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Abstract: Frobenius manifolds (solutions of WDVV equations) in canonical coordi-
nates are determined by the system of Darboux—Egoroff equations. This system of par-
tial differential equations appears as a specific subset af-teanponent KP hierarchy.

KP representation theory and the related Sato infinite Grassmannian are used to con-
struct solutions of this Darboux—Egoroff system and the related Frobenius manifolds.
Finally we show that for these solutions Dubrovin’s isomonodromy tau-function can be
expressed in the KP tau-function.

1. Introduction

In the beginning of the 90’s in the physics literature on two-dimensional field theory a re-
markable and amazingly rich system of partial differential equations emerged. Roughly
speaking, this system describes the conditions for a fundiien F(¢) of the variable

t = (11,2, ..., 1" such that the third-order derivatives define structure constants of
an associative algebra. These equations are commonly known as the Witten—Dijkgraaf—
E. Verlinde—H. Verlinde (WDVV) equations [22,5]. From the geometric point of view
the WDVV equations describe the conditions defining a Frobenius manifold. This con-
cept of Frobenius manifold was introduced and extensively studied by Dubrovin, whose
lecture notes [3] constitute the primary reference for Frobenius manifolds and many of
their applications. The lecture notes of Manin [17] are also a very good general reference.
Frobenius manifolds have appeared in a wide range of settings, including quantum co-
homology [15], Gromov—Witten invariants, unfolding of singularities, reflection groups
and integrable systems. Thus Frobenius manifolds (WDVV equations) are relevant in
describing some deep geometrical phenomena. So it is expected that these Frobenius
manifold equations are rather difficult to solve. Surprisingly some exact explicit solutions
of this system of nonlinear equations do exist.
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The WDVV equations first appeared in 2D topological field theory. It was derived as a
system of equations for so-called primary free energy. According to an idea of Witten the
procedure of coupling to gravity should be described in terms of an integrable hierarchy
of partial differential equations. In this context Witten—Kontsevich [23,14] proved that
the partition function is a particular tau-function of the KdV hierarchy. For general 2D
topological field theories the corresponding integrable hierarchies are not known.

The connection of Frobenius manifolds with integrable systems has been the subject
of many investigations. For instance Dubrovin (see e.g. [3], §6) made extensive study of
Frobenius manifolds in relation to semi-classical approximations (dispersionless limit,
Witham averaging) of integrable hierarchies of partial differential equations. Here also
tau-functions emerge, but their representation theoretical meaning remains unclear and
under-exposed. Recently tau-functions also reappear in studying one-loop approxima-
tions [6,8].

The particular class of semisimple Frobenius manifolds may be effectively studied in
the so-called canonical coordinates. In these coordinates Frobenius manifolds are deter-
mined by the classical Darboux—Egoroff equations, a system of differential equations,
playing a major part in many investigations in classical differential geometry. In terms of
the Riemann theta function of auxiliary algebraic curves Krichever constructed in [16]
solutions of this system.

It is observed that these Darboux—Egoroff equations are a special casesf the
component KP hierarchy. This observation enables us to study Frobenius manifolds in
the context of the KP hierarchy. In particular this implies that we have the machinery from
the representation theory for the KP hierarchy at our disposal and may take advantage
of it to produce solutions. This is the subject of the present paper.

The paper is devoted to the construction of Frobenius manifolds by considering the
WDVV equations in the context of the KP hierarchy and to construct solutions in terms
of appropriate classes of tau-functions emerging in the representation theory of the KP
hierarchy.

We summarize the contents of the paper. In Sect. 2 we explain the construction of
the semi-infinite wedge representation of the graup,, and write down the condi-
tion for the G L.-orbit O,, of the highest weight vectdm). The resulting equation
is called the KP hierarchy in the fermionic picture. Moreover we briefly discuss the
formulation within Sato’s Grassmannian. Section 3 is devoted to bosonization of the
fermionic picture. We express the fermionic fields in terms of bosonic fields and de-
termine the conditions for elements of orbids, in bosonic terms. Using the so-called
boson-fermion correspondence we reformulate in Sect. 4 the KP hierarchy in the bosonic
setting. Introducing formal pseudodifferential operators we obtain Sato’s equation, an-
other reformulation of the KP hierarchy. In Sect. 5, the central part of the paper, we
construct solutions of the Darboux—Egoroff system by considering this system as a spe-
cial case of the Sato equation and applying the results described in the previous sections
and furthermore by introducing appropriate well-chosen tau-functions. The relevance of
the orthogonal group is briefly explained. Using the KP wave function corresponding to
all solutions of Sect. 5, we construct in Sect. 6 specific eigenfunctions that determine the
Frobenius manifold. We find an expression for the flat coordinates and express Dubrov-
in’s isomonodromy tau-function in terms of the KP tau-function. Finally in Sect. 7 as
an illustration we describe the simplest example in full detail.

For notations and general background we refer to Dubrovin [3] and Kac and van de
Leur [11].
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2. The Semi-Infinite Wedge Representation of the Grouflz L, and Sato’s
Grassmannian
Consider the infinite complex matrix group
GLx= {A:(aij)i’j%% |A is invertible and all but a finite number of; —§;; are G,
and its Lie algebra

gloo ={a = (a,-j)i’jez+%| all but a finite number of;; are Q

with bracket{a, b] = ab — ba. The Lie algebral., has a basis consisting of matrices
Eij, i,j € Z+ % whereE;; is the matrix wih a 1 on the(, j)th entry and zeros
elsewhere. LeC® = P 1 Cv; be an infinite dimensional complex vector space

A/’EZ“F?
with fixed basis{vj}jez+%. Both the groupG L, and its Lie algebrgl, act linearly
on C* via the usual formula:

Eij(vk) = 8 jkv;.

The well-known semi—infinite wedge representation is constructed as follows [12]

(see also[13]and[11]). The semi-infinite wedge spéce A3%C™ s the vector space
with a basis consisting of all semi-infinite monomials of the fefm vy, Avi, . . ., where
i1>i2 > i3> ... andigy1 = iy — 1 for¢ >> 0. We can now define representations
R of GL andr of gl,, on F by

R(A)(U,'1 N Vis A\ Vjq A--r)= AU,’l AAU,'2 /\Avi3/\--~ y

r(a)(vil/\viz/\vis/\u-):Zvil/\viz/\~-~/\v,~k_l/\avik/\v,-k+l/\-~-. 21
k

These equations are related by the usual formula:
exp(r(a)) = R(expa) fora € glyo.
In order to perform calculations later on, it is convenient to introduce a larger group

GLx = {A = (a;j), jez+%|A is invertible and all but a finite
number ofg;; — &;; withi > j are Q,

and its Lie algebra

gloo = {a = (aij), jez+3| @l but afinite number of;; with i > j are g.
Both G Lo, andgl., act on a completiof©> of the spac&™, where

C> = {chvjlcj = 0forj >> 0}
J

Itis easy to see that the representati@andr extend to representations 6fL ., and
gl On the spacé”.

