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Abstract: Frobenius manifolds (solutions of WDVV equations) in canonical coordi-
nates are determined by the system of Darboux–Egoroff equations. This system of par-
tial differential equations appears as a specific subset of then-component KP hierarchy.
KP representation theory and the related Sato infinite Grassmannian are used to con-
struct solutions of this Darboux–Egoroff system and the related Frobenius manifolds.
Finally we show that for these solutions Dubrovin’s isomonodromy tau-function can be
expressed in the KP tau-function.

1. Introduction

In the beginning of the 90’s in the physics literature on two-dimensional field theory a re-
markable and amazingly rich system of partial differential equations emerged. Roughly
speaking, this system describes the conditions for a functionF = F(t) of the variable
t = (t1, t2, . . . , tn) such that the third-order derivatives define structure constants of
an associative algebra. These equations are commonly known as the Witten–Dijkgraaf–
E. Verlinde–H. Verlinde (WDVV) equations [22,5]. From the geometric point of view
the WDVV equations describe the conditions defining a Frobenius manifold. This con-
cept of Frobenius manifold was introduced and extensively studied by Dubrovin, whose
lecture notes [3] constitute the primary reference for Frobenius manifolds and many of
their applications. The lecture notes of Manin [17] are also a very good general reference.
Frobenius manifolds have appeared in a wide range of settings, including quantum co-
homology [15], Gromov–Witten invariants, unfolding of singularities, reflection groups
and integrable systems. Thus Frobenius manifolds (WDVV equations) are relevant in
describing some deep geometrical phenomena. So it is expected that these Frobenius
manifold equations are rather difficult to solve. Surprisingly some exact explicit solutions
of this system of nonlinear equations do exist.
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The WDVV equations first appeared in 2D topological field theory. It was derived as a
system of equations for so-called primary free energy.According to an idea of Witten the
procedure of coupling to gravity should be described in terms of an integrable hierarchy
of partial differential equations. In this context Witten–Kontsevich [23,14] proved that
the partition function is a particular tau-function of the KdV hierarchy. For general 2D
topological field theories the corresponding integrable hierarchies are not known.

The connection of Frobenius manifolds with integrable systems has been the subject
of many investigations. For instance Dubrovin (see e.g. [3], §6) made extensive study of
Frobenius manifolds in relation to semi-classical approximations (dispersionless limit,
Witham averaging) of integrable hierarchies of partial differential equations. Here also
tau-functions emerge, but their representation theoretical meaning remains unclear and
under-exposed. Recently tau-functions also reappear in studying one-loop approxima-
tions [6,8].

The particular class of semisimple Frobenius manifolds may be effectively studied in
the so-called canonical coordinates. In these coordinates Frobenius manifolds are deter-
mined by the classical Darboux–Egoroff equations, a system of differential equations,
playing a major part in many investigations in classical differential geometry. In terms of
the Riemann theta function of auxiliary algebraic curves Krichever constructed in [16]
solutions of this system.

It is observed that these Darboux–Egoroff equations are a special case of then-
component KP hierarchy. This observation enables us to study Frobenius manifolds in
the context of the KP hierarchy. In particular this implies that we have the machinery from
the representation theory for the KP hierarchy at our disposal and may take advantage
of it to produce solutions. This is the subject of the present paper.

The paper is devoted to the construction of Frobenius manifolds by considering the
WDVV equations in the context of the KP hierarchy and to construct solutions in terms
of appropriate classes of tau-functions emerging in the representation theory of the KP
hierarchy.

We summarize the contents of the paper. In Sect. 2 we explain the construction of
the semi-infinite wedge representation of the groupGL∞ and write down the condi-
tion for theGL∞-orbit Om of the highest weight vector|m〉. The resulting equation
is called the KP hierarchy in the fermionic picture. Moreover we briefly discuss the
formulation within Sato’s Grassmannian. Section 3 is devoted to bosonization of the
fermionic picture. We express the fermionic fields in terms of bosonic fields and de-
termine the conditions for elements of orbitsOm in bosonic terms. Using the so-called
boson-fermion correspondence we reformulate in Sect. 4 the KP hierarchy in the bosonic
setting. Introducing formal pseudodifferential operators we obtain Sato’s equation, an-
other reformulation of the KP hierarchy. In Sect. 5, the central part of the paper, we
construct solutions of the Darboux–Egoroff system by considering this system as a spe-
cial case of the Sato equation and applying the results described in the previous sections
and furthermore by introducing appropriate well-chosen tau-functions. The relevance of
the orthogonal group is briefly explained. Using the KP wave function corresponding to
all solutions of Sect. 5, we construct in Sect. 6 specific eigenfunctions that determine the
Frobenius manifold. We find an expression for the flat coordinates and express Dubrov-
in’s isomonodromy tau-function in terms of the KP tau-function. Finally in Sect. 7 as
an illustration we describe the simplest example in full detail.

For notations and general background we refer to Dubrovin [3] and Kac and van de
Leur [11].
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2. The Semi-Infinite Wedge Representation of the GroupGL∞ and Sato’s
Grassmannian

Consider the infinite complex matrix group

GL∞ ={A=(aij )i,j∈Z+1
2
|A is invertible and all but a finite number ofaij−δij are 0},

and its Lie algebra

gl∞ = {a = (aij )i,j∈Z+ 1
2
| all but a finite number ofaij are 0}

with bracket[a, b] = ab − ba. The Lie algebragl∞ has a basis consisting of matrices
Eij , i, j ∈ Z + 1

2, whereEij is the matrix with a 1 on the(i, j)th entry and zeros
elsewhere. LetC∞ = ⊕

j∈Z+ 1
2

Cvj be an infinite dimensional complex vector space
with fixed basis{vj }j∈Z+ 1

2
. Both the groupGL∞ and its Lie algebragl∞ act linearly

onC
∞ via the usual formula:

Eij (vk) = δjkvi .

The well-known semi–infinite wedge representation is constructed as follows [12]

(see also [13] and [11]). The semi-infinite wedge spaceF = 3
1
2∞

C
∞ is the vector space

with a basis consisting of all semi-infinite monomials of the formvi1∧vi2∧vi3 . . . , where
i1 > i2 > i3 > . . . andi`+1 = i` − 1 for ` >> 0. We can now define representations
R of GL∞ andr of gl∞ onF by

R(A)(vi1 ∧ vi2 ∧ vi3 ∧ · · · ) = Avi1 ∧ Avi2 ∧ Avi3 ∧ · · · ,
r(a)(vi1 ∧ vi2 ∧ vi3 ∧ · · · ) =

∑
k

vi1 ∧ vi2 ∧ · · · ∧ vik−1 ∧ avik ∧ vik+1 ∧ · · · . (2.1)

These equations are related by the usual formula:

exp(r(a)) = R(expa) for a ∈ gl∞.
In order to perform calculations later on, it is convenient to introduce a larger group

GL∞ = {A = (aij )i,j∈Z+ 1
2
|A is invertible and all but a finite

number ofaij − δij with i ≥ j are 0},
and its Lie algebra

gl∞ = {a = (aij )i,j∈Z+ 1
2
| all but a finite number ofaij with i ≥ j are 0}.

BothGL∞ andgl∞ act on a completionC∞ of the spaceC∞, where

C∞ = {
∑
j

cj vj |cj = 0 for j >> 0}.

It is easy to see that the representationsR andr extend to representations ofGL∞ and
gl∞ on the spaceF .

The representationr of gl∞ andgl∞ can be described in terms of wedging and
contracting operators inF (see e.g. [12,13]). Letv∗

j be the linear functional onC∞
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defined by〈v∗
i , vj 〉 := v∗

i (vj ) = δij and letC∞∗ = ⊕
j∈Z+ 1

2
Cv∗

j be the restricted dual

of C
∞, then for anyw ∈ C

∞, we define a wedging operatorψ+[w] onF by

ψ+[w](vi1 ∧ vi2 ∧ · · · ) = w ∧ vi1 ∧ vi2 · · · . (2.2)

Letw∗ ∈ C
∞∗, we define a contracting operator

ψ−[w∗](vi1 ∧ vi2 ∧ · · · ) =
∞∑
s=1

(−1)s+1〈w∗, vis 〉vi1 ∧ vi2 ∧ · · · ∧ vis−1 ∧ vis+1 ∧ · · · .
(2.3)

For simplicity we write

ψ+
j = ψ+[v−j ], ψ−

j = ψ−[v∗
j ] for j ∈ Z + 1

2
. (2.4)

These operators satisfy the following relations(i, j ∈ Z + 1
2, λ, µ = +,−):

ψλi ψ
µ
j + ψ

µ
j ψ

λ
i = δλ,−µδi,−j ,

hence they generate a Clifford algebra, which we denote byC`.
Introduce the following elements ofF (m ∈ Z):

|m〉 = vm− 1
2

∧ vm− 3
2

∧ v
m− 5

2
∧ · · · .

