Ellipsometric Characterisation of Porous Aluminium Oxide Supports

Wojciech Ogieglo, Nieck Benes, Herbert Wormeester (MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands)

Porous aluminium oxide is widely used as a support material for thin film inorganic micro- and mesoporous membranes. Such membranes are used in energy-efficient gas separation, pervaporation and nanofiltration processes. Ellipsometry can be used to determine material properties of the thin membrane films, as well as the penetrant loading [1]. Interpretation of the ellipsometry data requires a detailed knowledge of the porous aluminium oxide support. This support is made of aluminium oxide particles that are sintered together. In between the particles voids are present that amount to 38% porosity. We have studied the influence of the size of the voids on the optical response of the support material. For this study, voids with a diameter of around 60, 80 and 160 nm were used. We noted a strong decrease of the normal incidence specular reflection with void size and a subsequent increase in off specular reflection. In ellipsometry, only a limited depolarization of the specular reflected light was noted in the wavelength range between 300 and 1750 nm. The angle dependent ellipsometry measurements showed that the optical properties of these supports can not be obtained from a direct inversion. The reason for this is that at the interface the more or less spherical voids are cut, which leads to a distribution of openings at the surface, i.e., a substrate with a very rough surface. This roughness was modelled with a graded porosity changing from 38% in the bulk to 75% at the outer surface. This measured variation in porosity is very similar to the cumulative height distribution of the surface layer obtained from AFM. The validity of this graded porosity model was verified from the analysis of a sample with a thin polysulfone (PSU) layer deposited on the support. The PSU layer partly fills the open pores at the surface. This results in an interface with a graded variation in aluminium oxide, void and PSU.

The proper treatment of the surface layer also provides the optical properties of the porous aluminium oxide bulk material itself. These optical properties can in a limited wavelength range be modelled with Bruggeman's effective medium approximation. As a consequence of the size of the inclusions, their diameter is no longer negligible with respect to the wavelength of light in the UV part of the spectrum. For the material with the largest pore size, also a large part of the visible range has to be excluded. A more elaborate approach than the standard effective medium approach has to be used in this case.

[1] H. Wormeester, N.E. Benes, G.I. Spijksma, H. Verweij and B. Poelsema

Thin Solid Films 455-456, 747-751 (2004)