The representation of gl., andgl,, can be described in terms of wedging and
contracting operators i (see e.g. [12,13]). Lem;‘f be the linear functional o>
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defined by(v?, v;) := v/ (v;) = §;; and letC>* = @jeZJr% (Cv;f be the restricted dual

of C*, then for anyw € C*, we define a wedging operatgrt[w] on F by
w+[w](vilAvi2A~~)=w/\v,~l/\vi2~-~ . (2.2)

Let w* € C°*, we define a contracting operator

0
U [w (v Avip A-e) = Z(—l)”l(w*, Vi )Vig AVig A oo AVig_4 AVj g A-ee .
= (2.3)
For simplicity we write
wj =y tv_l, v =y vl forjeZ+ % (2.4)
These operators satisfy the following relatidnsj € Z + % A=+, —):
Vi VU = S,

hence they generate a Clifford algebra, which we denotétby
Introduce the following elements &f (m € Z):

Itis clear thatF is an irreducible&C¢-module generated by the vacuy@ such that
¢f|0) =0forj > 0.
It is straightforward that the representatiois given by the following formula:
r(E;j) = 1#:*#} (2.5)

Define thecharge decomposition

F=@Fm™ (2.6)
meZ
by letting
chargel0) = 0 and chargey ;" = +1. (2.7)

It is clear that the charge decomposition is invariant with respedigt,,) (and hence
with respect taR (G L.)). Moreover, it is easy to see that ea€f” is irreducible with
respect twl~ (andG Lo,). Note thatjm) is its highest weight vector, i.e.

r(Eij)Im) =0fori < j,
r(E;;)|m) =0 (resp. = |m)) if i > m (resp. ifi < m).

Letw e F, we define the Annihilator spacenn(w) of w as follows:

Ann(w) = {v € C®lv A w = 0}. (2.8)
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Notice thatAnn(w) # 0, sincev; € Ann(w) for j << 0. This Annihilator space for
perfect (semi—infinite) wedges € F" is related to thes L.-orbit
Om = R(GLy)|m) ¢ F™

of the highest weight vectdm) as follows. LetA = (A;}); jez € GL, denote by
Aj = ZieZ A;jv;, then by (2.8),

T = RA)m) = A, 1 ANA, s AA, sA--, (2.9)

m,% m—s
with A_; = v_; for j >> 0. Notice that since,, is a perfect (semi-infinite) wedge
Ann(ty) = » CA; C C™.
j<m

The following theorem also characterizes the group orbit. For a proof, see [12,13]:
Theorem 2.1. Letz,, € F™, thent,, € O,, if and only ifz,, satisfies the (fermionic)
KP hierarchy:

> Ut ® Yt =0. (2.10)

keZJr%

It is obvious from the construction thatdif € C*° andzt,, € O,, thatw A t,, € Op41.
In fact one has the following useful lemma.

Lemma2.l. Lett, € O, w € C® andw* € C™* If y[wlt, # O (resp.
Y [w*]t, # 0), theny [wlt, € Oy (resp.y~ [w*lt, € On_1).

Proof. We only have to prove the statement for [w*]z,,. Lety ~[w*] ® ¥~ [w*] act
on (2.10), then we obtain

0= > ¥y Wl @V ¥ Wt — D o ® W v )y ¥ [w*ln,

keZ—t—% keZ+%
= > YTt @ Y4 ¥ T [wH e — T @ ¥ [w Y [w¥ .
keZ—&-%

Since the last term is clearly zero we obtain the desired result.

Choose a positive integarand relabel the basis vectors as follows. Define for
JELZ 1<j<n keZ+}3

0 _
Ve = Vnk—im-2j+1) (2.11)

and identify

o) = k3, (2.12)

wheree;, 1 < j < n, is a basis ofC". We can thus write the vector in (2.9) as

n

_i-1
Ap = Ae(t) = Z Z Ani—%(n—Zj—&-l),Zt =2 €j, (213)
j=1 \iez+}
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hence as a vector i = (C[t, t~1])". In this way we can identifydnn(z,,) with a
subspacéV,, = Zj<m CA;(r) of the spaceH and hence with a point in an infinite
(polynomial) Grassmanniair. A point of Gr is a linear subspace &f which contains

n o0 )
H; .= ZZCI’Q,’
j=li=¢t
for £ >> 0. NowGr = U,,czGry, (disjoint union) with
Gryp, ={W € Gr|H; C W and dimW/H; = ¢n + m for £ >> 0},

and we can construct a canonical map

¢:On— Grm, ¢(tm) = Wy, =Y CAi(t).

i<m

Itis clear thatp (|mn)) = H_,, and thatp is surjective with fiber&€*. This construction
is due to Sato [S].

3. The Boson-Fermion Correspondence
The relabeling of the;’s given by (2.11) induces a relabeling of t‘mﬁ’s, viz.,
£() +
v = 1prlldc%<n—2]'+1)'
Notice that with this relabeling we have:
y710) = 0 fork > 0.

Besides the charge decomposition, we also introdu@nargy decompositiotefined
by

energy|0) = 0, energywi(” —k. (3.1)
Note that energy o is never negative. Introduce the fermionic fie{dss C*) by
pEO@ = 3 gV, (3.2)
keZ43

and bosonic field¢l < i, j < n) by
0@ =Y P =y Oy (3.3)
keZ
where: : stands for thaormal ordered produatlefined in the usual wagh, u = + or

_):

A () ;
ai), nG) . )Y Ve if € >k, 34
RORO { w;“”w,fm if ¢ < k. (34)
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One checks (using e.g. the Wick formula) that the opera{g/r)ssatisfy the commutation
relations of the affine algebid,, (C)" with central charge 1, i.e.:

. _ i
[ag]), ot((lke)] = Sjkozg_?q — Si@a;_{_; + pbieSjkbp,—g, (3.5)
and that
ajm) = 0if k > 0 ork =0 andi < j. (3.6)
The operators|’ = «\'" satisfy the canonical commutation relation of the associative
oscillator algebra, which we denote by
log, o) = ki, (3.7)
and one has
ajm) = 0fork > 0. (3.8)

It is easy to see that restrictedgé, (C)", F(© is its basic highest weight represen-
tation (see [10]).