It is clear thatF is an irreducibleC`-module generated by the vacuum|0〉 such that

ψ±
j |0〉 = 0 for j > 0.

It is straightforward that the representationr is given by the following formula:

r(Eij ) = ψ+
−iψ

−
j . (2.5)

Define thecharge decomposition

F =
⊕
m∈Z

F (m) (2.6)

by letting

charge|0〉 = 0 and chargeψ±
j = ±1. (2.7)

It is clear that the charge decomposition is invariant with respect tor(g`∞) (and hence
with respect toR(GL∞)). Moreover, it is easy to see that eachF (m) is irreducible with
respect tog`∞ (andGL∞). Note that|m〉 is its highest weight vector, i.e.

r(Eij )|m〉 = 0 for i < j,

r(Eii)|m〉 = 0 (resp. = |m〉) if i > m (resp. ifi < m).

Letw ∈ F , we define the Annihilator spaceAnn(w) of w as follows:

Ann(w) = {v ∈ C
∞|v ∧ w = 0}. (2.8)
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Notice thatAnn(w) 6= 0, sincevj ∈ Ann(w) for j << 0. This Annihilator space for
perfect (semi–infinite) wedgesw ∈ F (m) is related to theGL∞-orbit

Om = R(GL∞)|m〉 ⊂ F (m)

of the highest weight vector|m〉 as follows. LetA = (Aij )i,j∈Z ∈ GL∞, denote by
Aj = ∑

i∈ZAijvi , then by (2.8),

τm = R(A)|m〉 = Am− 1
2

∧ Am− 3
2

∧ A
m− 5

2
∧ · · · , (2.9)

with A−j = v−j for j >> 0. Notice that sinceτm is a perfect (semi-infinite) wedge

Ann(τm) =
∑
j<m

CAj ⊂ C
∞.

The following theorem also characterizes the group orbit. For a proof, see [12,13]:

Theorem 2.1. Let τm ∈ F (m), thenτm ∈ Om if and only ifτm satisfies the (fermionic)
KP hierarchy: ∑

k∈Z+ 1
2

ψ+
k τm ⊗ ψ−

−kτm = 0. (2.10)

It is obvious from the construction that ifw ∈ C
∞ andτm ∈ Om thatw ∧ τm ∈ Om+1.

In fact one has the following useful lemma.

Lemma 2.1. Let τm ∈ Om, w ∈ C
∞ and w∗ ∈ C

∞∗. If ψ+[w]τm 6= 0 (resp.
ψ−[w∗]τm 6= 0), thenψ+[w]τm ∈ Om+1 (resp.ψ−[w∗]τm ∈ Om−1).

Proof. We only have to prove the statement forψ−[w∗]τm. Letψ−[w∗] ⊗ψ−[w∗] act
on (2.10), then we obtain

0 =
∑

k∈Z+ 1
2

ψ+
k ψ

−[w∗]τm ⊗ ψ−
−kψ

−[w∗]τm −
∑

k∈Z+ 1
2

τm ⊗ 〈w∗, v−k〉ψ−
−kψ

−[w∗]τm

=
∑

k∈Z+ 1
2

ψ+
k ψ

−[w∗]τm ⊗ ψ−
−kψ

−[w∗]τm − τm ⊗ ψ−[w∗]ψ−[w∗]τm.

Since the last term is clearly zero we obtain the desired result.ut
Choose a positive integern and relabel the basis vectorsvi as follows. Define for

j ∈ Z, 1 ≤ j ≤ n, k ∈ Z + 1
2:

v
(j)
k = vnk− 1

2 (n−2j+1), (2.11)

and identify

v
(j)
k = t−k−

1
2 ej , (2.12)

whereej , 1 ≤ j ≤ n, is a basis ofCn. We can thus write the vectorsA` in (2.9) as

A` = A`(t) =
n∑
j=1

 ∑
i∈Z+ 1

2

Ani− 1
2 (n−2j+1),`t

−i− 1
2

 ej , (2.13)
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hence as a vector inH = (C[t, t−1])n. In this way we can identifyAnn(τm) with a
subspaceWτm = ∑

j<m CAj(t) of the spaceH and hence with a point in an infinite
(polynomial) GrassmannianGr. A point ofGr is a linear subspace ofH which contains

H` :=
n∑
j=1

∞∑
i=`

Ct iej

for ` >> 0. NowGr = ∪m∈ZGrm (disjoint union) with

Grm = {W ∈ Gr|H` ⊂ W and dimW/H` = `n+m for ` >> 0},
and we can construct a canonical map

φ : Om → Grm, φ(τm) = Wτm :=
∑
i<m

CAi(t).

It is clear thatφ(|mn〉) = H−m and thatφ is surjective with fibersC×. This construction
is due to Sato [S].

3. The Boson-Fermion Correspondence

The relabeling of thevi ’s given by (2.11) induces a relabeling of theψ±
j ’s, viz.,

ψ
±(j)
k = ψ±

nk± 1
2 (n−2j+1)

.

Notice that with this relabeling we have:

ψ
±(j)
k |0〉 = 0 for k > 0.

Besides the charge decomposition, we also introduce anenergy decompositiondefined
by

energy|0〉 = 0, energyψ±(j)
k = −k. (3.1)

Note that energy onF is never negative. Introduce the fermionic fields(z ∈ C
×) by

ψ±(j)(z) =
∑

k∈Z+ 1
2

ψ
±(j)
k z−k−

1
2 , (3.2)

and bosonic fields(1 ≤ i, j ≤ n) by

α(ij)(z) =
∑
k∈Z

α
(ij)
k z−k−1 =: ψ+(i)(z)ψ−(j)(z) :, (3.3)

where: : stands for thenormal ordered productdefined in the usual way(λ, µ = + or
−):

: ψλ(i)k ψ
µ(j)
` :=

{
ψ
λ(i)
k ψ

µ(j)
` if ` ≥ k,

−ψµ(j)` ψ
λ(i)
k if ` < k.

(3.4)



Frobenius Manifolds and KP tau-Functions 593

One checks (using e.g. theWick formula) that the operatorsα
(ij)
k satisfy the commutation

relations of the affine algebragln(C)∧ with central charge 1, i.e.:

[α(ij)p , α(k`)q ] = δjkα
(i`)
p+q − δi`α

(kj)
p+q + pδi`δjkδp,−q, (3.5)

and that

α
(ij)
k |m〉 = 0 if k > 0 ork = 0 andi < j. (3.6)

The operatorsα(i)k ≡ α
(ii)
k satisfy the canonical commutation relation of the associative

oscillator algebra, which we denote byα:

[α(i)k , α(j)` ] = kδij δk,−`, (3.7)

and one has

α
(i)
k |m〉 = 0 for k > 0. (3.8)

It is easy to see that restricted tog`n(C)∧, F (0) is its basic highest weight represen-
tation (see [10]).

In order to express the fermionic fieldsψ±(i)(z) in terms of the bosonic fieldsα(i)(z),
we need some additional operatorsQi, i = 1, . . . , n, onF . These operators are uniquely
defined by the following conditions:

Qi |0〉 = ψ
+(i)
− 1

2
|0〉, Qiψ

±(j)
k = (−1)δij+1ψ

±(j)
k∓δij Qi. (3.9)

They satisfy the following commutation relations:

QiQj = −QjQi if i 6= j, [α(i)k ,Qj ] = δij δk0Qj . (3.10)

Theorem 3.1 ([1,9]).

ψ±(i)(z) = Q±1
i z±α

(i)
0 exp(∓

∑
k<0

1

k
α
(i)
k z

−k)exp(∓
∑
k>0

1

k
α
(i)
k z

−k). (3.11)

Proof. See [18].

The operators on the right-hand side of (3.11) are called vertex operators. They made
their first appearance in string theory (cf. [7]).

