
Early Aspects: Aspect-Oriented Requirements Engineering and

Architecture Design

Workshop Report,

Lancaster, 21 March, 2004

Bedir Tekinerdoğan

University of Twente
Dept. of Computer Science,

Software Engineering,
TRESE, The Netherlands

bedir@cs.utwente.nl

Ana Moreira

Universidade Nova de
Lisboa, Dept. Informática,
Faculdade de Ciências e

Tecnologia, Portugal,
amm@di.fct.unl.pt

João Araújo

Universidade Nova de
Lisboa, Dept. Informática,
Faculdade de Ciências e

Tecnologia, Portugal
ja@di.fct.unl.pt

Paul Clements

Software Engineering
Institute, Carnegie Mellon

University, USA
clements@sei.cmu.edu

Abstract

This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering
and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21,
2004. The workshop included a presentation session and working sessions in which the
particular topics on early aspects were discussed. The primary goal of the workshop was
to focus on challenges to defining methodical software development processes for aspects
from early on in the software life cycle and explore the potential of proposed methods and
techniques to scale up to industrial applications.

1. Introduction

Conventional aspect-oriented software develop-
ment (AOSD) approaches have mainly focused on
identifying the aspects at the programming level
and less attention has been taken on the impact of
crosscutting concerns at the early phases of the
software development. Current requirements
engineering and architecture design approaches, on
the other hand, have not explicitly addressed the
crosscutting nature of some requirements. The
combination of these two issues –the importance of
crosscutting concerns at programming level and the
impact in the whole system of the decisions made
during the early development phases – led to the
creation of the Early Aspects research topic in 2002
(www.early-aspect.net). Early aspects are defined
as concerns in the early life cycle phases which
cannot be localized and tend to be scattered over
multiple early phase modules.

Obviously, the early software development phases,
including requirements analysis, domain analysis

and architecture design, actually set the early
design decisions and as such impact the whole
system. Therefore, if early aspects are not handled
properly, they will, similarly to aspects at
programming level, lead to serious maintenance
and evolution problems.

This paper reports on the results of the workshop
on Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design which was
held on March 21, 2004 in Lancaster, UK. This
workshop aimed at supporting the cross-
fertilization of ideas in requirements engineering,
software architecture design and aspect-oriented
software development. It continued the work
started at the first and second editions of this
workshop held in conjunction with AOSD’2002
and AOSD’2003, respectively.

The outline of the paper is as follows. Section 2
sets Early Aspect within the context of AOSD.
Section 3 provides an overview of the topics
covered by the workshop. Section 4 presents the

5

workshop papers. Section 5 shows the workshop
program. Section 6 talks about the workshop
discussions and results. Section 7 lists the
workshop participants. Finally Section 8 presents
the conclusions of the workshop.

2. Early Aspects in the context of AOSD

Early Aspects focus on aspects at a higher
abstraction level than programming or even design.
To make the explicit distinction we categorize
aspects as early aspects, and intermediate aspects,
and late aspects (see Figure 1).

Figure 1. Relation between Early Aspects,
Intermediate Aspects and Late Aspects

The impact of early aspects on the software
development life cycle manifests itself in two
ways. First of all, early aspects are crosscutting
concerns that are identified in the early phases of
the software development life cycle, including
requirements analysis, domain analysis and
architecture design. Secondly, early aspects also
impact aspects in the subsequent phases. Many
early aspects identified in the early phases will
ripple through the other phases as well. Other early
aspects might be specific to the early phases, and
crosscut only the specific modules at the early
phases. Likewise, it may well be that new aspects
will appear as we progress in the software life
cycle.

3. Topics

Topics of interest for the workshop included in
particular: aspect-oriented requirements engineer-
ing, aspect-oriented domain engineering, mapping
between aspect-oriented requirements, domain
analysis and architecture, aspect-oriented architec-
ture design, tool support and automation for aspect-

orientation. A set of open questions for each of
these topics, is listed below.