In order to express the fermionic fielgs™") (z) in terms of the bosonic fields® (z),
we need some additional operat@rs i = 1, ..., n,0nF.These operators are uniguely
defined by the following conditions:

010 =y {10, Qi = -1y o, (3.9)
They satisfy the following commutation relations:

0i0j=-0,0;ifi #j, [, 0j1=8;800;. (3.10)

Theorem 3.1 (1,9]).

i @) 1 4 _ 1 4 _
YyED () = 0FF exp(F Z Eaf)z ky exp(F Z za,?)z k). (3.11)
k<0 k>0

Proof. See [18].

The operators on the right-hand side of (3.11) are called vertex operators. They made
their first appearance in string theory (cf. [7]).

We can describe now thecomponent boson-fermion correspondence @et] be
the space of polynomials in indeterminates- {x,ﬁ’)}, k=12,...,i=12,..., n.
Let L be a lattice with a basi8y, ..., 8, over Z and the symmetric bilinear form
(8i18;) = é&ij, wheres;; is the Kronecker symbol. Let

=1 ifi > j,

1 ifi<y. (3.12)

Eij =

Define a bimultiplicative functioms : L x L — {41} by letting
€(8i,8;5) = &ij- (3.13)
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Letd =81+ ... +8,, M ={y € L| Bly) = 0}, A = {oy; := & — §li,j =
1,...,n, i # j}. Of courseM is the root lattice of ¢, (C), the setA being the root
system.

Consider the vector spad&{L] with basise”, y € L, and the following twisted
group algebra product:

“oP = g(a, B)e*tP. (3.14)

Let B = C[x]®c C[L] be the tensor product of algebras. Thenittsomponent boson-
fermion correspondence is the vector space isomorphism

o:F — B, (3.15)
given by
o, ) OF . ORI0) = my. . mxD) ) @ it (3.16)
The transported charge and energy then will be as follows:
chargep(x) @ ¢V = (8|y),

| | 1 (3.17)
energyx(’V .. x{) @ e’ =my+ ... +mg+ > y).

We denote the transported charge decomposition by

B=&pB™.

meZ

The transported action of the operataf,Q andQ; looks as follows:

@) o1 p@) @) = mx p(x) ® €7, it m > O,
oafn’) Lpw@e’) =L @er, ifm >0,
oo’ o p(x) ® ) = (8;1y)p(x) ® e”,
oQjo N px) ®e’) =&(8;, y)px) ® e i

(3.18)

The transported action of the fermionic fields is as follows:

oy @0~ = 41 expr Y 1), expt Z

k=1

(]) k S (3.19)

We will now determine the second part of the boson—fermion correspondence, i.e.,
we want to determine (z,,), wherez,, is given by (2.9). Since all spacé&™ give a
similar representation qfl,, we will restrict our attention to the case that= 0 and
we write T instead ofrg. We will generalize the proof of Theorem 6.1 of [13]. For this

purpose we have to introduce elemem%) egleo,1<j<nLeN, by

0 _
A Z Enkfé(n 2j+1),nk+L— (n72j+1)' (320)
keZ+2
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NotlcethatA(” (A(”)‘ r(A(])) = oz(’) andthatexp\(” € Glw. Withthe relabeling
|0) becomes

@ (n) (n=1)

|0>:v81{/\v(”1_1)/\ AV AV AV A

2 -2 2 2 -2
and

01070 = (-1 oD ™ A v D A AWUFY AU

]2. 2 2 1 2 -2
A AV AT A
-2 -2 -2

We now want to determine(t), where

T = R(A)|0) = A_% /\A_g /\A_g Ao, WithA_, =v_,forallp > P >> 0.
(3.21)

Leto(7r) = ZaeM 74 (x)e%; we want to compute

Z Ty (x)e”.

aeM

n o0
o|R|exp ZZy,Ej)A,(f) | =exp ZZYU) o
X

j=1k=1 j=1k=1
Now let F,, (y) denote the coefficient of @ ¢* in this expression, then
Fu(y) = exp Z Z y“) pal i (V)]x=0 = T (x + Vlx=0 = T« ().
j=1k=1
So1,(y) is the coefficient of 1 ¢* in
n o0 . .
o|R|exp ZZy,E’)A,(j) A]10)
j=1k=1
Now lete = }_; k;8;; then
o _ k1 ~k2 kn
1®e" =0(01 05 -+ 0,10),

hencer, (y) is the coefficient of

n oo
R [exp ZZy(])A(J) Aoy =r [ Y 5o [ a]10

i=1k=1 i=1k=0
n
_ )
=R|> D> > (ZAn<q+k 3n—2j41).n(g)— 3 (n—2j+1) Sk Y ))
<0 j= 1qu+

Ean%(anjJrl),() 10),
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wheresS; (y) are the elementary Schur functions defined by

Y oS =expY_ wdh).
k=1

keZ
Using formula (4.48) of [13], i.e.,

R(A)|0) = Z det(Aj

-37-3
J_1>J 3>j 5>
2 2 2

3_5
y T3y T 5 ) . )
i 3,j ._,>vjl/\v/3 /\”175/\
2 2 2

NI

' .. denotes the matrix located at the intersection of the rpws

Jogrioge and the columns-3, —3, —3, - - - of the matrixA, we can calculate, (y)

if we can determin@’il Q’§2 e Qﬁ” |0) as a perfect simple wedge. Thisis in general quite
complicated, so we assume for the moment that

k1 Ak k
Q11Q22,..an|0> :)\‘O[UJ;% /\UJ;% /\Uj,g Aeee,

with j_, = —g forallg > Q >> 0 and, = %1, then

7o (y) = Ao det] ) > > (ZArﬂk,@sk(y(f))) Er

[<0r:jilvj737j_§7'” 1§j5n,qu+% k=0
2 2 2

ng— % (n—2j+1)=r

Finally notice that this is in fact only a finite determinant of skze- max(P, Q), hence
we have determined