We can describe now then-component boson-fermion correspondence. LetC[x] be
the space of polynomials in indeterminatesx = {x(i)k }, k = 1,2, . . . , i = 1,2, . . . , n.
Let L be a lattice with a basisδ1, . . . , δn over Z and the symmetric bilinear form
(δi |δj ) = δij , whereδij is the Kronecker symbol. Let

εij =
{

−1 if i > j,

1 if i ≤ j .
(3.12)

Define a bimultiplicative functionε : L× L → {±1} by letting

ε(δi, δj ) = εij . (3.13)
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Let δ = δ1 + . . . + δn, M = {γ ∈ L| (δ|γ ) = 0}, 1 = {αij := δi − δj |i, j =
1, . . . , n, i 6= j}. Of courseM is the root lattice ofs`n(C), the set1 being the root
system.

Consider the vector spaceC[L] with basiseγ , γ ∈ L, and the following twisted
group algebra product:

eαeβ = ε(α, β)eα+β. (3.14)

LetB = C[x]⊗C C[L] be the tensor product of algebras. Then then-component boson-
fermion correspondence is the vector space isomorphism

σ : F → B, (3.15)

given by

σ(α
(i1)−m1

. . . α
(is )−msQ

k1
1 . . .Q

kn
n |0〉) = m1 . . . msx

(i1)
m1

. . . x(is )ms
⊗ ek1δ1+...+knδn . (3.16)

The transported charge and energy then will be as follows:

chargep(x)⊗ eγ = (δ|γ ),
energyx(i1)m1

. . . x(is )ms
⊗ eγ = m1 + . . .+ms + 1

2
(γ |γ ). (3.17)

We denote the transported charge decomposition by

B =
⊕
m∈Z

B(m).

The transported action of the operatorsα(i)m andQj looks as follows:
σα

(j)
−mσ−1(p(x)⊗ eγ ) = mx

(j)
m p(x)⊗ eγ , if m > 0,

σα
(j)
m σ−1(p(x)⊗ eγ ) = ∂p(x)

∂xm
⊗ eγ , if m > 0,

σα
(j)
0 σ−1(p(x)⊗ eγ ) = (δj |γ )p(x)⊗ eγ ,

σQjσ
−1(p(x)⊗ eγ ) = ε(δj , γ )p(x)⊗ eγ+δj .

(3.18)

The transported action of the fermionic fields is as follows:

σψ±(j)(z)σ−1 = e±δj z±δj exp(±
∞∑
k=1

x
(j)
k ).exp(∓

∞∑
k=1

∂

∂x
(j)
k

z−k

k
). (3.19)

We will now determine the second part of the boson–fermion correspondence, i.e.,
we want to determineσ(τm), whereτm is given by (2.9). Since all spacesF (m) give a
similar representation ofgl∞, we will restrict our attention to the case thatm = 0 and
we writeτ instead ofτ0. We will generalize the proof of Theorem 6.1 of [13]. For this
purpose we have to introduce elements3

(j)
` ∈ gl∞, 1 ≤ j ≤ n, ` ∈ N, by

3
(j)
` =

∑
k∈Z+ 1

2

Enk− 1
2 (n−2j+1),nk+`− 1

2 (n−2j+1). (3.20)
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Notice that3(j)` = (3
(j)
1 )`,r(3(j)` ) = α

(j)
` and that exp3(j)` ∈ Gl∞.With the relabeling

|0〉 becomes

|0〉 = v
(n)

− 1
2

∧ v(n−1)
− 1

2
∧ · · · ∧ v(1)− 1

2
∧ v(n)− 3

2
∧ v(n−1)

− 3
2

∧ · · · ,

and

QiQ
−1
j |0〉 = (−)n−j v(i)1

2
v
(n)

− 1
2

∧ v(n−1)
− 1

2
∧ · · · ∧ v(j+1)

− 1
2

∧ v(j−1)
− 1

2
∧

· · · ∧ v(1)− 1
2

∧ v(n)− 3
2

∧ v(n−1)
− 3

2
∧ · · · .

We now want to determineσ(τ), where

τ = R(A)|0〉 = A− 1
2

∧ A− 3
2

∧ A− 5
2

∧ · · · , with A−p = v−p for all p > P >> 0.

(3.21)

Let σ(τ) = ∑
α∈M τα(x)eα; we want to compute

σ

R
exp

 n∑
j=1

∞∑
k=1

y
(j)
k 3

(j)
k

 τ
 = exp

 n∑
j=1

∞∑
k=1

y
(j)
k

∂

∂x
(j)
k

∑
α∈M

τα(x)e
α.

Now letFα(y) denote the coefficient of 1⊗ eα in this expression, then

Fα(y) = exp

 n∑
j=1

∞∑
k=1

y
(j)
k

∂

∂x
(j)
k

 τα(x)|x=0 = τα(x + y)|x=0 = τα(y).

Soτα(y) is the coefficient of 1⊗ eα in

σ

R
exp

 n∑
j=1

∞∑
k=1

y
(j)
k 3

(j)
k

A
 |0〉

 .
Now letα = ∑n

j=1 kj δj ; then

1 ⊗ eα = σ(Q
k1
1 Q

k2
2 · · ·Qkn

n |0〉),
henceτα(y) is the coefficient of

R

exp

 n∑
j=1

∞∑
k=1

y
(j)
k 3

(j)
k

A
 |0〉 = R

 n∑
j=1

∞∑
k=0

Sk(y
(j))3

(j)
k

A
 |0〉

= R

∑
`<0

n∑
j=1

∑
q∈Z+ 1

2

( ∞∑
k=0

An(q+k)− 1
2 (n−2j+1),n(q)− 1

2 (n−2j+1)Sk(y
(j))

)

Enq− 1
2 (n−2j+1),`

)
|0〉,
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whereSk(y) are the elementary Schur functions defined by

∑
k∈Z

Sk(y)z
k = exp(

∞∑
k=1

ykz
k).

Using formula (4.48) of [13], i.e.,

R(A)|0〉 =
∑

j− 1
2
>j− 3

2
>j− 5

2
>···

det

(
A

− 1
2 ,− 3

2 ,− 5
2 ,···

j− 1
2
,j− 3

2
,j− 5

2
,···
)
vj− 1

2
∧ vj− 3

2
∧ vj− 5

2
∧ · · · ,

whereA
− 1

2 ,− 3
2 ,− 5

2 ,···
j− 1

2
,j− 3

2
,j− 5

2
,··· denotes the matrix located at the intersection of the rowsj− 1

2
,

j− 3
2
, j− 5

2
, · · · and the columns−1

2,−3
2,−5

2, · · · of the matrixA, we can calculateτα(y)

if we can determineQk1
1 Q

k2
2 · · ·Qkn

n |0〉 as a perfect simple wedge. This is in general quite
complicated, so we assume for the moment that

Q
k1
1 Q

k2
2 · · ·Qkn

n |0〉 = λαvj− 1
2

∧ vj− 3
2

∧ vj− 5
2

∧ · · · ,

with j−q = −q for all q > Q >> 0 andλα = ±1, then

τα(y) = λα det


∑
`<0

∑
r=j− 1

2
,j− 3

2
,j− 5

2
,···

∑
1≤j≤n,q∈Z+ 1

2
nq− 1

2 (n−2j+1)=r

( ∞∑
k=0

Ar+nk,`Sk(y(j))
)
Er,`

 .
Finally notice that this is in fact only a finite determinant of sizeR = max(P,Q), hence
we have determined

Proposition 3.1. LetA = (Ai,j )i,j∈Z+ 1
2

∈ GL∞ be such thatAij = δij for j < −P ,

thenσ(R(A)|0〉 = ∑
α∈M τα(x)eα. Assume thatα = ∑n

j=1 kj δj and suppose that

Q
k1
1 Q

k2
2 · · ·Qkn

n |0〉 = λαvj− 1
2

∧ vj− 3
2

∧ vj− 5
2

∧ · · · ,

with j− 1
2
> j− 3

2
> j− 5

2
· · · andj−q = −q for all q > Q >> 0 andλα = ±1, then

τα(x) =

= λα det


∑

−R<`<0

∑
r=j− 1

2
,j− 3

2
,··· ,j−R+ 1

2

∑
1≤j≤n,q∈Z+ 1

2
nq− 1

2 (n−2j+1)=r

( ∞∑
k=0

Ar+nk,`Sk(x(j))
)
Er,`

 ,
whereR = max(P,Q). In particular if 1 ≤ i < j ≤ n and α = 0, δi − δj ,
δj − δi , respectively, thenλ0 = 1, λδi−δj = (−1)n−j , λδj−δi = (−1)n−i+1 and