Aspect-oriented requirements engineering
• How to identify aspects at the requirements

level?
• How to model aspects at the requirements

level?
• How to integrate and compose aspects with

other modelling mechanisms, such as goals,
viewpoints and use cases, and establish trade-
offs?

• How to trace requirements level aspects
through later development stages and during
re-engineering?

• How to validate aspects identified at the
requirements level?

Aspect-Oriented domain engineering
• What are the criteria for domain aspect

decomposition?
• How can we derive aspects from domain

knowledge?
• How can we abstract and generalize domain

aspects for reuse?
• What are the composition relations between

domain aspects?
• How to represent domain aspects?

Mapping between aspect-oriented requirements,
domain analysis and architecture

• Should the mapping be formal or informal?
• To what is a requirements concern mapped

onto?
• What are the language’ features required to

support a mapping?
• What is the benefit ratio of mapping/coding?

What are the pros and cons of mapping in the
first place?

Aspect-oriented architecture design
• How to support evolution in the architecture

using aspects?
• How to reason about architectures and aspects

to know that the architecture is a good one
(trade-offs between aspects)?

• How to model the architecture to take aspects
into account?

• When designing an architecture, how and
when to identify aspects?

• How to set the scope for a software product
line architecture using aspects

6

• Aspects in the Model-Driven Architecture
approach

Tool support and automation for aspect-
orientation

• Which tools are there to support aspect-
oriented development?

• Formalisms and notations for specifying
aspects

• What formalisms can be used at early
software development stages?

4. Workshop Papers

The workshop received 17 submissions. Table 1
contains a list of the 14 papers accepted for the
workshop.

Table 1. List of accepted papers
Title of the paper Authors
Finding Aspects in
Requirements with Theme/Doc

E. Baniassad, S. Clarke

Identifying Aspects using
Architectural Reasoning

L. Bass, M. Klein, L.
Northrop

Facets of Concerns C. Bogdan
Integrating the NFR framework
in a RE model

I. Brito, A. Moreira

Tracing Aspects in Goal driven
Requirements of Process
Control Systems

I. El-Maddah, T.
Maibaum

Aspect-Orientation from Design
to Code

I. Groher, T. Baumgarth

Problems, Subproblems and
Concerns

M. Jackson

Aspect-Oriented Context
Modeling for Embedded
Systems

T. Kishi, N. Noda

Generating Aspect-Oriented
Architectures

U. Kulesza, A. Garcia, C.
Lucena

Concerned about Separation H. Mili, A. Elkharraz, H.
Mcheick

Refining Feature Driven
Development - A Methodology
for Early Aspects

J. Pang, L. Blair

On imperfection in information
as an "early" crosscutting
concern and its mapping to
aspect-oriented design

M. Sicilia, E. Garcia

Separation of Crosscutting
Concerns from Requirements to
Design: Adapting the Use Case
Driven Approach

G. Sousa, S. Soares,
P. Borba, J. Castro

Modeling Pointcuts D. Stein, S. Hanenberg,
R. Unland

We value the interaction between the participants
and the results of the working groups. For this
reason used the morning session for a limited
number of short presentations and the afternoon
was reserved for discussions and overall

conclusions. Table 3 contains the 6 papers we have
chosen for presentation.

5. Program

The program of the workshop is illustrated in Table
3. The program consisted of two sessions:

