
Three Dimensional Fast Exact Euclidean Distance
(3D-FEED) Maps

Theo E. Schoutena, Harco C. Kuppensa and Egon L. van den Broekb

aInstitute for Computing and Information Science, Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

{T.Schouten,H.Kuppens}@cs.ru.nl

http://www.cs.ru.nl/˜{ths,harcok}/
bDepartment of Artificial Intelligence, Vrije Universiteit Amsterdam

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
egon@few.vu.nl

http://www.few.vu.nl/˜egon/

ABSTRACT
In image and video analysis, distance maps are frequently used. They provide the (Euclidean) distance (ED) of
background pixels to the nearest object pixel. Recently, the Fast Exact Euclidean Distance (FEED) transformation
was launched. In this paper, we present the three dimensional (3D) version of FEED. 3D-FEED is compared with
four other methods for a wide range of 3D test images. 3D-FEED proved to be twice as fast as the fastest algorithm
available. Moreover, it provides true exact EDs, where other algorithms only approximate the ED. This unique
algorithm makes the difference, especially there where time and precision are of importance.

1. INTRODUCTION
More and more, three dimensional (3D) images are used in many applications of computer vision. Various methods
that have proven to be useful in two dimensional (2D) image processing, were adapted to 3D images. One of these
methods is the distance transformation1, which generates an image in which the value of each pixel is its distance
to a given set of pixels O in the original binary image:

D(p) = min{dist(p, q), q ∈ O} (1)

The set pixels is called O because often it consists of object pixels. Such a distance map can then for example
be used for a (robot) navigation task2. In the case, non-object pixels are present, the distance map can be used to
describe the internal structure of objects.

¿From the definition in Equation 1, a straight forward implementation can be derived directly. However, its
execution time will be so large that it is of no practical use. Rosenfeld and Pfaltz1 introduced the first fast algorithm
for the city-block and chessboard distance measures. These distance maps are build up during two raster scans over
the image using only local information; i.e., distances to neighboring pixels. These algorithms were originally
developed for 2D images, but they can be adapted to 3D images.

Borgefors3 introduced the idea of applying different weights to the different kind of neighboring pixels during
the scans. Using different sets of weights and neighborhood sizes, a family of so called chamfer distance maps can
be constructed, providing better approximations to the Euclidean Distance (ED) than the city-block and chessboard
distances. These chamfer distances have also been developed for 3D images4, 5.

Exact ED maps can not be obtained using local distances alone. This is due to the fact6 that the tiles of the
Voronoi diagram are not always connected sets on a discrete lattice. What can be obtained (as in7), is a semi-exact
ED, where for most pixels the obtained distance is correct but sometimes a distance slightly to high is assigned to
pixels. A few methods have been developed to find and correct the wrong pixels, obtaining the exact ED8. Such
semi-exact ED transforms have also been developed for 3D images9, 10. Several other (parallel) implementations
of ED transforms have been proposed2, 11. However, even among the parallel implementations, mostly the EDs
were approximated.

Schouten and Van den Broek8 developed the Fast Exact Euclidean Distance (FEED) transformation. This
algorithm starts directly from the definition (see Equation 1), or rather its inverse: each object pixel feeds its ED to

1

all pixels in the image, which in turn calculate the minimum of all received EDs. Three approaches are then taken
to speedup this naive algorithm to obtain an exact ED map in a computationally cheap way. Recently, FEED was
extended by Schouten, Kuppens and Van den Broek2 for fast processing of image sequences. However, this timed
FEED (tFEED) was also developed for 2D images.

This paper describes the development of FEED for 3D images (3D-FEED). In the next Section, the principles
of FEED are restated independently from the dimension of the image. In Section 3, a short description of the
3D implementation is given. The performance of 3D-FEED is compared with other algorithms, as described in
Section 4, followed by a discussion in Section 5.