(j− 1
2
, j− 3

2
, · · · ) = (−1

2,−3
2,−5

2, . . . ),= (i− 1
2,−1

2,−3
2, . . . , j−n+ 1

2, j−n+ 3
2 . . . ),

= (j − 1
2,−1

2,−3
2, . . . , i − n+ 1

2, i − n+ 3
2 . . . ), respectively.
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4. The KP Hierarchy as a Dynamical System

Using the isomorphismσ we can reformulate the KP hierarchy (2.10) in the bosonic
picture. We start by observing that (2.10) can be rewritten as follows:

Resz=0

n∑
j=1

ψ+(j)(z)τ ⊗ ψ−(j)(z)τ = 0, τ ∈ F (0). (4.1)

Here and further Resz=0
∑
j fj z

j (wherefj are independent ofz) stands forf−1. Notice

that for τ ∈ F (0), σ (τ ) = ∑
γ∈M τγ (x)eγ . Here and further we writeτγ (x)eγ for

τγ ⊗ eγ . Using Theorem 3.1, Eq. (4.1) turns underσ ⊗ σ : F ⊗ F −→ C[x′, x′′] ⊗
(C[L′] ⊗ C[L′′]) into the following equations, which we call then-component KP
hierarchy. Let 1≤ a, b ≤ n, α, β ∈ M:

Resz=0(

n∑
j=1

ε(δj , α + δa − β + δb)z
(δj |α+δa−β+δb−2δj )

× exp(
∞∑
k=1

(x
(j)′
k − x

(j)′′
k )zk)exp(−

∞∑
k=1

(
∂

∂x
(j)′
k

− ∂

∂x
(j)′′
k

)
z−k

k
)

τα+αaj (x
′)τβ−αbj (x

′′)) = 0 (α, β ∈ M).

(4.2)

Define the support ofτ by suppτ = {α ∈ M|τα 6= 0}, then for eachα ∈ suppτ we
define the (matrix valued) wave functions

V ±(α, x, z) = (V ±
ij (α, x, z))

n
i,j=1 (4.3)

as follows:

V ±
ij (α, x, z) := ε(δj , α + δi)z

(δj |±α+αij )

× exp(±
∞∑
k=1

x
(j)
k zk)exp(∓

∞∑
k=1

∂

∂x
(j)
k

z−k

k
)τα±αij (x)/τα(x).

(4.4)

It is easy to see that Eq. (4.2) is equivalent to the following bilinear identity:

Resz=0V
+(α, x, z) tV −(β, x′, z) = 0 for all α, β ∈ M, (4.5)

wheretV stands for the transposed of the matrixV . Definen×nmatricesW±(m)(α, x)
by the following generating series (cf. (4.4)):

∞∑
m=0

W
±(m)
ij (α, x)(±z)−m = εjiz

δij−1(exp∓
∞∑
k=1

∂

∂x
(j)
k

z−k

k
)τα±αij (x))/τα(x). (4.6)

Note that

W±(0)(α, x) = In, (4.7)

W
±(1)
ij (α, x) =

{
εjiτα±αij /τα if i 6= j,

−τ−1
α

∂τα

∂x
(i)
1

if i = j.
(4.8)
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We see from (4.4) thatV ±(α, x, z) can be written in the following form:

V ±(α, x, z) =
∞∑
m=0

W±(m)(α, x)(±z)−mR±(α,±z)S±(x, z), (4.9)

where

R±(α, z) =
n∑
i=1

ε(δi, α)Eii(±z)±(δi |α),

S±(x, z) =
n∑
i=1

e
±∑∞

j=1 x
(i)
j z

j

Eii .

(4.10)

HereEij stands for then × n matrix whose(i, j) entry is 1 and all other entries are
zero. Now let∂ = ∑n

j=1
∂

∂x
(j)
1

, thenV ±(α, x, z) can be written in terms of formal

pseudo-differential operators (see [11] for more details).

P±(α) ≡ P±(α, x, ∂) = In +
∞∑
m=1

W±(m)(α, x)∂−m, R±(α) = R±(α, ∂) (4.11)

as follows:

V ±(α, x, z) = P±(α)R±(α)S±(x, z). (4.12)

Since obviously

R−(α, ∂)−1 = R+(α, ∂)∗, (4.13)

whereP ∗ = ∑
k(−∂)k tP (k) stands for the formal adjoint ofP = ∑

k P
(k)∂k. Moreover

one can deduce (see [11]) from the bilinear identity (4.5):

(P+(α, x, ∂)R+(α − β, ∂)P−(β, x′∂)∗)− = 0 (4.14)

for any α, β ∈ suppτ . HereQ− = Q − Q+, whereQ+ stands for the differential
operator part ofQ.

Furthermore, putx = x′, then one deduces from (4.14) withα = β that

P−(α) = (P+(α)∗)−1, (4.15)

sinceR±(0) = In andP±(α) ∈ In + lower order terms. With all these ingredients one
can prove the following lemma:

Proposition 4.1. Letα, β ∈ suppτ , thenP+(α) satisfies the Sato equations:

∂P+(α)
∂x

(j)
k

= −(P+(α)Ejj ∂kP+(α)−1)−P+(α) (4.16)

andP+(α), P+(β) satisfy

(P+(α)R+(α − β)P+(β)−1)− = 0 for all α, β ∈ suppτ. (4.17)
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This is another formulation of then-component KP hierarchy (see [11]). Introduce the
following formal pseudo-differential operatorsL(α), C(j)(α):

L(α) ≡ L(α, x, ∂) = P+(α)∂P+(α)−1,

C(j)(α) ≡ C(j)(α, x, ∂) = P+(α)EjjP+(α)−1,
(4.18)

then related to the Sato equation is the following linear system:

L(α)V +(α, x, z) = zV +(α, x, z),
C(i)(α)V +(α, x, z) = V +(α, x, z)Eii,

∂V +(α, x, z)
∂x

(i)
k

= (L(α)kC(i)(α))+V +(α, x, z).
(4.19)

To end this section we write down explicitly some of the Sato equations (4.16) on
the matrix elementsW(s)

ij of the coefficientsW(s)(x) of the pseudo-differential operator

P = P+(α) = In +
∞∑
m=1

W(m)(x)∂−m.

We shall writeW = W(1) andWij forW(1)
ij to simplify notation, then the simplest Sato

equation is

∂P

∂x
(k)
1

= [∂Ekk, P ] + [W,Ekk]P. (4.20)

In particular we have fori 6= k:

∂Wij

∂x
(k)
1

= WikWkj − δjkW
(2)
ij . (4.21)

Equation (4.20) is equivalent to the following equation forV = V +(α):

∂V

∂x
(k)
1

= (Ekk∂ + [W,Ekk])V . (4.22)

5. Solutions of the Darboux–Egoroff System

Define

γij (x) = W
(1)
ij (0, x)|x(i)k =c(i)k for k>1

, (5.1)

where thex(i)k for k > 0 are chosen to be certain specific but at the moment still unknown
constants. From (4.21) we already know that

∂γij (x)

∂x
(k)
1

= γik(x)γkj (x) i 6= k 6= j. (5.2)
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This is then-wave equation ifi, j, k are distinct. The aim of this section is to construct
specificγij ’s which satisfy

n∑
k=1

∂γij (x)

∂x
(k)
1

= 0, (5.3)

and

γij (x) = γji(x). (5.4)

In other words we want to find the rotation coefficientsγij for the Darboux–Egoroff
system (5.2)-(5.4). Sometimes we will assume an additional equation, viz.

n∑
k=1

x
(k)
1
∂γij (x)

∂x
(k)
1

= −γij (x), (5.5)

which means thatγij has degree−1. This equation holds for the so-called semisimple
conformal invariant Frobenius manifolds, see [2].