1. Presentation Session, in which selected
papers were presented.

2. Discussion Session, in which selected
topics on early aspects were discussed.

Table 3. Program of the workshop

8:45-9:00 Introduction to workshop

09:00-10:30 Presentation Session

1. Finding Aspects in Requirements with
Theme/Doc, E. Baniassad, S. Clarke

2. Integrating the NFR framework in a RE
model, I. Brito, A. Moreira

3. Tracing aspects in goal driven
requirements of process control systems
I. El-Maddah, T. Maibaum

4. Generating Aspect-Oriented Agent
Architectures, U. Kulezsa, A. Garcia, C.
Lucena

5. Identifying Aspects Using Architectural
Reasoning, L. Bass, M. Klein, L.
Northrop

6. Problems, Subproblems and Concerns,
M. Jackson

10:30-11:00 Morning break
11:00-14:30 Discussion Session I – Key Problems and

Motivations
12:30-14:00 Lunch
14:00-14:30 Plenary Session: Presenting

Fundamental Problems + Plenary
discussions

14:00-15:30 Discussion Session II - Setting the
Research Agenda

15:30-16:00 Afternoon break

16:00-17:00 Discussion Session II Cnt’d - Setting the
Research Agenda

17:00-17:30 Plenary Session: Presenting the Research
Agenda for next years

5.1 Presentation Sessions
The presentation session consisted of six paper
presentations, each of which was presented in 15
minutes. The presented papers and the short

7

description of these, taken from the original papers,
is as follows:

Problems, Subproblems and Concerns
M. Jackson
This position paper sketches how problems may be
understood from a perspective based on problem
frames. Problem analysis from this perspective
reveals structural issues in a clearer light. It leads to
a need for composition, both in the problem world
and in the solution world. The goals of aspect
technology would be clarified by such analysis, and
the aspect technology may in turn offer some
power in understanding and implementing the
compositions.

Finding Aspects in Requirements with
Theme/Doc
E. Baniassad, S. Clarke
To identify aspects early in the software lifecycle
developers need support for aspect identification
and analysis in requirements documentation. To
address this, we have devised the Theme/Doc
approach for viewing the relationships between
behaviours in a requirements document to identify
and isolate aspects in the requirements. This paper
describes the approach, and illustrates it with a case
study and analysis.

Integrating the NFR Framework in a RE Model
I. Brito, A. Moreira
This paper presents a model to handle advanced
separation of concerns during requirements
engineering. It builds on our work already
produced on advanced separation of concerns for
requirements engineering by adding two main
ideas: (i) the integration of catalogues to help
identifying and specifying concerns and (ii)
improve the composition rules by informally
defining some new operators.

Tracing Aspects in Goal Driven Requirements
of Process Control Systems
El-Maddah, T. Maibaum
Goal driven requirements analysis methods are
well suited to trace the different aspects of software
applications to the early design level. This paper
illustrates how to use the GOPCSD tool in
developing aspect-based process control
applications. The GOPCSD tool adopts goal driven

requirements analysis concepts and has been
adapted from the KAOS method to address process
control systems.

Generating Aspect-Oriented Agent
Architectures
U. Kulezsa, A. Garcia, C. Lucena
In this paper we define a domain specific language
(DSL) that permits us to model orthogonal and
crosscutting agent features. The agent features are
then expressed in an aspect-oriented architecture.
The implementation of the generative approach
encompasses: (i) XML technologies to specify the
DSL; (ii) Java and AspectJ programming languages
to implement a concrete version of our aspect-
oriented agent architecture; and (iii) a code
generator, implemented as an Eclipse plugin.

Identifying Aspects Using Architectural
Reasoning
L. Bass, M. Klein, L. Northrop
Architectural aspects are candidate aspects to be
carried through detailed design and
implementation. We set the stage by introducing
some new terminology. We begin with a small set
of quality requirements for an example system,
present a software architecture that satisfies those
requirements, and highlight the architectural tactics
at work in that architecture. We then identify
architectural aspects and their constituent
architectural advice, pointcuts, and join points.

5.2 Discussion Sessions
We have deliberatively adopted a very short
presentation session to provide more opportunity
for discussion.

For the discussion sessions the participants were
separated in four sub-groups.

• Requirements Engineering, which focused on
aspects in requirements engineering

• Domain Engineering/Application Domain,
focusing on aspects in domain engineering

• Software Architecture Design, focusing on
aspects in architecture design

• Specification of Early Aspects, focusing on
defining appropriate notations for early
aspects.

8

Note that these sub-groups were not totally
independent and there is some overlap. We did not
consider this as a problem, nor did we experienced
it later on as a problem. Each sub-group provided
some interesting results that we will describe in
Section 6.

The discussion session was split in two sub-
sessions. The first section, Key Problems and
Motivations focused on defining the context of the
selected topics and the identification of the
important problems. The session, Setting the
Research Agenda, focused on defining the
important research problems derived from the first
problem.