Proposition 3.1. Let A = (A,»,j)i,jem% € GL be suchthatd;; = §;; for j < —P,
theno (R(A)|0) = D, cpr Ta(x)e®. Assume that = Z?:l k;é; and suppose that

k1 Ak k
Q11Q22~-~ Qn"|0) =kavj_ /\vj_g /\vj,g VANKIEE

1
2

with jf% > jfg > j_% ---andj_, = —qforallg > Q >> 0andi, = %1, then

To(x) =

o0
= Ay det Z Z Z (Z Ar ik, oSk (x(j))> Erel,

*R<€<0r:]’_%sj_gs"‘,j_R+1 lfjgn.qEZ#»% k=0
an%(n72j+l):r
where R = max(P, Q). In particular if 1 < i < j < mnanda = 0, §; — §;,
8; — &, respectively, theno = 1, A5,—s; = (—D"7/, As;—5, = (=" ~"*! and
Uogdgo)=(3-5-3..0=G5. 5. ~3.....j—ntz. j-n+3..),
=(G—-3-3-3...i-n+3i-n+3. ), respectively.
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4. The KP Hierarchy as a Dynamical System

Using the isomorphisme we can reformulate the KP hierarchy (2.10) in the bosonic
picture. We start by observing that (2.10) can be rewritten as follows:

Re§=oZ vty Pr=0 1eFO, (4.2)
j=1
Here and further Resg Zj szf (wheref; are independent @ stands forf_1. Notice

that forr € FO, o(x) = >, em Ty (x)e?. Here and further we write, (x)e? for

7, ® e”. Using Theorem 3.1, Eq. (4.1) turnsunde® o : F @ F — C[x',x"1 ®
(C[L"] ® C[L"]) into the following equations, which we call thecomponent KP
hierarchy. Let 1< a,b <n,«a, S € M:

n
Res—0() &), a + 8, — B + 8)Crlotha=hton=23)

j=1

° -\/ N ° —k 42)
() (' k 9 .z (

k2=1 k k /;—1 3x]5/> ax,j’) k

7:01+0!a/- (x/)fﬂfabj ()CH)) =0 (a,BeM).

Define the support of by suppr = {« € M|z, # 0}, then for eaclw € suppt we
define the (matrix valued) wave functions

VE@, x,2) = (V5 (o, x, D) g (4.3)
as follows:

Vi(a x,2):=¢(j,a+3; )Z(5 |+a+a;))

4.4)

) _k (

x exp(E kzlx Dz exp(F Z m - )raia,, (x)/7 ().

It is easy to see that Eq. (4.2) is equivalent to the following bilinear identity:
Res_oV'(a,x,2) 'V (B,x',z) =0foralla, B € M, (4.5)

where' V stands for the transposed of the matrixDefinen x n matricesw* («, x)
by the following generating series (cf. (4.4)):

)raial,(x»/ra(x) (4.6)

o0
> WE @ )2 = izt (eXPJFZ m v
m=0

Note that
WO (q, x) = I,, 4.7)

€jiTaka;;/Ta 11 # ],

—1 014 e . .
—T - |f 1= ].
o E)x:(L’) J

(4.8)

Wi(l) (a, x) =
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We see from (4.4) that * («, x, z) can be written in the following form:

o
VE@ x,2) = ) W (e, x)(£2) " R (@, £2) ST (x, 2), (4.9)
m=0
where

n
RE @ 2) =) e, ) Eji(£2) =019,
i=1
- @ _j
® . x\z
Si(xa Z) = Zeizlei < Eii-
i=1

(4.10)

Here E;; stands for the: x n matrix whose(, j) entry is 1 and all other entries are
zero. Now letd = >7_; ﬁ then V=(a, x, z) can be written in terms of formal
X

pseudo-differential operato%s (see [11] for more details).

PHa) =P x,0) =1+ Yy W™ (0, x)07", R (@) = R* (e, 0) (4.11)

m=1
as follows:
VE@, x,z) = PH(@)RT (@)St(x, 2). (4.12)
Since obviously
R (e, 3) Y= R (e, 3)*, (4.13)

whereP* = Y, (—=9)* P® stands for the formal adjoint df = >~, P®)3*. Moreover
one can deduce (see [11]) from the bilinear identity (4.5):

(P (e, x, )R (@ — B, )P (B, x'3)*)_ =0 (4.14)

for anya, B € suppt. HereQ_ = Q0 — Q., whereQ. stands for the differential
operator part oD.
Furthermore, put = x’, then one deduces from (4.14) with= g that

P~ (@)= (PT@"H?, (4.15)

sinceR*(0) = I, andP* () € I, + lower order terms. With all these ingredients one
can prove the following lemma:

Proposition 4.1. Leta, 8 € suppr, thenP ™ («) satisfies the Sato equations:

.
8§ <§">1) = —(PY(@E;;3* P (@) ™H-_PT( (4.16)
Xk

and P*(x), PT(B) satisfy
(P (@)RY (@ — p)PH(B)H_ =0forall o, B € suppr. (4.17)
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This is another formulation of the-component KP hierarchy (see [11]). Introduce the
following formal pseudo-differential operatofsa), CY)(x):

L(@) = L(a, x,d) = PH(@)aPT (@)1,

. . (4.18)
CY@) =P, x,8) = PT(@E;;P ()7L
then related to the Sato equation is the following linear system:
L@)V*(a, x,2) =2V (. x, 2),
c““w;vv:(a, x,2) = V¥(a x, 2)Ei, (4.19)
WD _ (LD @), V(e x, ).
ax®
k

To end this section we write down explicitly some of the Sato equations (4.16) on
the matrix elementwi(;) of the coefficientd¥ ) (x) of the pseudo-differential operator

o
P=Pta)=1,+) Wi

m=1

We shall writew = wD andWw;; for Wi(/.l) to simplify notation, then the simplest Sato
equation is ’

—@ = [0Ewk, P1+[W, Ex]P. (4.20)
0xq
In particular we have for # k:
AW 2
_(l’{]) = Wi Wy — 8jkWij)' (4.21)
0xq

Equation (4.20) is equivalent to the following equation ¥oe= V™ («):

aV

dxq

5. Solutions of the Darboux—Egoroff System
Define
@) = WP, o_a 5.1
vij () = Wi (0. 0] o _ o) gor o1 (5.1)
where ther"” for k > 0 are chosen to be certain specific but at the moment still unknown
constants. From (4.21) we already know that

a l . .
VJ(E:)C) =Yy (x) 1 #FkF#J. (5.2)
0xq
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This is then-wave equation if, j, k are distinct. The aim of this section is to construct
specificy;;'s which satisfy

n

Z 371‘]’(5{1)5) _o, (5.3)
=1 90X

and
Yij(xX) = yji(x). (5.4)

In other words we want to find the rotation coefficiepts for the Darboux—Egoroff
system (5.2)-(5.4). Sometimes we will assume an additional equation, viz.

n
3y (x)
k) 9V
> P - s, 69
k=1 X1

which means thag;; has degree-1. This equation holds for the so-called semisimple
conformal invariant Frobenius manifolds, see [2].
The restriction

n an.(jl) (0, x)