The restriction

n∑
k=1

∂W
(1)
ij (0, x)

∂x
(k)
1

= 0, (5.6)

is a very natural restriction. If we assume that

n∑
k=1

∂τ(x)

∂x
(k)
1

= 0, (5.7)

then this clearly implies (5.6). Notice that one may even assume that
∑n
k=1

∂τ(x)

∂x
(k)
1

=
λτ(x), but since we are in the polynomial caseλ must be 0. Equation (5.7) means that
τ (in the fermionic picture) belongs to theGLn(C[t, t−1])-loop group orbit or even the
SLn(C[t, t−1])-loop group orbit of|0〉 (see [11] for more details). The homogeneous
space for this group is in fact the restricted Grassmannian

Gr = {W ∈ Gr0|
n∑
k=1

tEkkW ⊂ W }.

In fact τ satisfies (5.7) if and only if

n∑
k=1

tEkkWτ ⊂ Wτ . (5.8)

Since Eq. (5.7) holds forτ we do not only find Eq. (5.6) forW(1)(0, x), but we find that
this equation holds for allW(s)(α, x)’s and hence

n∑
k=1

∂P+(α, x)
∂x

(k)
1

= 0. (5.9)
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This means that we do not really have formal pseudo-differential operators, but rather
formal matrix-valued Laurent series inz−1. The Sato equation takes the following simple
form. LetP(z) = P+(α, x, z), then

∂P (z)

∂x
(j)
k

= −(P (z)EjjP (z)−1zk)−P(z)

and the simplest Sato equation becomes

∂P (z)

∂x
(k)
1

= z[Ekk, P (z)] + [W,Ekk]P(z).

Equation (4.22) turns into

∂V (z)

∂x
(k)
1

= (zEkk + [W,Ekk])V (z), (5.10)

whereV (z) = V +(α, x, z). DefineX = ∑n
j=1 x

(j)
1 Ejj , then

n∑
j=1

x
(j)
1

∂

∂x
(j)
1

V (z) = (zX + [W,X])V (z). (5.11)

From now on we will only consider tau-functions that are homogeneous with respect to
the energy. Notice that if energyτ = N , then energyτα = N − 1

2(α|α), in particular

energyτδi−δj = energyτ0 − 1. Since the energyx(j)k = k, it is straightforward to check
that forα = 0,

L0V (z) = z
∂V (z)

∂z
, where

L0 =
n∑
j=1

∞∑
k=1

kx
(j)
k

∂

∂x
(j)
k

.

(5.12)

We will now describe a class of homogeneous tau-functions, in the fermionic picture
that satisfy (5.7). First choose two positive integersm1 andm2 such thatm1 +m2 ≤ n.
Next choosem1 positive integerski , 1 ≤ i ≤ m1 andm2 positive integers̀ j , 1 ≤ j ≤
m2, such that

∑m1
i=1 ki − ∑m2

j=1 `j = 0. Next choosem1 linearly independent vectors
ai = (ai1, ai2, . . . , ain) andm2 linearly independent vectorsbj = (bj1, bj2, . . . , bjn)

in C
n such that

(ai, bj ) =
n∑
k=1

aikbjk = 0 for all 1 ≤ i ≤ m1 and 1≤ j ≤ m2. (5.13)
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Using Lemma 2.1 we construct aτ ∈ O0 as follows:

τ =(
∑
p

a1pψ
+(p)
−k1+ 1

2
)(
∑
p

a1pψ
+(p)
−k1+ 3

2
) · · ·

· · · (
∑
p

a1pψ
+(p)
− 1

2
)(
∑
p

a2pψ
+(p)
−k2+ 1

2
)(
∑
p

a2pψ
+(p)
−k2+ 3

2
) · · ·

· · · (
∑
p

a2pψ
+(p)
− 1

2
)(
∑
p

a3pψ
+(p)
−k3+ 1

2
) · · ·

· · · (
∑
p

am1,pψ
+(p)
− 1

2
)(
∑
p

b1pψ
−(p)
−`1+ 1

2
)(
∑
p

b1pψ
−(p)
−`1+ 3

2
) · · ·

· · · (
∑
p

b1pψ
−(p)
− 1

2
)(
∑
p

b2pψ
−(p)
−`2+ 1

2
) · · · (

∑
p

bm2,pψ
−(p)
− 1

2
)|0〉.

(5.14)

The point of the GrassmannianWτ corresponding to thisτ satisfies (5.8).
The symmetry conditions (5.4) of theγij ’s are not so natural. Using (4.8), it is

equivalent to

τδi−δj (x
(`)
1 , c

(`)
2 , c

(`)
3 , . . . ) = −τδj−δi (x(`)1 , c

(`)
2 , c

(`)
3 , . . . ). (5.15)

To achieve this result, we define an automorphismω onF as follows:

ω(|0〉) = |0〉,
ω(ψ

±(i)
k ) = c±1

i ψ
∓(i)
k , with 1 ≤ i ≤ n andci ∈ C

×.
(5.16)

We will fix the ci later all to be equal to 1, but for the moment we keep them arbitrary.
This gives

ω(α
(i)
k ) = −α(i)k andω(Q±1

i ) = c±1
i Q∓1

i . (5.17)

Using the boson-fermion correspondence this induces an automorphism onB, which
we will also denote byω,

ω(x
(i)
k ) = −x(i)k , ω(

∂

∂x
(i)
k

) = − ∂

∂x
(i)
k

, ω(δi) = −δi andω(e±δi ) = c±1
i e∓δi . (5.18)

Define forα = ∑n
j=1piδi ∈ M, cα = ∏n

j=1 c
pi
i , then

ω

(∑
α∈M

τα(x)e
α

)
=
∑
α∈M

cατα(−x)e−α. (5.19)

We now want to find homogeneous tau-functions that satisfyω(τ(x)) = λτ(x) for some
λ ∈ C

×. Sinceω2(τ0(x)) = τ0(x), λ = 1 or−1. From (5.19) we deduce that

τα(x) = λcατ−α(−x), (5.20)

and we want this forα ∈ 1, of course after a specific choice of constantsx
(i)
k ’s for

k ≥ 2, to be equal to−τα(x). Since we have assumed thatτ is homogeneous (in the
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energy), say that it has energyN , then we can get rid of the−x in the right-hand side of
(5.20) if we put allx(i)2k ’s equal to zero. So define

τ(x) = τ(x)|
x
(i)
2k =0

, (5.21)

then clearly (5.20) turns into

τα(x) = λcα(−)N− 1
2 (α|α)τ−α(x).

Because this also has to hold forα = 0, we obtain thatλ = (−1)N and hencecα = 1
for all α ∈ 1. Thusci = 1 for all 1 ≤ i ≤ n or ci = −1 for all i, we may choose either
of these two cases, for simplicity we choose

ci = 1 for all 1 ≤ i ≤ n.

With all these choices, we have finally that

ω(τα(x)) = (−)N− 1
2 (α|α)τ−α(x). (5.22)

Return to the tau-functions of the form (5.14). If such aτ satisfies (5.22) and it contains
a factor

∑
i a`iψ

+(i)
k for a certain`, then it must also contain a factor

∑
j bmjψ

−(j)
k .

Since

energy

(∑
i

a`iψ
+(i)
k

)∑
j

bmjψ
−(j)
k

 = −2k ∈ 2Z + 1,

we must assume that there exists anm such that

ω

(∑
i

a`iψ
+(i)
k

)∑
j

bmjψ
−(j)
k

 = −
∑

j

bmjψ
+(j)
k

(∑
i

a`iψ
−(i)
k

)

= −
(∑

i

a`iψ
+(i)
k

)∑
j

bmjψ
−(j)
k

 .
So

a`ibmj = a j̀ bmi for all 1 ≤ i, j ≤ n

andbm must be a multiple ofa`. Since the length of such a vector does not matter much
(only a scalar multiple of the whole tau-function), we may assume thata` = bm and
since also(a`, b`) = 0 (see (5.13)), we obtain thata` is an isotropic vector inCn.

Finally we conclude the following

Proposition 5.1. Letm be the integer part ofn2 . Choosem linearly independent vectors
ai = (ai1, ai2, . . . , ain) in C

n which span a maximal isotropic subspace ofC
n, i.e.

