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chains, in which the truncation error can be made arbitrarily small uniformly
over time, can be extended to λ-positive Markov chains.
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1 INTRODUCTION

The uniformization or randomization method, introduced by Jensen in [10],
is a technique for obtaining transient state probabilities of continuous-time
Markov chains. The method relates the evolution of a continuous-time Markov
chain to the evolution of a Markov jump chain in which the jump epochs are
generated by a Poisson process and the jumps themselves are determined by an
appropriate discrete-time Markov chain. The uniformization method has been
used and extended by several authors, e.g., Gross and Miller [7] and Melamed
and Yadin [13].

It was already pointed out by Jensen [10] (see also van den Hout [9, Ch. 3])
that the truncation error in the numerical evaluation of the transient state
distribution via the uniformization method can be made arbitrarily small uni-
formly over time by appropriate use of the stationary distribution of the chain,
if it exists. This note shows that a similar result can also be obtained if the
chain is not positive recurrent, provided it is λ-positive.

In Section 2 we review some results on uniformization, and describe the
role of the stationary distribution. We recall some relevant facts from Markov-
chain theory in Section 3. Our variant of the uniformization method for the
calculation of state probabilities of λ-positive Markov chains is presented in
Section 4, and we discuss two examples in Section 5.

2 PRELIMINARIES

We consider a continuous-time Markov chain X ≡ {X(t), t ≥ 0} taking values
in a finite or countably infinite state space S. The chain is assumed to be
irreducible and its q-matrix Q ≡ (qij, i, j ∈ S) is assumed to be stable, but
not necessarily conservative. If Q is not conservative, so that

∑
j∈S qij < 0 for

some i ∈ S, it is possible for the chain to leave S to an ignored absorbing state,
that is, an absorbing state not included in S. When S is countably infinite,
we will also suppose that the chain is uniformizable, that is,

sup
i∈S
{−qii} <∞.

We write pi(t) ≡ Pr{X(t) = i} and pij(t) ≡ Pr{X(t) = j| X(0) = i}, and
let P (.) ≡ (pij(.), i, j ∈ S) be the transition matrix of the chain X . For any
sequence (ai, i ∈ S) we denote the row vector with components ai, i ∈ S,
by a. In particular, 0 and 1 denote the row vectors consisting of 0’s and 1’s,
respectively, and p(t) is the row vector representing the state probabilities
pi(t), i ∈ S, of X at time t. A superscript > denotes transpose, so that a>

is the column vector with elements ai, i ∈ S. In what follows ‖ . ‖ denotes



the `∞-norm, that is, ‖A‖ = supi

∑
j |aij| for any matrix A ≡ (aij), and, in

particular, ‖a‖ =
∑

i∈S |ai|.
The uniformizability of X implies that its transition matrix P (.) is the

unique solution of the Kolmogorov forward equations

P ′(t) = P (t)Q, t > 0, (1)

see Anderson [1, Proposition 2.9]. Hence P (t) is given by

P (t) = eQt ≡
∞∑

n=0

(Qt)n

n!
, t ≥ 0.

Alternatively, see [1, Proposition 2.10], the transition matrix can be written
as

P (t) = e−qt
∞∑

n=0

(qt)n

n!
Rn, t ≥ 0, (2)

where R ≡ (rij, i, j ∈ S) is the transition probability matrix defined by

R ≡ I +
1

q
Q, (3)

and q is some number satisfying

q ≥ qi ≡ −qii, i ∈ S, (4)

while it will also be convenient to let q > qi for at least one state i ∈ S. Thus
for a given initial distribution p(0) we have

p(t) = p(0)P (t) = e−qt
∞∑

n=0

(qt)n

n!
p(0)Rn, t ≥ 0. (5)

The argument leading to the representation (5) (or (2)) is known as the uni-
formization method, see [10], [16], [6], or [18, Sect. 8.2].

