©)

Substitution of (2) and (9) to (5) and reformulation gives

—16y.da & cos(¢,)
—— X 4
T n=1.,3,5 n
fori=24.0,...,
Aw; = 16y.da & cos(¢,) (10)
Z Y g
T p=1.3.5 n
fori=135,....

It can be seen that all weights that have the same initial
value are equally adapted. Therefore, learning does not
change the shape of the feed-forward signal; the learning
mechanism only adapts the amplitudes a and a,. Hence,
for each iteration the signal can again be expressed as (7)
and the weight adaptation can be written as (10). In the
following, the adaptation of weights that had a positive
initial value, w; = a, will be considered; for the other
case, an analogous analysis can be made. Substituting
(10) in (6) results in

—n* © cos(¢,)
< a4, ) <, (11)
8V¢d n=1,32,5,... }’l4

The width of the B-splines d should now be chosen such
that (11) holds for the given process and controller.

We consider the right-hand side inequality of (11).
Selection of a certain d determines the frequency of the
triangular feed-forward signal, and therefore also the
values of w,, a, and ¢,. In case an exact model of
the process and the controller is available, the values of
a, and ¢, can be calculated for all frequencies. This
would allow the selection of the minimal d for which the
right-hand side inequality of (11) is satisfied by means of
a simple search. However, generally only the low-
frequency dynamics of the process are known and the
model is inaccurate at high frequencies. Therefore, we
take an approach that seems somewhat conservative; we
choose d such that the term for n = 1 in (11) is negative
and has a larger amplitude than the maximum value of

the sum of the rest of the terms, so that the right-hand
side inequality of (11) will be satisfied for all possible
values of ¢,, n=3,5, ...

§ awcoslon) 1)

n=3,5,... n

ay cos(¢y) < —

Next, the maximum value of the rest of the terms is
determined,

§ weoso)
n=3.5,... n n=3.5,...

a,

-y (13)

M8

[
S

This implies that the right-hand side of (11) is always
satisfied if
1 * a,

< —— —. 14
cos(py) < aln:g‘sw e (14)

To guarantee stability we have to choose w; in such way
that (14) is satisfied. The B-spline width d is directly
related to w; by (8) for n = 1. The minimum stable value
of d corresponds to the maximum stable value of w;.
When detailed process knowledge is available, this value
can be found by means of a simple iterative search.
However, a, is often not known for high frequencies,
which requires some sort of worst-case approximation.
In this paper, we pursue the following approach. Typi-
cally, the phase shift of — T(jw) is — m(rad) for small
values of w and changes thereafter. This means that if we
choose w; small, cos(¢{) ¥ — 1 and cos(¢;) increases
when we increase w,. How far we can increase w; and
cos(g,) before the system becomes unstable is deter-
mined by the value of the right-hand side of (14). Instead
of using the exact value of the right-hand side of (14), we
will determine w; on the basis of a lower bound of its
minimum. We first calculate the minimum value of a,,
which we denote as N,. This is done over the largest
range of stable values of w;, which is obtained for the
maximum value of right-hand side of (14). Since
ay,a, > 0 the maximum value is 0. Thus,

N, = min
{w1€R+|C°S(V)1)SO}

| = T(jwq)l. (15)

The angular velocity at which | — T(jw)| = N, will be
denoted as wy,. As an upper bound of a, we take the
maximum value of | — T(jw)| for w > wy,:

a, < max | — T(jw) = N,. (16)

Yo > oy,

Using (15) and (16) we can derive

1 ca, 1 £ N,
-— = —— — 17
ay n=3z.;,... n4 Nl n:3z:5 n4 ( )
which gives
Ny & Ny,
cos(py) < —— — = —0.0147 —. (18)
! Nl n=1;5,.4. 4 Nl
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From the Bode plot of — T(jw) we can calculate the
minimum value of d, denoted as d,,;,, by searching the
largest w; for which (18) holds.

The value of d,,;, has been determined using the right-
hand side inequality of (11), and hence of (6) for w; > 0.
For the maximum value of the learning rate, y., the
left-hand side inequality of (6) for w; > 0 will be used,
however, not for a triangular feed-forward signal. Con-
sider an arbitrary chosen feed-forward signal. As before,
the feedback signal can be written as a Fourier series.
The low-frequency terms of the Fourier series cause
a relatively stronger weight adaptation than the high-
frequency terms. Namely, when for a low-frequency term,
uc(t) = ccos(w;t + ¢;), 2n/w; > d, we may assume uc(t)
constant over the support of one B-spline. Using (2) and
(5) it can be calculated that the minimum adaptation of

a sine-wave is obtained for uc(t) = — ¢
d
Bwi = =75 (19)

For a high-frequency term, uc(t) = ccos(w,t + @),
Wy, > oy, uc(t) > — c. We may thus conclude that the
weight adaptation is larger than (19). Hence, to calculate
the maximum learning rate we assume that

(4b) ug(t) is a constant signal, i.e. the initial weights are
chosen w; = a for all i.