(ai, aj ) =
n∑
k=1

aikajk = 0 for all 1 ≤ i, j ≤ m.
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Choosem non-negative integerski , 1 ≤ i ≤ m such that

k1 ≥ k2 ≥ . . . ≥ km ≥ 0, (5.23)

thenσ(τ) = ∑
α∈M τα(x)eα, with

τ = (
∑
p

a1pψ
+(p)
−k1+ 1

2
)(
∑
p

a1pψ
+(p)
−k1+ 3

2
) · · ·

· · · (
∑
p

a1pψ
+(p)
− 1

2
)(
∑
p

a2pψ
+(p)
−k2+ 1

2
)(
∑
p

a2pψ
+(p)
−k2+ 3

2
) · · ·

· · · (
∑
p

a2pψ
+(p)
− 1

2
)(
∑
p

a3pψ
+(p)
−k3+ 1

2
) · · ·

· · · (
∑
p

ampψ
+(p)
− 1

2
)(
∑
p

a1pψ
−(p)
−k1+ 1

2
)(
∑
p

a1pψ
−(p)
−k1+ 3

2
) · · ·

· · · (
∑
p

a1pψ
−(p)
− 1

2
)(
∑
p

a2pψ
−(p)
−k2+ 1

2
) · · ·

· · · (
∑
p

ampψ
−(p)
− 1

2
)|0〉,

(5.24)

satisfies then-component KP hierarchy (4.2) and

ω(τ) = (−)k1+k2+···+kmτ.

Moreover

energyτα(x) = k2
1 + k2

2 + · · · + k2
m − 1

2
(α|α), (5.25)

n∑
j=1

∂τα(x)

∂x
(j)
1

= 0

and

τα(x) = (−) 1
2 (α|α)τ−α(x),

whereτ is defined by (5.21).

Notice that the restriction (5.23) is not essential, but we may assume it without loss
of generality. Since the energy is nowhere negative, formula (5.25) gives a restriction
for suppτ .

It is not difficult to prove that the perfect wedgeτ , given by (5.24), is also a highest
weight vector for theW1+∞-algebra generated by

J (`+1)(z) =
∑
k∈Z

J
(`+1)
k z−k−`−1 =

n∑
j=1

: ψ+(j)(z)∂
`ψ−(j)(z)
∂z`

: ` = 0,1,2, . . . ,

i.e.,

J
(`+1)
k τ = δk0c`(k1, k2, . . . , km)τ for k ≥ 0.
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Herec` ∈ C only depend on the integersk1, k2, . . . , km. This induces the following
restriction onWτ ∈ Gr0:

n∑
j=1

tk+`
(
∂

∂t

)`
EjjWτ ⊂ Wτ for all k, ` = 0,1,2, . . . .

If we now rewrite the element (5.24) as a perfect wedge, we can use Proposition 3.1
to determineτα for α = 0 or α ∈ 1. Add to the vectorsai , 1 ≤ i ≤ m vectorsaj ,
m+ 1 ≤ j ≤ n such that they form a basis ofC

n, which satisfies

(a`, ak) = δk+`,2m+1 + δk+`,4m+2 for all 1 ≤ k, ` ≤ n. (5.26)

Define

k2m+1−i = −ki for 1 ≤ i ≤ m. (5.27)

Then theτ given by (5.24) is up to a scalar multiple equal to the following perfect wedge:

A− 1
2

∧ A− 3
2

∧ A− 5
2

∧ · · · ,
with

A−qk1−(k1+k2+···+kq−1)−` =
n∑
j=1

aqj v
(j)
`

with 1 ≤ q ≤ 2m− 1 and − k1 + 1

2
≤ ` ≤ kq − 1

2
,

A−(2m)−(k1+k2+···k2m−1)−` =
n∑
j=1

an,j v
(j)
`

with − k1 + 1

2
≤ ` ≤ −1

2
this only if n = 2m+ 1,

Aq = vq for q < −nk1 − k2 − · · · − k2m−1.

(5.28)

Now using (2.11), this is equal to

A−qk1−(k1+k2+···+kq−1)−` =
n∑
j=1

aqj vn`− 1
2 (n−2j+1)

with 1 ≤ q ≤ 2m− 1 and − k1 + 1

2
≤ ` ≤ kq − 1

2
,

A−(2m)−(k1+k2+···k2m−1)−` =
n∑
j=1

an,j vn`− 1
2 (n−2j+1)

with − k1 + 1

2
≤ ` ≤ −1

2
this only if n = 2m+ 1,

Aq = vq for q < −nk1 − k2 − · · · − k2m−1.

(5.29)
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Using Proposition 3.1, one easily deduces that (5.24) corresponding toτ0 is given by

τ0 = det(
2m−1∑
q=1

n∑
j=1

k1∑
i=1

kq−1∑
`=−i

aqj S`+i (x(j))Ej−in− 1
2 ,−qk1−(k1+k2+···+kq−1)−`− 1

2

+ δ(−1)n,−1

n∑
j=1

k1∑
i=1

−1∑
`=−i

an,j S`+i (x(j))Ej−in− 1
2 ,−(2m)−(k1+k2+···k2m−1)− −̀1

2
)

and τδr−δs for 1 ≤ r, s ≤ n is equal to the determinant ofτ0, but then with the
(s − n− 1

2)
th row replaced by

2m−1∑
q=1

kq−1∑
`=0

aqrS`(x
(r))Es−n− 1

2 ,−qk1−(k1+k2+···+kq−1)−`− 1
2
.

Now change the indices and we obtain

Theorem 5.1. Let τ be given by (5.24), and letσ(τ) = ∑
α∈M τα(x)eα, then up to a

common scalar factor

τ0 = det(
2m−1∑
q=1

n∑
j=1

k1∑
i=1

i∑
`=1−kq

aqjSi−`(x(j))Ein−j+1,qk1+(k1+k2+···+kq−1)−`+1

+ δ(−1)n,−1

n∑
j=1

k1∑
i=1

i∑
`=1

an,j Si−`(x(j))Ein−j+1,(2m)+(k1+k2+···k2m−1)−`+1)

(5.30)

andτδr−δs for 1 ≤ r, s ≤ n is equal to the determinant ofτ0, but then with the(n+1−s)th
row replaced by

2m−1∑
q=1

kq−1∑
`=0

aqrS`(x
(r))En+1−s,qk1+(k1+k2+···+kq−1)+`+1, (5.31)

where thea`, 1 ≤ ` ≤ n, satisfy (5.26) and thekj ,m+1 ≤ j ≤ 2m are given by (5.27).
Moreover the

γ rs(x) =
εsr

τ δr−δs (x)
τ0(x)

, if 1 ≤ r, s ≤ n andr 6= s,

− ∂ logτ0(x)

∂x
(r)
1

, if 1 ≤ r, s ≤ n andr = s,
(5.32)

satisfy the Darboux–Egoroff system (5.2)–(5.4). If we define

γrs(x) = γ rs(x)|x(i)k =0 for all k>1
, (5.33)

then these elements satisfy (5.2)–(5.5).
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Let f (t) = ∑
i fi(t)ei andg(t) = ∑

i gi(t)ei be two elements inH . Define the
following bilinear form:

B(f, g) = Rest=0

n∑
i=1

fi(t)gi(t). (5.34)

Then the orthogonal restricted Grassmannian is

Ĝr = {W ∈ Gr|B(W,W) = 0}. (5.35)

All W ∈ Ĝr are maximal isotropic subspaces with respect toB(·, ·). This Grassmannian
is the homogeneous space for theOn(C[t, t−1])-loop group. TheOn(C[t, t−1])-orbit
of |0〉 corresponds exactly to this Grassmannian (see e.g. [19]). Notice that all theWτ ’s
corresponding to the tau-functions given by (5.24) exactly satisfy this condition. Hence
the tau-functions we have constructed to solve the Darboux–Egoroff system are in fact
homogeneous tau-functions in theOn(C[t, t−1])-orbit of |0〉. If we consider the affine
Lie algebragln(C)∧ with central charge 1, defined by (3.5), then the special orthogonal
Lie algebrason(C)∧ is given by

son(C)
∧ = {x ∈ gln(C)∧|ω(x) = x}.

Recall thatω(ψ±(i)
k ) = ψ

∓(i)
k . The Grassmannian̂Gr has two connected compo-

nents, which are distinguished by the parity of the dimension of the kernel of the
projectionW → H0. Depending on the energy of our (homogeneous) tau-function,
ω(τ) = (−)energyτ τ , the spaceWτ belongs to one of these two components.

It is obvious, from the above description and from the construction of the tau-functions
given by (5.24), that the orthogonal groupOn acts on these tau-functions and hence on
the rotation coefficients. One has

Proposition 5.2. The orthogonal groupOn acts on the rotation coefficients of Theorem
5.1. LetX = (Xij )1≤i,j≤n ∈ On, then replacingaij , 1 ≤ i, j ≤ n, (even ifaij = 0) by∑n
`=1Xj`ai` in (5.30) and (5.31) gives a new solution of the Darboux–Egoroff system.