The two sub-sessions were separated by an
intermediate plenary session. The reason for this
was to provide a chance to pollinate the ideas and
to get feedback from the participants of the other
groups.

The tasks for the first session Key Problems and
Motivations were the following:

• Define a Mind Map, providing a conceptual
representation of the selected topic based on
the input from the participants in the group.

• Identify the Fundamental Problems from the
Mind Map.

A mindmap is based on the concept of visual
thinking of cognitive science. It is a way of
organizing and sharing knowledge. Mindmaps are
often developed by a brainstorm session and aim to
reflect the common ideas on the domain.

A mindmapping activity starts with writing the
main topic into the center of the map, and later on
main ideas are linked to the main topic. Each main

idea on its turn can have branches describing the
detail ideas.

Within the first session each sub-group defined a
mindmap of the selected topics. The result of the
mindmaps are shown in Figure 2, Figure 5, and
Figure 6.

In the second session, Setting the Research Agenda,
the mindmaps were used to identify the most
fundamental problems. The problems were
described in the following format:

• Problem Description, describing the problem
shortly

• Motivation, motivating the problem

• Example, describing an example

Given the mindmaps and the problem descriptions
we aimed at providing a concrete research agenda.
The following sections will elaborate on the results
of the subgroups.

6. Results of Discussion Sessions

In the following we will describe the results of the
workshop for each sub group.

6.1 Requirements Engineering
The mindmap for the topic Requirements
Engineering is shown in Figure 52. There are many
issues to be discussed and investigated: from
identification to validation of aspectual
requirements, from composition to traceability of
aspectual requirements.

Identifying Aspectual
Requirements

Crosscutting Requirements Aspectual Concerns

Aspects and Requirements
Composing Aspectual
Requirements

Tracing Aspectual Requirements

Validating Aspectual
Requirements

Integrating Aspects and RE
Approaches

Aspect-Oriented RE

Concern Definition

Use cases
Goals
Viewpoints
Problem frames

Figure 2. Mindmap for Aspect-Oriented Requirements Engineering

From the list of topics identified in our mindmap
the majority of group members decided that we
should first concentrate the discussions on

understanding the basic concepts behind aspect-
oriented requirements engineering: concerns,
crosscutting, and aspectual requirements.

9

Unfortunately, the discussion could not progress to
the other topics of the mindmap, because of lack of
time.

6.1.1 Problems identified

The following set of questions was intensively
discussed, and some answers were proposed.

What is the definition of a concern?

• Is a concern a requirement?

• Is a concern what a stakeholder thinks is
important?

• Is a concern anything the developer must
consider for the system to be successful?

• Is a concern a user expectation?

• Is a concern anything a developer must
consider for the system to be successful?

• Is a concern ANYTHING? (!).

Not having an agreed definition provokes in
general communication problems. However, such a
definition cannot be rigid, i.e., it is important to
have an agreed and flexible one. Moreover, to have
a definition is helpful to identify and relate
concerns. Our agreed possible definitions are listed
below:

• Concern is a desired observable property;

• Concern is a feature;

• Concern is some responsibility;

• Concern is a sub-problem.

What is crosscutting?

• Crosscutting concerns are domain specific
concepts that do not fit into an object
abstraction.

• A concern is crosscutting when it, or part
of it, contributes to multiple concerns.

• Crosscutting arises when two abstractions
relate.

What is an aspect?

• It is an artifact to address a requirement.

• It is a situation where N concerns interact.

• It is a crosscutting concern.

• It is a requirement that comes from
different points of view.

Why is the lack of a common terminology a
problem?

• Because we need to know what we are
talking about;

• We need to know how to prepare for
design;

• Different versions of “aspect” may be
useful in different domains.

6.1.2 Research agenda for the topics discussed

The following points were identified as interesting
research topics for the near future:

• Decomposition of concerns;

• Traceability and completeness;

• Appropriate concern representations;

• How to represent specific kinds of subject
matter: is there a specialization needed?