=0 (5.6)
(k) ’
=1 X
is a very natural restriction. If we assume that
n
ad

3 T((jf)) —0, (5.7)

k=1 0X1
dt(x) _

then this clearly implies (5.6). Notice that one may even assumettjay D =
X1

AT (x), but since we are in the polynomial casenust be 0. Equation (5.7) means that
7 (in the fermionic picture) belongs to th&L, (C[z, r~1])-loop group orbit or even the
SL,(Clt, t‘l])-loop group orbit ofl0) (see [11] for more details). The homogeneous
space for this group is in fact the restricted Grassmannian

n
Gr = {W € Gro| Y _tEuW C W).
k=1

In fact ¢ satisfies (5.7) if and only if

n

ZtEkkWr c W;. (5.8)
k=1

Since Eq. (5.7) holds far we do not only find Eq. (5.6) fow (D (0, x), but we find that
this equation holds for alv ) («, x)’s and hence

n

+
Z M —0. (5.9)

(k)
=1 0xp
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This means that we do not really have formal pseudo-differential operators, but rather
formal matrix-valued Laurent seriesin’. The Sato equation takes the following simple
form. Let P(z) = P*(a, x, 2), then

0P@)
o)
8ka

—(P()E;jP(2)" 1" _P(2)

and the simplest Sato equation becomes

dP(z2)
G

= z[Ekk, P(Q)] + [W, Ex]P(2).

Equation (4.22) turns into

oV (z)
Bxi

= @Ew + W, Ex]DV (2), (5.10)
whereV(z) = V¥ (a, x, 7). DefineX = Z;:lxij)Ejj, then

=X+ [W,XD)V(2). (5.11)

Zx(/)

From now on we will only consider tau-functions that are homogeneous with respect to
the energy. Notice that if energy= N, then energy, = N — —(a|a) in particular

energyrs, —s; = energyro — 1. Since the energy(’) = k, itis straightforward to check

that fora = 0

A%
LoV (z) =z a(Z), where
Z

Lo = Zka(J) -

j=1lk=1

(5.12)

We will now describe a class of homogeneous tau-functions, in the fermionic picture
that satisfy (5.7). First choose two positive integersandmy such thaing + m» < n.
Next choosen positive integers;, 1 < i < mj andmy positive integerg;, 1 < j <
my, such thaty"""* k; — Z’/"Zl ; = 0. Next choosen; linearly independent vectors
a; = (aj1, ai2, . .. , ajy) andmy linearly independent vectots = (bj1, bj2, ..., bjn)
in C" such that

n
(ai.bj) = aibjr =0forall 1<i <myand 1< j <my. (5.13)
k=1



602 J.W. van de Leur, R. Martini

Using Lemma 2.1 we constructrac Og as follows:

T —<Z azpy ") 1)<Z apy )
(Z al,,w“”))(Z 290 1)(2 a2V 0 o)

Z“ZWHM)(Z asp¥ 7 P (5.14)
<Zamlpw “”)(prw ”’M)(Zblpw o)

<wa "”)(szpw‘(’”l) (mez,pwj%”)noy
p

The point of the Grassmannia#, corresponding to this satisfies (5.8).
The symmetry conditions (5.4) of thg;’s are not so natural. Using (4.8), it is
equivalent to

T§; -8, (xie), céa, cée), )= —T5; -5 (xie), cg), cé@), o). (5.15)

To achieve this result, we define an automorphision F as follows:
w(]0)) = 10), (5.16)
o) =ty TP with1 <i < nande; € C*. '

We will fix the ¢; later all to be equal to 1, but for the moment we keep them arbitrary.
This gives
o) = —a\" andw(0F1) = 17 (5.17)

Using the boson-fermion correspondence this induces an automorphigmwelnich
we will also denote by,

o) = —x, (5 <,> G @) = =4 ando (@) = c;le™. (5.18)
k

Define fora = 3~_; pidi € M, co =[] 1c, then

w <Z Ty (x)e”‘) = Z CaTa(—x)e . (5.19)

aeM aeM

We now want to find homogeneous tau-functions that satigfy(x)) = At (x) for some
A € C*. Sincew?(1o(x)) = 10(x), A = 1 or—1. From (5.19) we deduce that

To(X) = AegT_o (—X), (5.20)

and we want this for € A, of course after a specific choice of constarﬁ%’s for
k > 2, to be equal te-1,(x). Since we have assumed thais homogeneous (in the
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energy), say that it has energy then we can getrid of thex in the right-hand side of
(5.20) if we put allxé’k) 's equal to zero. So define

T(x) = T(x)|x;’]?=0’ (5.21)
then clearly (5.20) turns into

To(x) = Aea(0)V"2@DT_ (x),

Because this also has to hold fer= 0, we obtain that = (—1)" and hence, = 1
foralla € A. Thusc; = 1forall1 <i <norc¢; = —1foralli, we may choose either
of these two cases, for simplicity we choose

ci=1foralll<i <n.

With all these choices, we have finally that

0T (1) = (0N 307 (1), (5.22)

Returntothe tau-functions of the form (5.14). If suahsatisfies (5.22) and it contains

a factor)_; ay; I//;r(i) for a certain¢, then it must also contain a facthjj bmjx/f,:(j).

Since

energy (Z aeix/f,j(i)) mejwk’(j) =-2ke2Z+1,
i J

we must assume that there existsrasuch that

» <Z i k+<i>> S b9 || == [ by (Z @ w}(—(i))
i J J i
_ (Z aeﬂ/f,f(“) > by V)
i j

So
agibmj = agjbmi foralll<i,j<n

andb,, must be a multiple of,. Since the length of such a vector does not matter much
(only a scalar multiple of the whole tau-function), we may assumedhat b,, and
since alsday, b¢) = 0 (see (5.13)), we obtain tha is an isotropic vector ilt”.

Finally we conclude the following

Proposition 5.1. Letm be the integer part 0. Choosen linearly independent vectors
a; = (a1, a;2, ... ,a;y) iIN C" which span a maximal isotropic subspace(f i.e.

n
(aiaaj) = Zaikajk = OfOI’ a” 1 5 l,] S m.
k=1
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Choosen non-negative integerls, 1 < i < m such that
k1 >ky>...2kpn >0, (5.23)

theno (7) = ), Ta(x)e®, with

= (Z azpy ") 1><Z a9
ZalpW"”)(Za AN 1)(Z azp¥ )

(Z azpw“” )(Za PV )

+( ) () () (5.24)
(Zampw g )(Zalpw ? 1)<Za1pw )
Zaw ”’)(Zazpvf )
~-(Zampw_i’”)|0>,
» 2
satisfies the.-component KP hierarchy (4.2) and
(1) = (_)k1+k2+-~~+km .
Moreover
1
energyry (x) = k2 + k3 + - + k2 — 5@le), (5.25)
n 9 5
>y =0
j=1 3)6
and

Ta(x) = (1) 2T, (x),
whereTt is defined by (5.21).