6. Semisimple Frobenius Manifolds

Let γij (x), 1 ≤ i, j ≤ n, be a solution of the Darboux–Egoroff system. If we can findn

linearly independent vector functionsψj = ψj (x) =t(ψ1j , ψ2j , . . . , ψnj ) such that

∂ψij

∂x
(k)
1

= γikψkj , k 6= i,

n∑
k=1

∂ψij

∂x
(k)
1

= 0,

(6.1)

then they determine under certain conditions (locally) a semisimple (i.e. massive) Frobe-
nius manifold (see [2,3]).
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Recall from (5.10), that the wave functionV (z) = V +(0, x, z) corresponding to the
tau-functions of Proposition 3.1 and Theorem 5.1 satisfy

∂Vij (z)

∂x
(k)
1

= WikVkj (z), k 6= i,

n∑
k=1

∂Vij (z)

∂x
(k)
1

= zVij (z).

(6.2)

Comparing (6.1) and (6.2), one would like to takez = 0 in (6.2), however this does not
make sense. There is a way to use the wave functionV (z) to construct theψij ’s of (6.1).
Suppose that we have a tau-function of the form (5.24), with the correspondingkq ’s,
1 ≤ q ≤ n, (in the case thatn is odd, we definekn = 0) andaqj ’s 1 ≤ q, j ≤ n. Let

Xq(t) =
n∑
j=1

aqj t
−kq−1ej ∈ H, 1 ≤ q ≤ n, (6.3)

then it easy to check that

Wτ + CXq(t) 6= Wτ andWτ + CtXq(t) = Wτ .

Hence,

n∑
j=1

aqjψ
+(j)
−kq− 1

2
τ 6= 0 and

n∑
j=1

aqjψ
+(j)
−kq+ 1

2
τ = 0. (6.4)

We rewrite this as follows:

Resz=0

n∑
j=1

aqj z
−kq−1ψ+(j)(z)τ 6= 0 and Resz=0

n∑
j=1

aqj z
−kqψ+(j)(z)τ = 0.

(6.5)

From this we deduce that

Resz=0

n∑
j=1

aqj z
−kq−1z1−δij e

∑∞
`=1 x

(j)
` z`e

−∑∞
`=1

∂

∂x
(j)
`

z−`
`

τδi−δj (x) 6= 0 and

Resz=0

n∑
j=1

aqj z
−kq z1−δij e

∑∞
`=1 x

(j)
` z`e

−∑∞
`=1

∂

∂x
(j)
`

z−`
`

τδi−δj (x) = 0.

Dividing this byτ0(x) we obtain

Resz=0

n∑
j=1

aqj z
−kq−1Vij (z) 6= 0 and Resz=0

n∑
j=1

aqj z
−kq Vij (z) = 0. (6.6)

Now define for 1≤ i, q ≤ n,

9iq = Resz=0

n∑
j=1

aqj z
−kq−1Vij (z), (6.7)
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then it is straightforward to check, using (6.2) and (6.6) that

∂9ij

∂x
(k)
1

= Wik9kj , k 6= i,

n∑
k=1

∂9ij

∂x
(k)
1

= 0.

(6.8)

Notice that the vector functions9q =t (91q,92q, . . . , 9nq) are “eigenfunctions” of the
KP hierarchy which lie in the kernel ofL. From all this we finally obtain the following

Theorem 6.1. LetV (z) = V +(0, x, z) be the wave function corresponding to the tau-
function of (5.24) withaqj , 1 ≤ q, j ≤ n andk`, 1 ≤ ` ≤ 2m, as given in Theorem 5.1
andkn = 0 if n is odd. Denote by

ψiq = Resz=0λq

n∑
j=1

aqj z
−kq−1V +

ij (0, x, z)|x(`)k =0 for all k>1
,

ψiq = Resz=0λq

n∑
j=1

aqj z
−kq−1V +

ij (0, x, z)|x(`)2k =0 for all k
,

(6.9)

where1 ≤ q ≤ n andλq ∈ C
×. Then theseψiq ’s satisfy Eqs. (6.1), withγij given by

(5.32) and the formulas

ηii = ψ2
i1,

ηαβ =
n∑
i=1

ψiαψiβ,

∂tα

∂x
(i)
1

= ψi1ψiα,

cαβγ =
n∑
i=1

ψiαψiβψiγ

ψi1
,

(6.10)

with tα = ∑n
ε=1 ηαεt

ε , determine (locally) a semisimple Frobenius manifold on the

domainx(i)1 6= x
(j)
1 andψ11ψ21 · · ·ψn1 6= 0. Theψiq ’s also satisfy (6.1), but now with

the γij replaced byγ ij of (5.33). Equations (6.10) for theseψij ’s also determine a
semisimple Frobenius manifold.

Proof. Formula (6.10) is a direct consequence of the following proposition, see [4] (cf.
[2] and [3]) for more details.ut
Proposition 6.1. Let X = ∑n

i=1 x
(i)
1 Eii , 0 = (γij )1≤i,j≤n, V = [0,X] and Vk =

[0,Ekk], thenV = (Vij )1≤i,j≤n is anti-symmetric and satisfies

∂V
∂x

(k)
1

= [Vk,V] (6.11)
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and also

Vψq =
n∑
j=1

x
(j)
1
∂ψq

∂x
(j)
1

= kqψq,

∂ψq

∂x
(k)
1

= Vkψq,
(6.12)

for ψq =t(ψ1q, ψ2q, . . . , ψnq).

Proof. Equation (6.11) follows from (5.2), (5.3) and the fact that0 is symmetric. We
prove (6.12) as follows. LetV act onψq . Using (5.11) and (6.7) one deduces

Vψq =
n∑
j=1

x
(j)
1
∂ψq

∂x
(j)
1

.

Sinceψq is independent ofx(j)k for all k > 1, we can use (5.12), to rewrite this as follows

n∑
j=1

x
(j)
1
∂ψiq

∂x
(j)
1

=

= Resz=0λq

n∑
j=1

aqj z
−kq−1z

∂

∂z

(
V +
ij (0, x, z)|x(`)k =0 for all k>1

)

= Resz=0λq

n∑
j=1

aqj

(
∂

∂z
z−kq + kqz

−kq−1
)(
V +
ij (0, x, z)|x(`)k =0 for all k>1

)

= kqResz=0λq

n∑
j=1

aqj z
−kq−1V +

ij (0, x, z)|x(`)k =0 for all k>1

= kqψiq .

The second equation of (6.12) can be proved in a similar way, using (5.10).ut
From (6.12) we determine the degreesd1, d2, . . . , dn andd (resp.dF ) of the correspond-
ing tα,

d1 = 1, dα = 1 + k1 − kα, 2 ≤ α ≤ n, d = −2k1 anddF = 3 + 2k1. (6.13)

With our choice ofkα we have

dα + d2m+1−α = 2 − d, 1 ≤ α ≤ m anddn = 1 + k1 if n = 2m+ 1 is odd.

Notice that if we define

8(z) = V (0, x, z)|
x
(`)
k =0 for all k>1

, (6.14)
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then8(z) satisfies

z
∂8(z)

∂z
=

n∑
j=1

x
(j)
1
∂8(z)

∂x
(j)
1

= (zX + V)8(z),

∂8(z)

∂x
(k)
1

= (zEkk + Vk)8(z).
(6.15)

Theorem 6.2. Let9 = (ψij )1≤i,j≤n and defineξ(z) = t98(z) = η9−18(z), U =
η9−1X9η−1, µ = −η9−1V9η−1 = ∑n

i=1 kiEii and5i = η9−1Eii9η
−1, then

η(tU) = Uη, µη + ηµ = 0 and

z
∂ξ(z)

∂z
= (zU − µ)ξ(z),

n∑
j=1

x
(j)
1
∂ξ(z)

∂x
(j)
1

= zUξ(z),

∂ξ(z)

∂x
(k)
1

= z5kξ(z),

∂ξ(z)

∂tα
= zCαξ(z),

(6.16)

whereCα = ∑n
β,γ=1 c

γ
αβEβγ .