2. PRINCIPLES OF THE FAST EXACT EUCLIDEAN DISTANCE (FEED)
The FEED algorithm2, 8, 12 calculates the ED transform starting from the inverse of the definition (see Equation 1):
each object pixel feeds its ED to all pixels in the image, which in turn calculate the minimum of all received EDs.
The naive algorithm then becomes:

(1) initialize D(p) = if (p ∈ O) then 0, else ∞
(2) foreach q ∈ O
(3) foreach p
(4) update : D(p) = min{D(p) , ED(q, p)}

(2)

The direct implementation of this naive algorithm is extremely time consuming, but can be easily proven
to be correct using classical methods. Therefore, we have used it to generate correct ED maps for the images
(see Section 4) used for testing the correctness of our implemented speedups, applied to the naive algorithm.
These speedups are based on the following principles: (i) restricting the number of object pixels q that have to be
considered, (ii) restricting the number of pixels p that have to be updated for each considered object pixel q, and
(iii) suitable handling of the calculation of ED(q, p).

In line (2) of Algorithm 2, only the “border” pixels B of O have to be considered because the minimal ED
from any background pixel to the set O, is the distance from that background pixel to a border pixel B of O. For
a n-dimensional (nD) image, a border pixel B is defined as an object pixel with at least one of its neighbors with
a (n-1) hyperplane in common in the background. So, in 2D a border pixel B is defined as an object pixel with at
least one of its four 4-connected pixels in the background. In 3D this becomes at least one of the six 6-connected
voxels (see also Figure 3a).

Moreover, the number of pixels that have to be considered in line (3) can be limited to only those that have
an equal or smaller distance to the current B than to any object pixel q (see Figure 1a). By taking all bisection
hyperplanes into account, it can be assured that each background pixel is updated only once (see Figure 1b). For
that, background pixels on a bisection hyperplane are only updated when B is on a chosen side of the hyperplane.
In 2D the bisection hyperplane is a line, in 3D a plane.

However, searching for and bookkeeping of bisection hyperplanes takes time and that time should be smaller
than the time gained by updating less pixels, otherwise no speedup would be obtained but the algorithm would
become slower.

The search for object pixels q to define hyperplanes is done best along a set of lines under certain angles,
starting from the current border pixel B. Placing a local coordinate system at B, when point ~n is an object pixel,
it defines a bisection hyperplane as:

||~x −~0|| = ||~x − ~n||
~x · ~x = ~x · ~x + ~n · ~n − 2(~x · ~n)
~x · ~n = 1

2
~n · ~n

When point ~n is the n’th point on a line in a direction determined by angle ~m, thus ~n = n~m, the equation of the
hyperplane becomes:

~x · n~m = 1
2
n~m · n~m

~x · ~m = n

2
~m · ~m

2

(a) (b)

Figure 1. Principle of limiting the number of background pixels to update in 2D. (a) Only pixels on and to the left of the bisection
line b between a border pixel B and an object pixel q have to be updated. (b) An example showing that each background pixel
has to be updated only once. Each background pixel is labeled by the border pixel which updates it.

Thus, only one integer n, indicates the presence or absence of an object point along a search-line ~m and, subse-
quently, completely defines the bisection hyperplane. As soon as an object point on a search-line is found, further
searching along the line can be stopped.

To keep track of the pixels p that have to be updated, a bounding box around B (see Figure 2) is defined, which
is initially set to the whole image. Each bisection hyperplane found might then reduce the size of the bounding box
or not. The size of the bounding box is also used to define the maximum distance to search along each search-line
because a new bisection hyperplane should partially be inside the bounding box to have any effect. Bisection lines
closer to the origin B give a larger reduction of the bounding box than lines further away. Since in general a
number of object points from the same object are close to B, they are located first by searching a small area around
B. Then the defined search-lines are searched further out.

When the search process is finished, a scan over the bounding box is made. For each scan-line, the bisection
hyperplanes are then used to define a minimum and maximum value on the scan-line such that only pixels in that
range have to be updated according line (4) of Algorithm 2. Exceptions are the bisection hyperplanes parallel to
the main axis of the image, they reduce the bounding box and have no further effect on each scan-line.

Besides a suitable selection of the search-lines and of the size of the small area around each B to handle first,
several other methods can be used to speed up FEED:

• Stopping the search process as soon as the remaining bounding box is small enough.

• Taking larger than 1 steps along the search-lines.

• Separate handling of special cases, like the reduction of the bounding box to a hyperplane.

• Saving certain information when moving from border pixel to border pixel.

The ED in line (4) can be retrieved from a pre-computed matrix M with a size equal to the image size, for 2D:

ED(q, p) = M(|xq − xp|, |yq − yp|)

Due to the definition of D(p), the matrix M can be filled with any non-decreasing function f of ED:

f(D(p)) = min(f(D(p)), f(ED(q, p))).