• Composition of crosscutting concerns;

• Resolution of conflicts that emerge during
composition.

6.2 Domain Engineering and Aspects
(Contribution from the subgroup consisting of:
Hafedh Mili, Robert Laney, Bashar Nuseibah,
Jianxiong Pang, and Peter Sawyer)

Aspect-oriented software development (AOSD)
methods propose new software modularization
boundaries that provide additional opportunities for
reuse and easier maintenance. Domain engineering
is concerned with the development of software
artifacts that are reusable across applications within
the same application domain. Our group looked at
the potential synergies between domain
engineering and AOSD. We argue that AOSD is an
enabling technology for domain-engineering and
propose a number of research directions for the
field.

6.2.1 AOSD: an enabling technology for domain
engineering

Domain engineering may be defined as the process
of developing software artifacts that are reusable
across an application domain. Domain engineering
differs from application engineering in terms of

10

intent, process, and product. The intent is to
develop reusable components. The product of
domain engineering is a set of development
artifacts that are (should be) reusable by design.
Those artifacts may not be concrete enough to be
used within an application as is; they often require
more or less well-defined tailoring mechanisms to
make them usable for a specific application. A
recurring challenge in domain engineering is to
develop general components that are as concrete as
the technology of the day permits [Mili et al.,
2001].

Figure 3 shows the trade-off between concreteness
(usability) and generality (usefulness). New
software development techniques enable us to trade
less and less applicability for a given
“concreteness”, and vice-versa. Indeed, reusable
components tend to consist of a fixed part, that can
be reused as-is, and a variable part, which is often
to be supplied by the component user. New
modularisation and abstraction techniques typically
help us reduce the size of the variable part. For
example, by separating interface from
implementation, objects enable us to write client
code that is not dependent on service
implementation.

Figure 3. Trade-off between generality (usefulness)
and concreteness (usability)

Consider the case of two modules M1 and M2
where M1 implements “Grading and logging” and
M2 implements “Grading and tracing”. Because
logging and tracing may crosscut a number classes,
those classes will be reusable. If, on the other hand,
we are able to separate M1 into two artifacts, one
for “Grading” and one for “logging”, and M2 into
two artifacts, one for “Grading” and one for
“tracing”, we realize that M1 and M2 will share the
“Grading” artifact. Figure 4 illustrates this point.

We thus argue that AOSD is an enabling
technology for domain engineering.

Figure 4. AOSD supports greater reuse thanks to

finer-grained variabilities

6.2.2 AOSD for domain engineering: a research
agenda

Having identified AOSD as an enabling technology
for domain engineering (DE), DE will naturally
benefit from general advances in aspect-oriented
theory and tools and techniques. However, we see
more interesting synergies. One promising area of
research appeared to us to deal with what we might
call domain engineering of aspects, described
below.

A number of participants have recognized that
while user requirements are good sources of
concerns, a lot of concerns that pertain to a
software system are often implicit. Such is the case
with most non-functional requirements, including
security, logging, error handling, and the like. Such
concerns are business domain independent, and it
pays to identify them and to build, if possible, the
corresponding artifacts. Domain engineers can
reuse such concerns and the corresponding artifacts
in their domain models and components, and focus
instead on the functional concerns of the domain.
We discuss the relevant issues in some detail.

6.2.3 Identify common concerns

The goal here is twofold:

1) identify or catalogue of common non-
functional concerns, and

2) identify the common interactions between
such concerns, where applicable.

Neither task is trivial. When building the catalog of
concerns, we should strive for completeness, but
more importantly, for clear boundaries between the
various concerns. For example, traceability and

11

logging are related. A financial decision support
system (e.g. mortage application handler) needs
traceability for legal reasons to be able to justify
the system’s decision. Traceability can be achieved
in part through logging, but logging may provide
useless output (of non decision-making functions)
and miss out on some important decision critical
information. The distinction has to be drawn and
clarified. Feature models in the Feature-Oriented
Domain Analysis (FODA) [Kang et al., 1990] do a
good job of organizing “features” (or concerns1) in
feature trees, embodying feature containment (the
parent feature includes its children features, as in
“security” implies “authentication” and
“encryption”), feature selection (two alternative
features, as in “logging” mapping to either “local
logging” or “remote logging”), and dependencies
across feature tree branches. An example of the
latter is the case where our example grading system
needs to run in either local mode or client-server
mode: remote logging may only be possible with
the client server architecture.