For numerical evaluation, the summation in (5) must be truncated at level
N , say. That is, we approximate p(t) as

p(t) ≈ p(N)(t) ≡ e−qt
N∑

n=0

(qt)n

n!
p(0)Rn, t ≥ 0. (6)

When Q is conservative (and hence R stochastic), the approximation (6) has
a truncation error

‖p(t)− p(N)(t)‖ = e−qt
∞∑

n=N+1

(qt)n

n!
‖p(0)Rn‖ = e−qt

∞∑
n=N+1

(qt)n

n!
.



As a consequence, for any t ≥ 0 the approximation (6) converges to p(t) as
N →∞, but

lim
N→∞

sup
t≥0

‖p(t)− p(N)(t)‖ = lim
N→∞

sup
t≥0

e−qt
∞∑

n=N+1

(qt)n

n!
= 1, (7)

so convergence is not uniform in t. The approximation performs badly for
fixed N and large enough t.

A variant of the approximation (6) which does not have this drawback
– but requires that X be positive recurrent (and hence Q conservative) –
was suggested in [10] (see also [9]). To explain this variant, let p be the
row vector representing the stationary distribution (pi, i ∈ S) of X , so that
pQ = 0. By definition of R we then also have pR = p. Thus p constitutes
the stationary distribution of the (irreducible) Markov chain with transition
probability matrix R, which is aperiodic since we have assumed q > qi for some
i ∈ S. As a consequence, p(0)Rn → p componentwise as n → ∞, but, since
‖p(0)Rn‖ = ‖p‖ = 1 for all n, we actually have

‖p(0)Rn − p‖ → 0 as n→∞. (8)

These observations lead to the representation

P (t) = 1>p + e−qt
∞∑

n=0

(qt)n

n!

(
Rn − 1>p

)
, t ≥ 0, (9)

and hence to the approximation

p(t) ≈ p̃(N)(t) ≡ p + e−qt
N∑

n=0

(qt)n

n!
(p(0)Rn − p) , t ≥ 0, (10)

with a truncation error satisfying

lim
N→∞

sup
t≥0

‖p(t)− p̃(N)(t)‖ = 0, (11)

so that the truncation level N can be chosen such that the approximation has
a specified accuracy for all t ≥ 0 simultaneously. For a detailed discussion see
[9, Ch. 3].

When the Markov chain X is not positive recurrent, and hence has no
stationary distribution, a similar approach is still possible, provided the chain
is λ-positive. Before describing this approach, we must introduce, in the next
section, some further concepts and results, see, e.g., Anderson [1] for more
details.



3 λ-POSITIVE MARKOV CHAINS

Kingman [12] has shown that there exists a real number λ ≡ λX , called the
decay parameter of X , such that

0 ≤ λ ≤ inf
i∈S
{qi}, (12)

and for each pair i, j ∈ S,

lim
t→∞

1

t
log pij(t) = −λ.

If λ > 0 the chain must be transient and is called exponentially ergodic. When
S is finite −λ is simply the smallest (in modulus) eigenvalue of Q, so that
λ = 0 when X is conservative and λ > 0 otherwise.

A state i ∈ S is said to be λ-recurrent if∫ ∞

0
eλtpii(t)dt = ∞,

and λ-transient otherwise. A λ-recurrent state is said to be λ-positive (or
λ-positive recurrent) if

lim
t→∞

eλtpii(t) > 0.

Clearly, λ-(positive) recurrence and λ-transience reduce to (positive) recur-
rence and transience, respectively, when λ = 0.

It can be shown that λ-recurrence and λ-positive recurrence are class prop-
erties, and hence, in our setting, are properties of either all or no states in
S. Accordingly, we shall call the chain X itself λ-(positive) recurrent, or λ-
transient, whichever applies. When S is finite then either X is conservative
and hence positive recurrent (that is, λ-positive with λ = 0), or X is non-
conservative and hence λ-positive with λ > 0. So a finite chain is always
λ-positive.