For instance, the square of ED that provides an exact representation of the ED and allows the use of integers in
the calculation, which makes it faster. Alternately, one can use floating point or truncated integer values when the
final D(p) is used in such format in the further processing of the image.

3

2

search line

B
x

1

ybisection lines

Figure 2. Principle of the bounding box and search line. Originally the bounding box around the current boundary pixel B
is equal to the whole image. The immediate left neighbor pixel of B generates bisection line 1. This reduces the bounding
box from the left to the vertical line through B. The object point on the search line generates bisection line 2 that reduces the
bounding box to the small box indicated with rounded corners. In the update process only the pixels in the small box that are
on or to the left of bisection line 2 have to be considered.

3. 3D-FEED IMPLEMENTATION ISSUES
For the 2D implementation,2, 8 the use of pre-computed EDs with floating point or truncated integer values stored
in a matrix M provided a considerable speedup. This was not the case for 3D where it is about 30% faster to
recalculate the square of ED in line (4) of Algorithm 2 each time and then at the end convert D(p) to its final
floating point or integer format. This is due to the large number of caches that are present in current computer
systems, which makes access time to memory locations effectively not uniform. Matrices and images are stored in
a “non-local” way: if voxel v(x,y,z) is stored at memory location m(l), v(x+1,y,z) is stored at m(l+1), v(x,y+1,z)
at m(l+width), and v(x,y,z+1) at m(l+width*height). The use of the extra matrix M leads to too many reloads of
cache lines, making it slower than recalculating the ED.

To keep track of the update area in the 2D implementation, the maximum x and y values of each quadrant
around the current B were used. This scheme was extended in 3D to using the maximum x, y and z values of
the 8 octants around B. However, for the update of each octant a separate run in the z direction has to be made.
Therefore, we tried using a single bounding box around B and keeping track of its minimum and maximum values
instead of using maximum values per octant. This allows the use of only one run in the z direction in the update
process. The latter approach showed to be more than 10% faster than using the octant scheme since it generates
less cache misses.

In 3D, a border voxel B is an object voxel, which has one of its six 6-connected voxels in the background (see
Figure 3a). Searching for them proceeds along scan-lines in the x direction. When a border pixel B is found, its
6-connected voxels immediately provide a large cut on the bounding box, unless B is an isolated voxel. As it often
occurs that this reduces the bounding box to a single line along one of the main axes, this is detected and handled
separately, using only the relevant parts of the following procedure.

If a 6-connected voxel is in the background, a search for an object voxel is made in that direction. However, for
the negative x, y, or z direction it was faster to save the position of the closest object voxel from previous border
voxels in respectively a variable, a (one dimensional) vector, and a 2D matrix. In many cases, the bounding box is

4

(a) (b)

Figure 3. (a) A voxel (in the center) and its six 6-connected voxels. (b) A voxel (in the center) and its twelve 12-connected
voxels.

reduced to a plane, handling this as a separate case provides a speedup. In other cases, the volume of the bounding
box is less than a number of voxels (currently set to 25); then, directly updating it completely is fastest.

The twelve 12-connected neighbors of B (see Figure 3b) that have a line in common with B are checked for
being an object voxel. If this is the case, that voxel defines a bisection plane and it is immediately checked whether
or not the bounding box can be reduced in size. In addition, the combination with other bisection planes, not
being parallel to the main axes, is taken into account, because this can provide an extra reduction of the size of the
bounding box. Then the remaining 8-neighbors of B are tested, followed by a test on the volume of the remaining
bounding box. Next, if the direct neighbor was a background pixel, a search for object pixels is done along lines,
defined by the 12-connected and 8-connected neighbors. The search is not done if the volume of the bounding box
is less than a number of voxels (currently set to 120).

For further reduction of the size of the bounding box, we have tried other search-lines, such as in the direction
(1,1,2) and rotations thereof. In contrast to 2D images, this did not provide a reduction in execution time. Instead,
we concentrated on trying to reduce the size of a bounding box when it is too large in the z direction, because that
will have the largest effect on the executing time due to the effectively, non-uniform access time to the memory.
Indeed, searches for object pixels along search-lines parallel to the x and y axes provided sufficiently large reduc-
tions in the z direction that the total execution time is reduced. These searches are only performed when the size
in the positive or negative z direction is larger than a number of voxels (currently set to 12). A similar method is
used for bounding boxes that are larger than 25 voxels in the positive or negative y direction.