Notice that the restriction (5.23) is not essential, but we may assume it without loss
of generality. Since the energy is nowhere negative, formula (5.25) gives a restriction
for suppr.

It is not difficult to prove that the perfect wedgegiven by (5.24), is also a highest
weight vector for theWy, -algebra generated by

JED () =Y gDkt o Z Y )M. €=0,12,...,
keZ j=1
ie.,

IV e = Spocelkr, ko, - . k)T fork > 0.
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Herec, € C only depend on the integeks, ko, ... , k,,. This induces the following
restriction onW, € Gryo:
n P ¢
ZtkH (5) E;jW. C W, forallk,¢=0,12,....
j=1

If we now rewrite the element (5.24) as a perfect wedge, we can use Proposition 3.1
to determiner, for « = 0 ora € A. Add to the vectors;, 1 < i < m vectorsa;,
m + 1 < j < n such that they form a basis @f*, which satisfies

(ag, ar) = Spye.2mt1 + Skreamyz2forall 1 <k, € <n. (5.26)

Define
komi1—i = —k;iforl <i <m. (5.27)
Thenther given by (5.24) is up to a scalar multiple equal to the following perfect wedge:
Ai% /\A% /\A_g Ao,

with
()
¢

n
A gly— (ko kg1~ = Z dqjv
j=1

. 1 1
Wlthl§q§2m—land—k1+§Sﬁfkq—é,
n .
A—@m)—(k+ho+kop-1)— = Zami Uél)
j=1

1 1
with —kl—i—z§£§—§thisonlyifn=2m+1,

Ay =1y forq < —nk1 —kp — -+ — kop—1.
(5.28)
Now using (2.11), this is equal to
n
A—qkl—(k1+k2+~--+kq71)—f = Z dqj Unﬁ—%(n72j+l)
j=1
. 1 1
Wlth1§q§2m—1and—k1+§fﬁfkq—z,

n
A (@2m)— (kg hot+--kom—1)—t = Zan,jvnzf%mfzﬂn
j=1

. 1 1 . .
with —k1+§§E§—§th|sonly|fn=2m+1,

Ay =y forq < —nk1 —kp — -+ — kop—1.
(5.29)
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Using Proposition 3.1, one easily deduces that (5.24) correspondigdstgiven by

2m—1 n k1 kg—1

= 35S g Sesix
7o = det( ) AgjSei XVE ;i1 kg —a-thotty)—t—}
g=1 j=1i=1¢=—i
n ki -1

S ()
81D D D i SeriCNE ;s oy gkt ko -3
j=li=1¢=—i

andzts, s, for 1 < r,s < n is equal to the determinant ap, but then with the
(s —n — 3" row replaced by

2m—1kg—1

o)
D 2 arSeE 4 o kot b
q=1 (=0

Now change the indices and we obtain

Theorem 5.1. Let r be given by (5.24), and let(t) = >, T (x)e®, then up to a
common scalar factor

2n—1n ki
70 = def( Z ZZ Z aqjSife(x(]))Ein—j+1,qk1+(k1+k2+-~»+kq,1)—l+l
g=1 j=1i=1t=1—k,
n ki i

+ 811 Z Z Z an. jSi—e (') Einj 11, @m) 4 (kathp-+-kom—1)—€4+1)
j=li=1¢=1
(5.30)

andrs, s, forl < r, s < nisequal to the determinant e, but then with thén+1—s)1
row replaced by

2m—1ks—1

Z Z agrSe(x") En 1. ghyt(y-+ko-tothy—1)+04+1 (5.31)

where therg, 1 < ¢ < n, satisfy (5.26) and the;, m +1 < j < 2m are given by (5.27).
Moreover the
M, ifl<r,s<nandr #s,

ST To(x)

71‘s(~x) = _3|Og?0(x) ifl<rs<nandr—=s (532)
8_)(;-,) b — 9 p— 9
satisfy the Darboux—Egoroff system (5.2)—(5.4). If we define
Vrs @) = Vs 0 g for all k=17 (5.33)

then these elements satisfy (5.2)—(5.5).
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Let f(r) = > ; fi(t)e; andg(r) = ), gi(t)e; be two elements irf. Define the
following bilinear form:

B(f,g) =Res—o Y _ fi(gi(1). (5.34)

i=1
Then the orthogonal restricted Grassmannian is

Gr = {W € Gr|B(W, W) = 0}. (5.35)

All W e Gr are maximal isotropic subspaces with respe@ o -). This Grassmannian

is the homogeneous space for #g(C[t, ~1])-loop group. Theo, (C[z, r~1])-orbit

of |0) corresponds exactly to this Grassmannian (see e.g. [19]). Notice that 8l the
corresponding to the tau-functions given by (5.24) exactly satisfy this condition. Hence
the tau-functions we have constructed to solve the Darboux—Egoroff system are in fact
homogeneous tau-functions in tiag (C[z, r~1])-orbit of |0). If we consider the affine

Lie algebragl, (C)* with central charge 1, defined by (3.5), then the special orthogonal
Lie algebraso, (C)" is given by

50,(C)" = {x € gl,(O)"|w(x) = x}.

Recall thata)(wki(’)) = w,f(’). The Grassmanniafr has two connected compo-
nents, which are distinguished by the parity of the dimension of the kernel of the
projectionW — Hp. Depending on the energy of our (homogeneous) tau-function,
w(t) = (—)""WT ¢ the spacéV, belongs to one of these two components.

Itis obvious, from the above description and from the construction of the tau-functions
given by (5.24), that the orthogonal grodp acts on these tau-functions and hence on
the rotation coefficients. One has

Proposition 5.2. The orthogonal grou,, acts on the rotation coefficients of Theorem
5.1. LetX = (X;j)1<i,j<n € Oy, thenreplacing;;, 1 < i, j < n, (evenifa;; = 0) by
Y i—1 Xjeai¢ in (5.30) and (5.31) gives a new solution of the Darboux—Egoroff system.