A sequence (mi, i ∈ S) of strictly positive numbers such that for some
µ ≥ 0∑

i∈S

miqij = −µmj, (13)

for all j ∈ S, is called a µ-invariant measure (for Q). A sequence (vi, i ∈ S)
of strictly positive numbers such that for some µ ≥ 0∑

j∈S

qijvj = −µvi, (14)

for all i ∈ S, is called a µ-invariant vector (for Q). We shall have use for the
following result, which holds true as a consequence of Kingman [12, Theorem
4] and Tweedie [19, Proposition 2]; see also Pollett [15].



Theorem 1 If the Markov chain X is λ-recurrent then there exist, up to con-
stant multiples, a unique λ-invariant measure (mi, i ∈ S) and a unique λ-
invariant vector (vi, i ∈ S); the chain is λ-positive if and only if

∑
i∈S mivi <

∞.

4 UNIFORMIZATION FOR λ-POSITIVE CHAINS

We return to the context of Section 2, but we will now assume that the Markov
chain X is λ-positive. As a consequence there are, up to constant multiples,
a unique λ-invariant measure (mi, i ∈ S) and a unique λ-invariant vector
(vi, i ∈ S), which, when represented by row vectors, are denoted by m and
v, respectively. Moreover, whether S is finite or countably infinite, mv> =∑

i∈S mivi <∞, by Theorem 1.
Following Pollett [15] we define Q̄ ≡ (q̄ij) by

Q̄ = λI + V −1QV, (15)

where V is the diagonal matrix with diagonal element vi in row i, i ∈ S.
The matrix Q̄ is called the λ-dual of Q with respect to v, and is actually a
uniformizable and conservative (and hence regular) q-matrix. Indeed, by (12)
and (15) we have

−q̄ii = qi − λ ≥ 0, i ∈ S,

while ∑
j∈S

q̄ij = λ+ v−1
i

∑
j∈S

qijvj = 0, i ∈ S.

Moreover, Q̄ being regular, it is the q-matrix of a positive recurrent Markov
chain, since the measure (ui, i ∈ S) defined by

ui ≡
mivi

mv>
, i ∈ S,

constitutes a probability distribution over S, satisfying

∑
i∈S

uiq̄ij =
1

mv>

(
λmjvj + vj

∑
i∈S

miqij

)
= 0, j ∈ S.

Choosing some positive number q̄ such that

q̄ ≥ q̄i ≡ −q̄ii = qi − λ, i ∈ S, (16)

with inequality for at least one state i ∈ S, and defining

R̄ ≡ I +
1

q̄
Q̄ =

(
1 +

λ

q̄

)
I +

1

q̄
V −1QV,



we can employ the uniformization method to represent P̄ (.), the transition
matrix of the Markov chain corresponding to Q̄, as

P̄ (t) = e−q̄t
∞∑

n=0

(q̄t)n

n!
R̄n, t ≥ 0. (17)

From [15] or [1] we know that the transition matrices P (.) and P̄ (.) are related
through

P (t) = e−λtV P̄ (t)V −1, t ≥ 0. (18)

Hence, writing

T ≡ V R̄V −1 =

(
1 +

λ

q̄

)
I +

1

q̄
Q, (19)

we get

P (t) = e−(λ+q̄)t
∞∑

n=0

(q̄t)n

n!
T n, t ≥ 0;

see also van Dijk and Sladky [4], who obtain a similar representation in a more
general setting. Thus, for a given initial distribution p(0), we have

p(t) = p(0)P (t) = e−(λ+q̄)t
∞∑

n=0

(q̄t)n

n!
p(0)T n, t ≥ 0,

which leads to the approximation

p(t) ≈ p(N)(t) ≡ e−(λ+q̄)t
N∑

n=0

(q̄t)n

n!
p(0)T n, t ≥ 0. (20)

The approximation (20) is essentially equivalent to the approximation (6)
in the sense that for each q̄ satisfying (16) there is a q satisfying (4), such that
the right-hand side of (20) equals the right-hand side of (6), and vice versa.
Indeed, if we let q = q̄+λ (so that q ≥ qi for all i ∈ S), and define R as in (3),
then q̄T = qR, which, upon substitution in (20), gives us (6). The converse is
proven similarly.