This balancing of search time and update time is illustrated in Figure 4(a). The update load is the average
number of times that an object voxel is updated. As, starting from the right of the figure, more search-lines
directions are added, the update load becomes smaller. The time gained by updating less voxels, is larger than
the extra search and bookkeeping time, thus the total time also reduces. At a certain point the update load still
reduces but the added search and bookkeeping time is larger than the time gained by the reduction in the update
load. Therefore the total time increases again.

During the update process, as described in Section 2, it makes no sense to calculate minimum and maximum
values for each scan-line in the x direction when the scan-line is already small. This parameter was set at 10 voxels.
Note that certain bisection planes define cuts on the range of y values while others define cuts on the x values, both
of which are only dependent on the z value. These cuts are always applied.

A reduction in time was further obtained by taking larger than 1 steps along the search directions. These steps
were set differently for the different directions and were larger for the z direction than for the y and x directions.

5

(a) (b)

Figure 4. Balancing search time and update time. (a) Execution time in ms versus the update load for various search strategies.
The update load is the average number of times that an object voxel is updated. (b) Execution time in ms versus the step size in
the positive z (0,0,1) direction.

This is shown in Figure 4(b), a step size of 12 in the (0,0,1) direction gives the minimum execution time. Not
shown is the update load, which is minimal for a step size of 1 and which increases with the step size.

Consequently, there are more parameters to adjust in the 3D than in the 2D implementation. Adjusting them
was not difficult because there appeared to be no large correlations between them. Also the effect of a setting is
not critical, a sequence of 3 to 5 trials is sufficient to find the optimal setting. After the parameters were set for a
subset of the 128×128×128 images on the AMD computer (see Section 4), this parameter set was compared with
optimal sets for the other combinations of image size and execution platform. The obtained execution times were
within 5% of the optimal execution times. Therefore, we used this particular parameter set for all the combinations.

In conclusion, we can say that the main difference between the 2D and 3D implementations is, that in the
latter the jumping through memory has a larger effect. To take this into account different search and bookkeeping
strategies were introduced. The optimal setting of the larger parameter set appeared not to be difficult.

4. BENCHMARK
4.1. Test images
To aid the development of 3D-FEED and to compare 3D-FEED with other distance transformations a large number
of test images were generated. For each iteration step of the generation process the number of objects in the image
was randomly chosen between a minimum and maximum value.

The type of an object was chosen randomly out of 8 possibilities: 4 rotations of a cube, a ball, and three
ellipsoids (e.g., 2x2 + y2 + z2 ≤ r2). In addition, the radius of each object was randomly chosen from a range.
The voxels were combined both using an “or” and a “xor”, the latter produced images with possible holes in the
objects. By roughening the surfaces of the objects in a random way, two further images were generated in each
step. For this, each border pixel was with a probability of 25% changed into a background pixel. In addition, each
border pixel had with a probability of 25% a randomly chosen neigboring background pixel changed into an object
pixel. Finally, isolated object and background pixels were removed from the generated images.

Two sets of images with size 64 × 64 × 64 were generated using a number of objects between 4 and 20, resp.
16 and 32, and a radius between 4 and 16, resp. 2 and 14. Also two sets of images with size 128× 128× 128 were
generated using a number of objects between 14 and 34, resp. 28 and 68, and a radius between 8 and 24, resp. 7
and 20. All four sets had 64 iterations, thus 256 images each. The generation parameters were chosen such that
the number of object pixels varied between 5 and 40% of the total number of pixels in the image. In Figure 5 some
examples of the generated images are shown.

6

(a) (b)

(c) (d)

Figure 5. Example images: (a) Generated with the “or” method. (b) The same generation step but with “xor”, note the hole in
the top right object. (c) The roughened image in (a). (d) Another image generated with “xor” but with more objects.

7

Figure 6. Execution time in ms for 256 128× 128× 128 images for the five 3D ED algorithms.