Proof. All formulas except the last one of (6.16) follow immediately from (6.11), (6.12),
(6.15) and the fact thatt99 = η. Use the last formula of (6.10),cγαβ = ∑n

ε=1 cβαεη
εγ

and
∂x
(i)
1

∂tα
= ψiα

ψi1
to rewrite

∂ξ

∂tα
=

n∑
i=1

∂x
(i)
1

∂tα

∂ξ

∂x
(i)
1

= z

n∑
i=1

∂x
(i)
1

∂tα
η9−1Eii9η

−1ξ

= zt9

n∑
i=1

ψiα

ψi1
Eii9η

−1ξ

= zCαξ.

This finishes the proof of the theorem.ut

As in [3,4] we can reformulate (6.11) as an{x(i)1 }1≤i≤n-dependent commuting Hamil-
tonian system

∂V
∂x

(k)
1

= {V, Hk(V, X)},
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with quadratic Hamiltonians

Hi(V, X) = 1

2

∑
j 6=i

VijVji
x
(i)
1 − x

(j)
1

= 1

2

∑
j 6=i

γij γji(x
(i)
1 − x

(j)
1 ) (6.17)

with respect to the standard Poisson bracket onson:

{Vij ,Vk`} = δjkVi` − δikVj` + δi`Vjk − δj`Vik.

Now consider the 1-form

n∑
i=1

Hi(V, X)dx(i)1 . (6.18)

Since it is closed for any suchV(see [2,3]), there exists a functionτI (X), the isomon-
odromy tau-function, such that

d logτI (X) =
n∑
i=1

Hi(V, X)dx(i)1 . (6.19)

Using (5.2), we rewriteHi(V, X) as follows. Letτ̃0(X) = τ0(x)|x(`)k =0 for all k>1
, then

Hi(V, X) =1

2

∑
j 6=i

γij γji(x
(i)
1 − x

(j)
1 )

=1

2

∑
j 6=i

∂γii

∂x
(j)
1

(x
(i)
1 − x

(j)
1 )

=1

2

n∑
j=1

x
(i)
1
∂γii

∂x
(j)
1

− 1

2

n∑
j=1

x
(j)
1

∂γii

∂x
(j)
1

= − 1

2

n∑
j=1

x
(j)
1

∂γii

∂x
(j)
1

=1

2

n∑
j=1

x
(j)
1

∂

∂x
(j)
1

∂

∂x
(i)
1

(log τ̃0(X))

=1

2

∂

∂x
(i)
1

 n∑
j=1

x
(j)
1

∂

∂x
(j)
1

(log τ̃0(X))

− 1

2

∂

∂x
(i)
1

(log τ̃0(X))

= − 1

2

∂

∂x
(i)
1

(log τ̃0(X)) .

Hence

d logτI (X) = −1

2
d log τ̃0(X). (6.20)
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Dubrovin and Zhang defined in [6] a Gromov–Witten typeG-function of a Frobenius
manifold as follows:

G = log

(
τI

J
1
24

)
, where

J = det

(
∂tα

∂x
(i)
1

)
= log(ψ11ψ21 · · ·ψn1) .

(6.21)

We can explicitly determine this function in the cases of the Frobenius manifolds corre-
sponding to Theorem 6.1.

Theorem 6.3. Let τ be given by (5.24) and letψi1 be defined as in (6.9). Letτ̃0(X) =
τ0(x)|x(`)k =0 for all k>1

, i.e.,

τ̃0(X) = det(
2m−1∑
q=1

n∑
j=1

k1∑
i=1

i∑
`=1−kq

aqj
(x
(j)
1 )i−`

(i − `)! Ein−j+1,qk1+(k1+k2+···+kq−1)−`+1

+δ(−1)n,−1

n∑
j=1

k1∑
i=1

i∑
`=1

an,j
(x
(j)
1 )i−`

(i − `)! Ein−j+1,(2m)+(k1+k2+···k2m−1)−`+1).

(6.22)

Then up to an additive scalar factor,

G = −1

2
log τ̃0(X)− 1

24
log(ψ11ψ21 · · ·ψn1) . (6.23)

Moreover,

n∑
j=1

x
(j)
1

∂G

∂x
(j)
1

= γG,

where

γ = −1

4

n∑
j=1

k2
j − nk1

24
(6.24)

and

∂

∂x
(i)
1

∂

∂x
(j)
1

(log τ̃0(X)) = −γ 2
ij i 6= j,

whereγij is defined by formula (5.33).
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7. An Example

In this section we describe the simplest example in more detail. Letn = 2m, respectively
n = 2m+1 if n is even respectively odd. Since the choices of the order ofk1, k2 . . . km ∈
Z is rather arbitrary, we choose for simplicity of notation and calculationk1 = −kn = −1
and all otherki = 0. Henced1 = 1, dn = −1, dα = 0, α 6= 1, n, d = 2 anddF = 1.
Choose vectorsai = (ai1, ai2, . . . , ain), such that

(ai, aj ) = δi+j,n+1.

Then

τ0 =
n∑
j=1

a2
niui and τδi−δj = −τδj−δi = anianj for i < j,

where we use the notationui = x
(i)
1 . Hence,

γij = − anianj∑n
j=1 a

2
niui

for 1 ≤ i, j ≤ n

and the wave function is equal to

V (z) =
I − 1

τ0

n∑
i,j=1

anianjEij z
−1

 n∑
`=1

∞∑
k=0

Sk(x
(`))E``z

k.

From which we deduce that

ψi,1 = −ani
τ0
,

ψin = −ani
ui − 1

2τ0

n∑
j=1

a2
nju

2
j

 ,
ψik = aki − ani

τ0

n∑
j=1

akj anjuj for k 6= 1, n.

Then using the formulas (6.10) it is straightforward to check that

t1 = − 1

τ0
, tn =

∑n
j=1 a

2
nju

2
j

2τ0
, tk = −

∑n
j=1 akj anjuj

τ0
,

and hence that

ψi,1 = ani t1, ψin = ani(tn − ui), ψik = aki + ani tk,

ηα,β = δα+β,n+1 and t` = tn+1−`. Assume from now on that allani 6= 0. Since
ηαβ = δα+β,n+1, the solutionF(t) of the WDVV equations is of the form (see [3]):

F(t) = 1

2
(t1)2tn + 1

2
t1
n−1∑
α=2

tαtn+1−α + f (t2, t3, . . . , tn).
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Sincedn = −1,dα = 0 for α 6= 1, n anddF = 1, it suffices to determinecnnn, which is

cnnn =
n∑
i=1

a2
ni(t

1 − ui)
3

tn
.

A straightforward calculation shows that

ui = t1 − 1

ani tn

(
a1i −

n−1∑
α=2

(
aαi t

α + ani

2
tαtn+1−α)) .

Hence,

∂3f

∂u3
n

= 1

(tn)4

(
n∑
i=1

a1i

ani
−
n−1∑
α=2

(
aαi

ani
tα + 1

2
tαtn+1−α

))3

,

and thus

F(t) = 1

2
(t1)2tn + 1

2
t1
n−1∑
α=2

tαtn+1−α

− 1

6tn

(
n∑
i=1

a1i

ani
−
n−1∑
α=2

(
aαi

ani
tα + 1

2
tαtn+1−α

))3

.

Next we give theξij ’s (α 6= 1, n):

ξ1j = anj t
nezuj ,

ξαj =
(
aαj + anj t

n+1−α) ezuj ,
ξnj =

(
anj z

−1 + 1

tn

(
a1j −

n−1∑
α=2

(
aαj t

α + anj

2
tαtn+1−α))) ezuj .

One easily sees thatξij = ∂hj

∂ti
with

hj =anj t
n

z
ezuj

=anj t
n

z
e
z

(
t1− 1

anj t
n

(
a1j−∑n−1

α=2

(
aαj t

α+ anj
2 tα tn+1−α

)))
.

To see that these are deformed flat coordinates, we determine

t̃ α = (−)δα1

n∑
j=1

an+1−α,jhj .

We find

t̃1 = 1 + t1z+O(z2),

t̃α = tα +O(z), α 6= 1, n
t̃n = tnz−1 +O(z0).
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Finally we calculate theG-function of the Frobenius manifold. Notice thatτ̃0(X) =
τ0(x) = − 1

tn
and that

ψ11ψ21 · · ·ψn1 =
n∏
i=1

(ani t
n).

So using Theorem 6.3, we obtain thatγ = n−12
24 and that up to an additive constant,

G(t) = 12− n

24
log(tn).
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