On the other hand, the Markov chain with q-matrix Q̄ is positive recurrent
with stationary probabilities ui, i ∈ S, so we can use the analogue of (9) and
write, instead of (17),

P̄ (t) = 1>u + e−q̄t
∞∑

n=0

(q̄t)n

n!

(
R̄n − 1>u

)
, t ≥ 0.

Noting that

V 1>uV −1 =
v>m

mv>
, (21)



it subsequently follows from (18) that P (t) can be represented alternatively as

P (t) = e−λt

(
v>m

mv>
+ e−q̄t

∞∑
n=0

(q̄t)n

n!

(
T n − v>m

mv>

))
, t ≥ 0.

Hence, assuming that the initial distribution p(0) is such that p(0)v> < ∞
(e.g., by having finite support) and writing

α ≡ p(0)v>

mv>
, (22)

we get

p(t) = αe−λtm + e−(λ+q̄)t
∞∑

n=0

(q̄t)n

n!
(p(0)T n − αm) , t ≥ 0,

which leads to the approximation

p(t) ≈ p̃(N)(t) ≡ αe−λtm + e−(λ+q̄)t
N∑

n=0

(q̄t)n

n!
(p(0)T n − αm) , t ≥ 0. (23)

Remark. Rather than starting the argument leading to the approximation
(23) with the λ-dual of Q with respect to v, one can also choose as a start-
ing point the λ-reverse of Q with respect to m (see [15] for a definition and
developments).

The main point we wish to make in this paper is that when λ, m and v
are available, then the approximation (23) is better in some sense than the
approximation (20) (or (6)), a statement which is made more precise in the
next theorem. To be able to distinguish between the two approximations (20)
and (23) we now use the norm ‖ . ‖V , defined in terms of the usual `∞-norm
by ‖A‖V ≡ ‖AV ‖, so that

‖a‖V ≡ ‖aV ‖ =
∑
i∈S

|aivi|,

for any row vector a ≡ (ai, i ∈ S).

Theorem 2 If p(0)v> <∞, then the approximation (20) has the property

lim
N→∞

sup
t≥0

eλt‖p(t)− p(N)(t)‖V = p(0)v> > 0, (24)

while the approximation (23) satisfies

lim
N→∞

sup
t≥0

eλt‖p(t)− p̃(N)(t)‖V = 0. (25)



Proof. We let u(0) ≡ p(0)V/p(0)v> and note that u(0) represents an honest
distribution over S, so that ‖u(0)R̄n‖ = 1 for all n. Hence,

eλt‖p(t)− p(N)(t)‖V = e−q̄t‖
∞∑

n=N+1

(q̄t)n

n!
p(0)T n‖V

= e−q̄t
∞∑

n=N+1

(q̄t)n

n!
‖p(0)V R̄nV −1‖V

= p(0)v>e−q̄t
∞∑

n=N+1

(q̄t)n

n!
‖u(0)R̄n‖

= p(0)v>e−q̄t
∞∑

n=N+1

(q̄t)n

n!
,

from which (24) immediately follows.
To prove (25) we note that uR = u and

‖u(0)R̄n − u‖ → 0 as n→∞, (26)

by analogy with (8). By (19), (21) and (22) we subsequently get

eλt‖p(t)− p̃(N)(t)‖V = e−q̄t‖
∞∑

n=N+1

(q̄t)n

n!
(p(0)T n − αm) ‖V

= e−q̄t‖
∞∑

n=N+1

(q̄t)n

n!
p(0)V

(
R̄n − 1>u

)
V −1‖V

= p(0)v>e−q̄t‖
∞∑

n=N+1

(q̄t)n

n!
u(0)