4.2. Test bed
Two execution platforms were use for testing. The first, further referred to as AMD, was a desktop PC with an
AMD Athlon XP R© 1666 MHz processor having 64kB L1 cache, 256kB L2 cache and 512 MB memory. The
second, further named DELL, was a DELL Inspiron R© 510m laptop. It had an Intel Pentium R© M 725 processor
with a clock of 1600 MHz, no L1 cache, 2MB L2 cache and 512MB memory. On both platforms the Microsoft R©

Visual C++ 6.0 programming environment was used in the standard release setting. Please note that no effort was
spend on reducing the execution time by varying compiler optimization parameters, by using pointers instead of
indices or by exploiting the particular characteristics of a machine.

Timing measurement were performed by calling the Visual C++ clock() routine before and after a repeated
number of calls to a distance transformation routine on an image. As the clock() routine returns elapsed time with
a granularity of 10ms the number of repeats is set such that the total elapsed time is more than 1s. The error
on a single elapsed time measurement is than less than 2%, provided that the computer was not busy with other
tasks like processing interrupts. That this happens is shown in Figure 6 were the elapsed time is shown for the 256
images of the first 64 × 64 × 64 set for the five 3D ED algorithms used in Section 4. The arrows show clearly
too high times, an indication that the computer was then also serving other tasks. The number of times that this
happens, was reduced by disabling local area communication devices. For the elapsed times reported in Section 4,
these erroneous measurements were removed by hand. The effect of this procedure on the average times was less
than 1%.

During the development of the 3D-FEED implementation, as described in Section 3, a faster measurement
strategy was used. The calls to the clock() routine are done before and after the 3D-FEED processing of a large
number of images. This is done twice; hence, it enabled us to verify whether or not the computer is busy with other
tasks. In the case it was busy with other tasks, the measurement is simply repeated.

4.3. The algorithms
We compared FEED with four other algorithms:

1. The city-block distance (CH1,1,1), as introduced by Rosenfeld and Pfaltz1, but extended to 3D. It provides
crude but fast approximations of the ED.

8

2. The Chamfer 3,4,5 distance (CH3,4,5i), from Svensson and Borgefors5, using the integer (i) weights. It
provides a more accurate approximation of the ED.

3. The Chamfer 3,4,5 distance (CH3,4,5f), from Svensson and Borgefors5, using floating point (f) weights.

4. EDT-3D: a changed version of the two-scan based algorithm of Shih and Wu10 that produces a semi-exact
ED map (see also Section 1). The original algorithm saves during the scans the square of the intermediate
EDs for each voxel and decompose them when needed into the sum of three squared integer values, which
denote distances along principal axis. If more than one decomposition is possible, neighboring voxels are
decomposed to find the right decomposition. Since Shih and Wu10 did not describe their decomposition
method, which is rather time consuming, we explored two alternatives. The three values are initialized and
then updated during the scans and saved combined into an integer that is stored into a 3D matrix. The
intermediated squared EDs for each voxel are either saved into a 3D matrix and updated as in the original
algorithm or when needed recalculated from the three values. The latter alternative clearly proved to be the
fastest method; hence, we used this alternative.

4.4. Results
In Table 1, the obtained timing and accuracy results are provided for the different image sizes and execution
platforms. It shows that 3D-FEED gives the exact ED and is around a factor 2 faster than the EDT-3D method
adapted from Shih and Wu10, which gives a wrong result on about 3 to 4% of the voxels. Regarding the Chamfer
methods of Svensson and Borgefors5, 3D-FEED is comparable in speed but much more accurate. Moreover, it is
only a factor 2 to 3 slower than the crude city-block approximation.

For the CH methods a large percentage of the voxels is in error. The CH1,1,1 method shows the expected
maximum relative error of (3 −

√
3)/

√
3 = 73.21%. The errors for the CH3,4,5 methods are much smaller than

for the CH1,1,1 methods, the implementation with the floating point weights has a lower error than the version
with the integer weights but is about a factor 1.5 slower. For the semi-exact EDT-3D method most of the voxels
have the correct ED, the maximum errors are comparable with the CH3,4,5 methods.

All methods, except 3D-FEED, use a forward and backward raster scan over the image and at each voxel a
limited number of neighboring voxels (3 for CH1,1,1 and 13 for the other ones) are considered. The speed of these
method is thus proportional to the number of voxels in the image, as is confirmed by our measurements.