6. Semisimple Frobenius Manifolds

Lety;;j(x),1<1i, j < n, be asolution of the Darboux—Egoroff system. If we can find

linearly independent vector functionls = v (x) ='(¥1j, ¥2, ... , ¥»j) such that
i .
‘/’(,;’) = vk, k # i,
0xq
n (6.1)
Z ij 0
ax® 7
k=1 %1

then they determine under certain conditions (locally) a semisimple (i.e. massive) Frobe-
nius manifold (see [2,3]).
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Recall from (5.10), that the wave functidn(z) = V* (0, x, z) corresponding to the
tau-functions of Proposition 3.1 and Theorem 5.1 satisfy

aVij(2) .
— o = WiV @), k#i,
0xq
" (6.2)
aVij(2)
Z o = Vi@
k=1 90X

Comparing (6.1) and (6.2), one would like to take- 0 in (6.2), however this does not
make sense. There is a way to use the wave funéfi@n to construct they;;’s of (6.1).
Suppose that we have a tau-function of the form (5.24), with the correspokgg
1 < g <n, (inthe case that is odd, we defing, = 0) anda,;'s 1 < ¢, j <n. Let

n
X,() = Zaqjt_k’l_lej €eH, 1<gq<n, (6.3)
j=1

then it easy to check that
We +CX, (1) # Wy andW, + Cr X, () = We.

Hence,

n n
Dag¥ )yt £0 and 3 oagyllir=0 (6.4)
j=1 j=1

We rewrite this as follows:

; n
RE§=0 Zaq,iz—kq—lm//ﬂj) ()T #0 and Re§:o Zaqu_kqw-i_(j)(z)t _o.
j=1 Z
(6.5)
From this we deduce that
n ko1 18 S0 (e _Zﬁl%#
Res=0 ) agz 11t ekt e " T5-s(x) £0 and

j=1

n
_ 5. oo (J) ¢
Re§:o Z aqu qul 8'./ eZL’:l Xg < e

j=1

i) 27[
- Z?il o) T
K T5—8,;(x) = 0.

Dividing this by ro(x) we obtain

n

n
Res—0 Y agz *71Vi;(2) #0 and Resoy a,z7*V;j(z) =0.  (6.6)
j=1 j=1

Now define for 1< i, g < n,

n
Wiy =Res—o Y _agz " Vi;(2). (6.7)
j=1
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then it is straightforward to check, using (6.2) and (6.6) that
IV

= Wiy, k#i,
ax® W
6.8
" o, (6.8)
> —i =0
f=1 0%q
Notice that the vector functions, =’ (V1,, W2, ... , ¥,,) are “eigenfunctions” of the

KP hierarchy which lie in the kernel df. From all this we finally obtain the following

Theorem 6.1. Let V(z) = VT (0, x, z) be the wave function corresponding to the tau-
function of (5.24) withu,;, 1 < ¢, j < n andky, 1 < ¢ < 2m, as given in Theorem 5.1
andk, = Oif n is odd. Denote by

n
—kg=1y,+
lﬂiq = Re§=0)“‘1 Zaqu ! Vij O, x, Z)lxlie):Ofor all k>1’
j=1
! (6.9)

n

- _ —kg—1y+

Vig =ReS=0hg ) aqjz Vi 0.6, |0 g aipo
j=1

wherel < ¢ < n andi, € C*. Then these/;,’s satisfy Egs. (6.1), with;; given by
(5.32) and the formulas

nii = lﬂ,-zl,
n
Nap = Z YiaVip,
i=1
ot 6.10
% = VYi1Via, (6.10)
0xq
n
Wia'#iﬁlm'y
c = —
by ; Yi1

with 7, = Y7 _; neet, determine (locally) a semisimple Frobenius manifold on the
domainxi’) £ xij) and 11921 - - - Y1 # 0. They, s also satisfy (6.1), but now with

the y;; replaced byy;; of (5.33). Equations (6.10) for thesTe,-j’s also determine a
semisimple Frobenius manifold.

Proof. Formula (6.10) is a direct consequence of the following proposition, see [4] (cf.
[2] and [3]) for more details.O

Proposition 6.1. Let X = Zl’-’zle)E”, I' = (Vij)i<ij<n, ¥V = [, X] and V;, =
[T, Exkl, thenV = (V;j)1<i, j<n is anti-symmetric and satisfies

A%
—5 = Vi, V] (6.11)
dxq
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and also
(6.12)

for l/fq :t(wlq’ qu, ey I,/fnq)

Proof. Equation (6.11) follows from (5.2), (5.3) and the fact tiais symmetric. We
prove (6.12) as follows. Le¥ act ony,. Using (5.11) and (6.7) one deduces

n

quzzz:xu>3¢b

1 o)
=1 0x

Sincey, is independent of,ij) forallk > 1, we canuse (5.12), to rewrite this as follows

n
() OVig _
TG T
=1 0x

n
0
—kg—1
= Res-o}4 Zaqu i (VJ(O, X Z)|x££):0 forallk>1>

o] 0z
" 0
x kg1 +
=Res_olg ) dy) (a—zz 4t kg2 ) (Vij ©.x, 21,0 _gor aIIk>l)
=1

n
—ky—1
= kgRes—ohrq Z agjz Vi}_(o’ Xy Z)|xlgl)=0 for all k>1
j=1
=kgViq.
The second equation of (6.12) can be proved in a similar way, using (510).

From (6.12) we determine the degregsdo, . .. , d, andd (respdr) of the correspond-
ing 1%,

di=1dy=1+k1—ky, 2<a <n, d=—2kyanddr = 3+ 2k1. (6.13)
With our choice of, we have

dy +doyyi1-o=2—d,1<a<mandd, =1+ kiifn=2m+ 1isodd

Notice that if we define

P() = V(0.x. | .0_g for a1 (6.14)
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then®(z) satisfies

L e
(z) _ Z (/) ((jz)) =X +V)P(2),
(6.15)
9P (2)
—& = GEu+ VO @).
0xq

Theorem 6.2. Let ¥ = (wij)lfi,jgn and definez(z) =tlI/(I)(1) — 7]‘1’71(1)(2), U =
W IXWyL po= —puTtywnTt = Y kGE; and T = nWTLE; Wy, then
n(U) =Un, un + nu = 0and

0£(2)
0z

Z OB _ e,

8x§1)
0£(2)
8x£k)

0£(2)
or¥

= (2l — w)é&(2),

Z

(6.16)

= zI;§(2),

= zCé(2),

whereCy, =375 1 csEpy-

Proof. Allformulas except the last one of (6.16) follow immediately from (6.11), (6.12),
(6.15) and the fact tha & = 5. Use the last formula of (6.10();:/6 =) _1cpaen®

0
5 _ Vie {0 rewrite

and %~ T =y

Z axy) og
8;0‘ B A 5y iﬂ
dx (l)

ZZ 72 77\1" lEzz‘I’TflE
i=1

_Zt\yZ%E”q/

=z7C, f;‘.