(
R̄n − 1>u

)
‖

≤ p(0)v>e−q̄t
∞∑

n=N+1

(q̄t)n

n!
‖u(0)R̄n − u‖

= p(0)v>e−q̄t
∞∑

n=N+1

(q̄t)n

n!
‖
(
u(0)R̄N − u

)
R̄n−N‖

≤ p(0)v>‖u(0)R̄N − u‖,

since R̄ is a stochastic matrix. The statement now follows with (26). 2

The transformation (19) and the resulting approximation (23) are natural
generalizations of the transformation (3) and the approximation (10), respec-
tively. Indeed, when λ = 0 we can choose the parameter q̄ in (19) equal to
the parameter q in (3) and obtain T = R, while (23) is easily seen to reduce
to (10) since, after proper normalization, v = 1 and m = p. Note also that
R1> = 1> and pR = p generalize to Tv> = v> and mT = m, respectively.

When λ = 0, the relations (24) and (25) reduce to (7) and (11), respectively,
since then the V -norm is just our usual `∞-norm. In the general case λ ≥ 0,



we must use the V -norm rather than the `∞-norm, since ‖m‖ may be infinite.
Then, however, the vi’s are sufficiently small for the V -norm to be effective.
Indeed, ‖m‖V = mv> <∞, by Theorem 1.

The preceding suggests that when ‖m‖ < ∞ one might be able to dis-
tinguish between the approximations (20) and (23) in terms of the `∞-norm.
Before settling this in the affirmative, we observe that if ‖m‖ <∞ and λ > 0,
then Q is necessarily non-conservative and escape from S must be certain. In-
deed, assuming that Q is conservative and summing (13) with µ ≡ λ > 0 over
j, leads to a contradiction. Moreover, we know from [19, Proposition 2] that∑

i∈S

mipij(t) = e−λtmj, j ∈ S.

Summing over j and letting t→∞, it subsequently follows that
∑

j∈S pij(t) →
0 as t → ∞ for any state i, and hence ‖p(t)‖ → 0 as t → ∞ for any initial
distribution, that is, escape from S is certain.

Theorem 3 The the approximation (20) has the property

lim
N→∞

sup
t≥0

‖p(t)− p(N)(t)‖ = 1, (27)

while, if p(0)v> <∞ and ‖m‖ <∞, the approximation (23) satisfies

lim
N→∞

sup
t≥0

‖p(t)− p̃(N)(t)‖ = 0. (28)

Proof. Since the approximations (20) and (6) are essentially equivalent, (27)
is a restatement of (7).

When λ = 0 the relation (28) reduces to (25), so in the remainder of this
proof we will assume λ > 0. It will be convenient to define

r ≡ q̄

λ+ q̄
< 1, (29)

and

Π ≡ I +
1

λ+ q̄
Q,

so that Π is a (strictly) substochastic transition probability matrix. Since our
assumptions ‖m‖ <∞ and λ > 0 imply that the chain X will escape from S
with probability 1, the same must be true for the discrete-time chain generated
by Π, that is,

‖p(0)Πn‖ → 0 as n→∞, (30)



for any initial distribution p(0). Subsequently recalling that mT = m and
noting that Π = rT , we get

‖p(t)− p̃(N)(t)‖ = e−(λ+q̄)t‖
∞∑

n=N+1

(q̄t)n

n!
(p(0)T n − αm) ‖

= e−(λ+q̄)t
∞∑

n=N+1

(q̄t)n

n!
‖
(
p(0)TN − αm

)
T n−N‖

≤ ‖p(0)TN − αm‖e−(λ+q̄)t
∞∑

n=N+1

(q̄t)n

n!
rN−n

= ‖p(0)ΠN − αrNm‖e−(λ+q̄)t
∞∑

n=N+1

((λ+ q̄)t)n

n!

≤ ‖p(0)ΠN‖+ αrN‖m‖,

so that the result follows by (29), (30) and the fact that ‖m‖ is finite. 2

When Q is non-conservative it is often of interest to know the state distri-
bution for X conditional on the chain being in S. That is, we are interested
in π(t) ≡ (πi(t), i ∈ S) with

πi(t) ≡
pi(t)∑

j∈S pj(t)
, i ∈ S, t ≥ 0. (31)

It may be shown on the basis of Theorem 4.2, that when ‖m‖ <∞, and escape
from S is certain, approximating both numerator and denominator of (31) by
using (23), and truncating at level N , results in an approximation π̃N(t) which
satisfies

lim
N→∞

sup
t≥0

e−λt‖π(t)− π̃(N)(t)‖ = 0.