Table 1. Timing (in ms) and accuracy results. The % of wrong pixels provides the percentage of pixels that have received a
different distance than the exact ED. The average and maximum absolute error are in units of voxels. The relative average
and maximum error is defined as the received ED divided by the true ED and is given as a percentage. The time ratio is the
average time for the large images divided by the average time for the small images.

3D-FEED CH1,1,1 CH3,4,5i CH3,4,5f EDT-3D
64x64x64 images ADM average time 25.0 ms 11.9 ms 26.4 ms 38.2 ms 64.4 ms

DELL average time 23.4 ms 8.5 ms 18.9 ms 29.4 ms 45.4 ms
% of wrong pixels 0.00% 70.51% 68.24% 83.65% 3.29%
average absolute error 0.00 3.02 0.35 0.32 0.01
maximum absolute error 0.00 34.04 5.24 4.47 2.30
average relative error 0.00% 27.34% 3.12% 3.11% 0.06%
maximum relative error 0.00% 73.21% 10.55% 8.80% 9.38%

128x128x128 images ADM average time 320.3 ms 96.2 ms 210.2 ms 299.8 ms 531.2 ms
DELL average time 209.5 ms 72.4 ms 155.8 ms 230.9 ms 371.0 ms
% of wrong pixels 0.00% 69.67% 67.88% 80.45% 4.41%
average absolute error 0.00 3.79 0.44 0.40 0.01
maximum absolute error 0.00 46.46 9.31 6.88 4.72
average relative error 0.00% 26.38% 2.93% 2.89% 0.08%
maximum relative error 0.00% 73.21% 10.55% 8.80% 9.82%

comparing image sizes AMD time ratio 12.8 8.1 8.0 7.9 8.3
DELL time ratio 8.9 8.5 8.3 7.8 8.2

9

Figure 7. Execution time in ms as function of the percentage of object pixels in the first set of 128× 128× 128 images for the
five 3D ED algorithms.

Figure 8. Execution time of 3D-FEED in ms as function of the percentage of object pixels for different ways in which the test
images are generated.

10

For 3D-FEED this is not the case, for each border voxel in principle the whole image could be scanned for
searching and updating. Thus a simple theoretical limit is that 3D-FEED is proportional to the square of the
number of voxels. In practice this is not the case for various reasons. The time per voxel for finding border voxels
is much lower than the time per voxel during the update process. Further the more object and border voxels there
are the less time is needed for the update scan. Instead of the theoretical maximum factor of 64 between the
execution time of 3D-FEED for the two image sizes, a factor of 12.8 for the AMD and 8.9 for the DELL machine
was measured. The difference between the two factors can be largely attributed to the different cache systems of
the platforms which gives the DELL machine an effectively more uniform memory access.

In Figure 7, the execution time for the five algorithms on the DELL platform is shown as a function of the
percentage of object pixels in the 128 × 128 × 128 images. For all methods the execution time decreases linearly
with increasing number of object pixels. This can be explained by the fact than more work is performed on
background pixels than on object pixels. 3D-FEED also shows a larger variation in execution time than the other
methods and there are clearly two bands visible. The bands are also to a lesser extend visible for the other methods

To study this further in Figure 8 the execution time of 3D-FEED is given as a function of the percentage of
object pixels for different ways in which the test images are generated. The images generated with the “or” method
(see Section 4.1 have a lower execution time than the images generated with the “xor” method. Roughening of
the images does not make a difference. Not shown here is also no difference between the two image sets for each
image size. The same effect is analyzed to be present for the other ED methods. It is therefore not something
with is particular to the 3D-FEED method, but is intrinsic to the images. The larger variation in the execution time
of 3D-FEED is due to the distribution of the object pixels over the image, which influences the speediness of the
search strategy employed by 3D-FEED.

5. DISCUSSION
In Section 2, we have reformulated the principles of the Fast Exact Euclidean Distance (FEED) transformation,
as originally defined by Schouten and Van den Broek8 and refined by Schouten, Kuppens, and Van den Broek2.
¿From this point on, we have developed a 3D implementation, which is described in Section 3. Compared to the
2D implementations2, 8 certain strategies were chosen differently, in order to reduce the number of cache misses
in current computer systems.

In Section 4, we compared the performance of 3D-FEED on a large set of randomly generated, object-like
images with four other methods. 3D-FEED is a factor 2 faster than the algorithm of Shih and Wu7, even after
adapting their method to increase the speed of it, and it provides an exact ED instead of a semi-exact ED. Further,
3D-FEED has about the same speed as the chamfer approximations of the ED from Svensson and Borgefors5 and
is only a factor 3 slower than the crudest and fastest approximation of the ED: the city-block distance.