This finishes the proof of the theorenm

Asin[3,4] we canreformulate (6.11) asaii)}lgfn-dependent commuting Hamil-
tonian system

oV
= V, H,(V, X)},
9xq
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with quadratic Hamiltonians
1 VijVii (@) )
H;(V, X)ZEZM ZZJ/UVJz(X —x77) (6.17)
j# J#
with respect to the standard Poisson brackeign
WVij, Vet = 8jxVie — 8ikVje + 8i¢Vjk — 80 Vik-
Now consider the 1-form
n .
> H; (V. X)dxy. (6.18)
i=1

Since it is closed for any suci(see [2,3]), there exists a functian(X), the isomon-
odromy tau-function, such that

dlogr(X) = H:(V, X)dx{. (6.19)
i=1
Using (5.2), we rewriteéd; (), X) as follows. Letrg(X) = to(x)] 0 then

x, =0 forall k>1’

H(V,X)= ZV:JV}!(X(I) (j))

J#z 5
_T Vii (i)_ )
= Za 9 X7
J#
1< 9 9
Z @) Vii Z (j) 9%ii
== x
O )
2j—l dx l 2j_l dx 1j
X i
Jj=
I ) 0 | X
_E,X;xl 9xD <z)(°gT°( 2
/:
1 N 19 .
— (10970(X)) | = 5 —; (l0g70(X))
1
=— ——— (log7p(X)).
Zaxil)

Hence

dlogt;(X) = —%dlogfo(X). (6.20)
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Dubrovin and Zhang defined in [6] a Gromov—Witten ty@efunction of a Frobenius
manifold as follows:

G =log (T—Il) , Where
J 7

(6.21)
oat“
J_det<8 > log (V11921 - - Yn1) -

We can explicitly determine this function in the cases of the Frobenius manifolds corre-
sponding to Theorem 6.1.

Theorem 6.3. Lett be given by (5.24) and lek;1 be defined as in (6.9). Léy(X) =
o) (Z)—O forall k>1’ e,

2m—1 n i (J))l —L

To(X) = det( Z ZZ Z aqj = Em—j+1,qk1+(k1+k2+-~+kq,1)—z+1

q=1 j=li=1{=1-k,

n ] (J) i—¢
)
+o1ym, 12 Z Z An, j ( Ein— j+1,@m)+(ky+ho+---kam-1)—€+1)-
j=1li=1¢=1 !
(6.22)
Then up to an additive scalar factor,
1 1
G=-3 log 7o(X) — 2—4|09 (Y1121 Y1) - (6.23)
Moreover,
n
25— =G,
j=1  Oxg
where
1 nkl
=-2 Z (6.24)
and

"7 (logzo(x)) Zi#]
—_— 70 = —y5 1 Js
8x£l) Bxij) Y

wherey;; is defined by formula (5.33).
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7. An Example

In this section we describe the simplest example in more detait. Ee®m, respectively
n = 2m+1if nis evenrespectively odd. Since the choices of the order, @ . . . k,,, €
Zis rather arbitrary, we choose for simplicity of notation and calculatioa —k, = —1
and all othelk; = 0. Henced1 =1, d, = -1, dy, =0, « #1,n, d =2 anddyr = 1.
Choose vectors; = (a;1, a;2, ... , a;n), such that
(@i, aj) = 8itjnr1-
Then
n
0 = Zafiu,- and To;—8; = —T8;—8 = Qnilnj fori < 7
j=1

where we use the notation = xf). Hence,

Anidnj
n 2 ..
2 j=1Aplhi

and the wave function is equal to

vij = — forl<i,j<n

l n B n o
V)= |1- r_o Z anian Eijz | Y Si(x O Egez®

ij=1 ¢=1k=0

From which we deduce that

Ani
1pl,:l. = -
70
1 &
2 2
Yin = —ap;i | Ui — ? anpjuij | >
0

n
Ani
Vik = ari — — Zakjanjl/tj fork # 1, n.
T0 ‘43
]:

Then using the formulas (6.10) it is straightforward to check that

n 2.2 n
1 D=1 U5 D1 akjanju
n=-—, tp="—"1 p=-"= -

70 210 70
and hence that
Vil = anity, Yin = ani(ty —u;), Yik = ki + anily,

Nap = Sa+pn+1 andt® = t,41_¢. Assume from now on that alt,; # 0. Since
Nep = Sa+p,n+1, the solutionF () of the WDVV equations is of the form (see [3]):

1 1 n—1
F(t) = =(tH%" + =1y pepntl-e 263, .
) 2( )" + > QZZ:Z + f( )
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Sinced,, = —1,d, = 0fora # 1, n anddr = 1, it suffices to determine,,,,, which is

" af (= up)®

i=1

A straightforward calculation shows that

1 nl ani
. . § : oy Tt l-a
uj =t a al; (ao”t + 2 't ) .

a=2

Hence,
3

-1
°f _ 1 (v @_”Z ai o | Lianiia
8”3 (tn)4 QAni a2 Anij 2 '

i=1

and thus

1 1 n—1
F() == tl Ztn —l‘l tatn-i-l—oc
(1) 2( )" + 5 0,2:;

1 n n—1 1
_ ai; _ Z (aai o+ _tatn+l—a>
6t" \ “~ a,; Qpi 2
i=1 a=2

Next we give the;;'s (o # 1, n):

3

51;’ = anjtnezuj’

Eozj = (aozj + anjt

n—1
1 ' :
bnj = (anjzl +2 <a1j - (aajfa + —ag t"‘t”“"))) e

a=2

u;
s

n+1fot) e

One easily sees thgt; = % with

h. _anjt”
j=—

eZuj
z
1 -1 anj —
anjt" Z(’l—ﬁ(“U‘H:z(ﬂaﬂ“%f"t"“ ")))
— e nj

Z

To see that these are deformed flat coordinates, we determine
n
= (") an1-a jhj-
j=1

We find
t=14+tz4+ 0>,
P=1"4+0@), a#ln
=171+ 0.



616 J.W. van de Leur, R. Martini

Finally we calculate th&-function of the Frobenius manifold. Notice tha( X) =
t0(x) = — 4 and that

Y1121 Y1 = n(am'tn)-

i=1
So using Theorem 6.3, we obtain that= "g—jz and that up to an additive constant,

n n
24 log(™).

1
G@t) =
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