As an aside we remark that when π ≡ (πi, i ∈ S) is an honest distribution
over S such that

πi = πi(t), i ∈ S, t ≥ 0,

then π is called a quasi-stationary distribution. Actually, when m is a summable
λ-invariant measure, then m/‖m‖ is a quasi-stationary distribution (see Nair
and Pollett [14]), while it is usually also the limit as t→∞ of the conditional
state distribution π(t).

Obviously, the applicability of the approximation (23) is considerably re-
stricted by the fact that one needs to know the decay parameter λ, and the
λ-invariant measure m and λ-invariant vector v. Some examples of Markov
chains for which this knowledge is available are given in the next section.



An approximation of p̃(N)(t), and hence of p(t), which requires knowledge
of λ, but not of m and v, may be obtained by generalising the steady-state-
detection method; see [9] and the references mentioned there. First note that
R̄n → 1>u, and hence T n → v>m/mv> componentwise as n → ∞. As a
consequence we have

p(0)T n → p(0)v>m

mv>
= αm as n→∞, (32)

componentwise, since we have assumed p(0)v> <∞. The approximation now
amounts to choosing N so large that p(0)TN (or at least a relevant part of it)
has converged in sufficient degree according to a suitable criterion which does
not involve its limit αm), and replacing αm in (23) by p(0)TN . A disadvantage
of this method is that no exact error bounds are available, even in the ergodic
case.

5 EXAMPLES

5.1 Example 1: The birth-death process

We let X be a birth-death process on S = IN0 ≡ {0, 1, . . .} with birth and death
rates bi and di, respectively. All rates are assumed to be positive, except d0 ≥ 0;
if d0 > 0, there is an ignored absorbing state−1, say, which can only be reached
via state 0. We also assume uniformizability, that is, supi∈S{bi + di} <∞.

With λ denoting the decay parameter of X , it is not difficult to see that
the λ-invariant measure (mi, i ∈ S) and λ-invariant vector (vi, i ∈ S) for X
may be represented as

mi = πiQi(λ), vi = Qi(λ), i ∈ S, (33)

where Qi, i ∈ S, are polynomials defined by the recurrence relation

biQi+1(x) = (bi + di − x)Qi(x)− diQi−1(x), i > 0,

b0Q1(x) = b0 + d0 − x, Q0(x) = 1,
(34)

and πi, i ∈ S, are constants given by

π0 ≡ 1, πi ≡
b0b1 · · · bi−1

d1d2 · · · di

, i > 0,

see, e.g., [11].
Assuming that the chain is λ-positive, that is,

γ−1 ≡
∑
i∈S

mivi =
∑
i∈S

πiQ
2
i (λ) <∞,



the transition probabilities pij(t), i, j ∈ S, t ≥ 0, can now be represented as

pij(t) = γ e−λtπjQi(λ)Qj(λ)

+ e−(q̄+λ)t
∞∑

n=0

(q̄t)n

n!
((T n)ij − γπjQi(λ)Qj(λ)) , (35)

where q̄ is any number satisfying q̄ ≥ bi +di−λ, i ∈ S, and T ≡ (tij, i, j ∈ S)
is the matrix with elements

tij =



bi
q̄

j = i+ 1, i ≥ 0

1 +
λ− bi − di

q̄
j = i, i ≥ 0

di

q̄
j = i− 1, i ≥ 1,

and 0 otherwise. An approximation which is arbitrarily close to pij(t) uniformly
over t may now be obtained by truncating the infinite sum.