It is also shown that the execution time of 3D-FEED is more dependent on the content of the image than the
execution time of the other methods. A further study of this effect could lead to a more adaptable and faster search
strategy for 3D-FEED. Further, the FEED principle can also be adapted to images with ”non-square” voxels, a kind
of image often used in medical application and produced by tomographic devices or by confocal microscopes13.

3D-FEED can be employed in a range of settings; e.g., trajectory planning, neuromorphometry14, skeletoniza-
tion, Bouligand-Minkowsky fractal dimension, Watershed algorithms, robot navigation2, video surveillance15 and
Voronoi tessellations12. Especially for those applications where both speed and precision of the algorithm are of
the utmost importance, 3D-FEED is the solution.

REFERENCES
1. A. Rosenfeld and J. L. Pfaltz, “Distance functions on digital pictures,” Pattern Recognition 1, pp. 33–61,

1968.
2. Th. E. Schouten, H. C. Kuppens, and E. L. van den Broek, “Timed Fast Exact Euclidean Distance (tFEED)

maps,” Proceedings of SPIE (Real Time Imaging IX) 5671, pp. 52–63, 2005.
3. G. Borgefors, “Distance transformations in digital images,” Computer Vision, Graphics, and Image Process-

ing: An International Journal 34, pp. 344–371, 1986.
4. G. Borgefors, “On digital distance transforms in three dimensions,” Computer Vision and Image Understand-

ing 64(3), pp. 368–376, 1995.

11

5. S. Svensson and G. Borgefors, “Distance transforms in 3D using four different weights,” Pattern Recognition
Letters 23(12), pp. 1407–1418, 2002.

6. O. Cuisenaire and B. Macq, “Fast euclidean transformation by propagation using multiple neighborhoods,”
Computer Vision and Image Understanding 76(2), pp. 163–172, 1999.

7. F. Y. Shih and Y.-T. Wu, “Fast euclidean distance transformation in two scans using a 3 × 3 neighborhood,”
Computer Vision and Image Understanding 93(2), pp. 195–205, 2004.

8. Th. E. Schouten and E. L. van den Broek, “Fast Exact Euclidean Distance (FEED) Transformation,” in
Proceedings of the 17th IEEE International Conference on Pattern Recognition (ICPR 2004), J. Kittler,
M. Petrou, and M. Nixon, eds., 3, pp. 594–597, (Cambridge, United Kingdom), 2004.

9. C. Fouard and G. Malandain, “3-D chamfer distances and norms in anisotropic grids,” Image and Vision
Computing 23(2), pp. 143–158, 2005.

10. F. Y. Shih and Y.-T. Wu, “Three-dimensional Euclidean distance transformation and its application to shortest
path planning,” Pattern Recognition 37(1), pp. 79–92, 2004.

11. J. H. Takala and J. O. Viitanen, “Distance transform algorithm for Bit-Serial SIMD architectures,” Computer
Vision and Image Understanding 74(2), pp. 150–161, 1999.

12. E. L. van den Broek, Th. E. Schouten, P. M. F. Kisters, and H. C. Kuppens, “Weighted Distance Mapping
(WDM),” in Proceedings of the IEE International Conference on Visual Information Engineering (VIE2005),
N. Canagarajah, A. Chalmers, F. Deravi, S. Gibson, P. Hobson, M. Mirmehdi, and S. Marshall, eds., pp. 157–
164, Wrightsons - Earls Barton, Northants, Great Britain, (Glasgow, United Kingdom), 2005.

13. I.-M. Sintorn and G. Borgefors, “Weighted distance transforms for volume images digitized in elongated
voxel grids,” Pattern Recognition Letters 25(5), pp. 571–580, 2004.

14. Y. Lu, T. Jiang, and Y. Zang, “Region growing method for the analysis of functional MRI data,” NeuroIm-
age 20(1), pp. 455–465, 2003.

15. Th. E. Schouten, H. C. Kuppens, and E. L. van den Broek, “Video surveillance using distance maps,” Pro-
ceedings of SPIE (Real-Time Image Processing III) [in press], 2006.

12