There could be other dependencies besides the
“excludes” (between “local logging” and “remote
logging”) and “requires” relationships (“remote
logging” requires “client-server architecture).

6.2.4 Identify relationships between concerns
and development artifacts

Some of our concerns may map nicely to
identifiable development artifacts while others
won’t. If we are building an on-line auctioning
system for eGolf, and eGold is concerned about
throughput (e.g. 10,000 transactions/second for any
given item), there is no single artefact, regardless
of shape, aspect or color, that will address this
concern. However, before we give up on a concern
completely, we have to look at its subconcerns: it
may be the case that sub-concerns may map more
easily to artifacts.

“Mappable” concerns may map to classes or
methods, and yet others may map to subjects,
aspects — in the AspectJ sense [Kiczales et al.,
1997] — or composition filters [Aksit & Bergman,
1992]. One the many challenges here is to
recognize that not all concerns are aspectual —

1 For simplicity, we equate feature with concern.

they don’t all look like nails to the aspect hammer.
Domain engineers should explore alternative
implementations of concerns.

6.2.5 Identify interaction patterns between the
artifacts and see how they map back to
interactions between concerns

In section 2.2, we identified some dependencies
between concerns. Some of these dependencies
may translate into interaction patterns between the
corresponding artifacts. For example, if a concern
C1 implies another concern C2, it means that we
cannot incorporate (include, compose or weave) the
aspect that embodies C1—call it A1. Without
incorporating the aspect that embodies C2—call it
A2. More complex interactions may occur. We may
refer to this case as essential interaction between
aspects.

There may also be cases where the concerns do not
interact, but where the corresponding aspects do.
This is a case of accidental interaction, which
would normally be symptomatic of poor aspect
(artifact) design or of a shortcoming of the
implementation technolog;y. Either way, such
interaction patterns have to be identified, and
potential resolutions developed.

6.2.6 Discussion

This is a preliminary investigation into the possible
synergies between AOSD and domain engineering
that focussed on the reuse of non-functional
concerns across application domains. Clearly,
domain engineering will also benefit from
advances in aspect-oriented implemenation
techniques as well as advances in concern
identification and aspect modeling to handle
domain-specific functional requirements.

6.3 Software Architecture
The mindmap for the topic software architecture is
shown in Figure 5.

Software architectures include the early design
decisions and embody the overall structures that
impact the quality of the whole system. It is
generally accepted that architecture design should
support the required software system qualities. As
shown in Figure 5, Quality Concerns forms
obviously a key issue in Software Architecture.

12

For ensuring the quality factors the common
assumption is that identifying the fundamental
concerns for architecture design is necessary
(Decomposition). A number of approaches have
been introduced to derive the fundamental
architectural abstractions. The abstractions can be
derived from the solution domain or the
requirements (Functional Concerns).

Although the architecture design approaches vary
in deriving architectural abstractions they share the
common idea that architectural abstractions should
represent the relevant concerns of the system. This
implies that for identifying the right architectural
abstractions, a thorough understanding and an
appropriate application of the separation of
principle is necessary.

A solid architecture design heavily depends on and
represent solution domain knowledge
(Architectural Knowledge). This is derived from
the domain knowledge and provided by the
architectural patterns.

Composing the architectural concerns is one of the
challenging tasks (Composition). In general,
architectural concerns can be combined in different

ways and it is important to derive the appropriate
composition with respect to the quality
requirements.

Once the architectural abstractions are identified it
is necessary that the architecture is appropriately
specified (Specification). This can be done visually
or textually as in the case of architecture
description languages.