For many specific birth-death processes the decay parameter λ is explicitly
known. An example is the process with constant rates

bi = b, di+1 = d, i = 0, 1, . . . ,

but d0 = δ < d. It may be shown that this process is λ-positive if and only if

0 ≤ δ <
√
d(
√
d−

√
b),

in which case

λ = δ

(
1− b

d− δ

)
,

cf. [5], where the discrete-time variant of this process is analysed.

5.2 Example 2: A closed Jackson network

Consider a closed Jackson network modelling a manufacturing system consist-
ing of K stations. The system might fail due to defective routing. That is, a
job might be damaged while being transported from one station to another, in
which case the system has to be stopped to remove the damaged job.

Let i ≡ (i1, i2, . . . , iK) denote the state of the network, ik being the number
of jobs present at station k. When the network is in state i, the service
rate in station k, k = 1, 2, . . . , K, is µk(i). As usual in the literature on
product form distributions, cf. Boucherie and van Dijk [3] and Henderson and



Taylor [8], we assume that functions ψ : INN
0 → [0,∞), φ : INN

0 → (0,∞) and
θ : {1, 2, . . . , K} → [0,∞) exist such that

µk(i) =
ψ(i− ek)θ(k)

φ(i)
,

where ek denotes the k-th unit vector. Following Boucherie [2], we will ad-
ditionally assume that the total service intensity of the network is fixed and
normalized to 1, that is, for all states i

K∑
k=1

µk(i) = 1.

For a network consisting of single-server stations, with (basic) service rate νk

at station k, in which surplus capacity of idle servers is proportionally shared
by the busy servers, these functions are θ(k) = νk, ψ(i− ek) = 1I{i−ek≥0}, and
φ(i) =

∑K
k=1 νk1I{i−ek≥0}, where 1IA denotes the indicator function of the event

A.
Upon leaving station k after completion of service a customer is routed

to station ` 6= k with probability pk`, and is damaged with probability 1 −∑K
`=1 pk`, the latter event resulting in termination of network operation. The

substochastic matrix P ≡ (pk`, k, ` = 1, 2, . . . , K) is assumed to be primitive.
Let β be the Perron-Frobenius eigenvalue of P , and c and y the corresponding
left and right eigenvectors,

cP = βc and Py = βy,

respectively, normalized such that

K∑
k=1

ckyk/θ(k) = 1.

When the network contains M jobs, the state space of the Markov chain X
recording the state of the network is S = {i ≡ (i1, i2, . . . , iK)| ∑K

k=1 ik = M},
while its transition rates are given by

qi,i−ek+e`
= µk(i)pk`, k, ` = 1, 2, . . . , K, k 6= `,

qi,i = −1.

for i ∈ S. The failure rate in state i is
∑K

k=1 µk(i)(1−
∑K

`=1 pk`).
By analogy with Boucherie [2], it is easy to see that X has a (1−β)-invariant

measure

mi = φ(i)
K∏

k=1

(ck/θ(k))
ik , i ∈ S,



and a (1− β)-invariant vector

vi =
K∏

k=1

yik
k , i ∈ S.

Obviously,

γ−1 ≡
∑
i∈S

mivi <∞,

so from the continuous-time analogue of [17, Theorem 6.4] we obtain that X
has decay parameter λ = 1− β and λ-invariant measure m = (mi, i ∈ S) and
vector v = (vi, i ∈ S).

For a system starting off empty, i.e., pi(0) = 1 for i = 0, the state proba-
bilities pi(t) can now be represented as

pi(t) = γ e−(1−β)tmi + e−(1−β+q̄)t
∞∑

n=0

(q̄t)n

n!
((T n)0,i − γmi) , i ∈ S,

where q̄ is any number satisfying q̄ ≥ β, and T ≡ (ti,j, i, j ∈ S) is the matrix
with elements

ti,j =


µk(i)pk`

q̄
j = i− ek + e`, k, ` = 1, 2, . . . , K, k 6= `,

1− β

q̄
j = i,

and 0 otherwise. An approximation which is arbitrarily close to pi(t) uniformly
over t may now be obtained by truncating the infinite sum.
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