To obtain the feedback signal with the largest ampli-
tude, we assume maximum amplification of u(t):

uc(t) = —al = T(jo)l,. (20)

With (20) and (19), the left-hand side inequality of (6) for
w; > 0 results in

—ad| = T(jo)l

(21)

Therefore, the learning rate should satisfy

4

Y S TG 22

Herewith, a maximum value of the learning rate for
a continuous learning mechanism has been obtained.
However, when implemented, the LFFC utilises the dis-
crete learning mechanism (3). To calculate the maximum
value of y, a discrete approximation of the continuous
learning mechanism is made. Assume that h < d, then
w;(t) and uc(t) are almost constant over one sample inter-
val. The continuous adaptation of the weights can then
be written as

Aw; = ych Tf pi(khuc(kh). (23)

k=0

The adaptation of the weights by the discrete approxima-
tion of the continuous learning rule, (23), is equal to the

adaptation by the discrete learning rule, (3), when

7 =7h < s

== TGl d .

4. Simulations

In this section, the stability conditions that have been
derived will be validated by means of simulations. Fur-
thermore, it will be examined how conservative these
values are. Namely, in the stability analysis a number of
worst-case assumptions was made which might result in
conservative values of the minimum B-spline width and
of the maximum learning rate.

The plant that is simulated is a linear motion motor
system (LIMMS) (Otten et al., 1997). The motor consists
of a base plate on which permanent magnets are placed,
and a translator that contains iron-core coils (a moving
mass with m = 37 kg). The thrust force is generated by
applying a three-phase current to the coils. The iron
cores in the coils have magnetic interaction with the
permanent magnets in the base plate. This phenomenon
is generally known as cogging. The cogging force can be
modelled as a sinusoidal shaped input disturbance force
that depends on the motor position, which makes this
a non-linear system. The amplitude of the cogging force
is 10 N, and its pitch is 1.6e ~ 2 m. Furthermore, the trans-
lator is subject to friction, which is considered to be
viscous (friction coefficient 10 N m s~ '). The position of
the translator is controlled by means of a PD-type feed-
back controller:

(25)

Cljw) = 275280( 002w + 1 >

0.002jw + 1
The Bode plot of — T(jw) is shown in Fig. 4.

From Fig. 4 it can be derived that N, = 0.7395 (for
o = 220 rads ™). Since the amplitude of — T(jw) drops

20

magnitude (dB)

230b-
sl
330
50 : SEEHHE e
10' 10> @1 10° 10°
o [rads!]

Fig. 4. Bode plot of the LIMMS.
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Fig. 5. Tracking error, d, conforms to the stability criterion.

for @ > 220rads™ !, N, = 0.7395. Hence,
cos(py) < —0.0147 = 1.5854 < ¢, < 4.6976. (26)

This yields that for a stable system we should choose
w; <220 rad s and dn;, = 2.855x 1072 s. Further-
more,

| — T(jw)l. =1.2937.

Now, simulations will be done in which the LIMMS is to
track a smooth reference path over 0.2 m back and forth.
The simulation step size that is used is h = 1 x 10~ *s.
The tracking error that is obtained, when the LIMMS is
controlled by the feedback controller only, is given in
Fig. 5 (dotted line). It can be seen clearly that the feed-
back controller is not able to fully compensate for the
cogging.

In the first series of simulations with the LFFC, the
width of the B-splines is larger than its minimum value,
d=291x10"?s. The learning rate should now be
chosen as

4h 3 4x107%
T(w)lod 12937 x2.91x 102

VS|

=1.08x 1072 27)

We choose y = 4 x 107>, In Fig. 5 the tracking error after
100.000 s is shown (solid line). The LFFC is able to learn
to compensate for the cogging force and obtains a con-
siderably smaller tracking error than the feedback con-
troller. Furthermore, when learning is continued the
system remains stable.

In the following series of simulations the width of the
B-splines is chosen d = 2.78 x 10~ % s. For this width, the
system becomes unstable as can be seen in Fig. 6, where
the tracking error after 2000 s is depicted. We may con-
clude that even though the LiMMS is a non-linear sys-
tem, the value of d,;, is still valid and not conservative.
Next, the maximum value of the learning rate will be
examined for which the system is stable. In these simula-
tions we take d = 2.91 x 10” % s. It showed that the sys-
tem becomes unstable when 7 > 1.37x 1072 So, the

= LFFC

"""" = feedback control

o 1 2 3 4
t[s]

Fig. 6. Tracking error, d, overpassing the value given by the stability
criterion.

maximum of the learning rate as determined in (27) gives
a conservative value.

5. Conclusions

Learning feed-forward control is a learning control
scheme which compensates for reproducible disturbances
in a way similar as iterative learning control, and hence
has similar stability properties. The feed-forward signal is
stored in a B-spline network. In case of periodic motions,
the width of the B-splines determines the frequency com-
ponents that can be stored. If the width is chosen too
small, unmodelled dynamics may cause unstable LFFC.
Secondly, a too large learning rate can cause instability.
Stability analysis of an LFFC that utilises second-order
B-splines gives, in terms of the low-frequency behaviour
of the closed-loop system,

(1) aquantitative criterion for the minimum width of the
B-splines (Egs. (8) and (18)), and

(2) a quantitative criterion for the maximum learning
rate (Eq. (24)).

To verify the criteria, simulations were performed, in
which LFFC was used to control a linear motor set-up.
In spite of the fact that the plant is non-linear, simula-
tions showed that the minimum width of the B-splines is
valid and not conservative. However, the value of the
maximum learning rate as given by (24) proved to be
conservative. The validity of the criteria has also been
verified using the actual linear motor set-up (Velthuis,
Vries & Gaal, 1998). These experiments showed the same
results as the simulations presented here.
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