The conventional approaches have mainly focused
on separating the concerns that fit nicely into
architectural components. Unfortunately, less focus
has been given on concerns that cannot be captured
in single components and tend to crosscut several
components.

Crosscutting concerns need to be identified,
specified and evaluated at the architecture design
level. Software architectures are generally
documented using architectural views. The key
question here is how to specify aspects in the
views. Another issue to investigate is how the
crosscutting relates to the views. Can aspects be
totally captured in single views, if not how to cope
with the crosscutting over different views?

Specification

Quality Concerns

Functional Concerns

Decomposition

Evaluation

Composition

Architectural Views

Architectural Evolution

Architectural Knowledge

Software Architecture
23-8-2004 - v6

Visual

Formal ADLDriver Quality attributes
Secondary Quality attributes

Business Goals
Balancing Qualities

From Solution Domain
From Requirements

Identify concerns
Components
Connectors

Sub-domain decomposition
Model Driven Decomposition

Scenarios
Static Modeling
Prototypes
Early vs. Late Evaluation

Architectural Weaving
Conventional Composition

Conceptual
Physical
Dynamic
Aspectual

Changing environment
Requirements change
New Domain Features

Architectural Patterns
"What the architect knows"
Architectural Decisions

Figure 5. Mindmap of software architecture topic

6.4 Specification of Early Aspects
The mindmap for Specification of Early Aspects is
shown in Figure 6. It should be noted that
specification of aspects plays also a role in the
other subgroups. During the presentation of the
ideas we could also identify some recurring ideas.

Specification of early aspects refers to the
specification of aspects during the architecture
design, requirements analysis and domain analysis
phases. Before specifying early aspects it is
necessary to identify the aspects first, which is
done in the requirements analysis and architecture
design phases.

13

What are Aspects?

Requirement Analysis

Impact Analysis
Concern Specifications

Architecture Design Where is the crosscutting?

Specifying Early Aspects
Impact Analysis

Extraction

Crosscutting
Resolve Conflicts

Overlapping, concept sharing
Attributes
Properties
Constraints

Crosscutting behavior

Figure 6. Mindmap for Specification of Early Aspects

7. Participants in the Workshop

The participants in this edition of the Early Aspects
workshop is listed in Table 2.

Table 2. Participants to the workshop
Participant Affiliation
1. João Araújo Univ. Nova de Lisboa, Portugal
2. Elisa Baniassad Trinity College, Ireland
3. Isabel Brito Inst. Politécnico de Beja, Portugal
4. Gary Chastek Software Engineering Institute, US
5. Siobhan Clarke Trinity College, Ireland
6. Islam El-Maddah King’s College, UK
7. Iris Groher Siemens AG, Germany
8. Charles Haley Open University, UK
9. Michael Jackson Open University, UK
10. Shmuel Katz Israel Inst. of Technology, Israel
11. Uirá Kulesza PUC-Rio, Brazil
12. Robin Laney Open University, UK
13. Marius Marin Delft Univ. Technology, Holland
14. Hafedh Mili University of Quebec, Canada
15. Ana Moreira Univ. Nova de Lisboa, Portugal
16. Bashar Nuseibeh Open University, UK
17. Jianxiong Pang Lancaster University, UK
18. Awais Rashid Lancaster University, UK
19. Pete Sawyer Lancaster University, UK
20. Miguel-Angel Sicilia University of Alcalá, Spain
21. Sergio Soares Federal Univ. Pernambuco, Brazil
22. Daniel Speicher University of Bonn, Germany
23. Dominik Stein University of Essen, Germany
24. Stan Sutton T. J. Watson Research Center, US
25. Bedir Tekinerdogan Univ. of Twente, Holland

8. Conclusions

The results of the workshop show that the early
aspects topic is still in its infancy but progressing.
The goal of the workshop was primarily not to find
solutions but first to identify the right questions to
shape the research of the early aspects topics.
During the workshop a number of key research
areas have been identified to scope and consolidate
the area of early aspects.

Currently we can state that the scope of the early
aspects domain is defined to a large extent. This
workshop showed that several ideas are recurring
with respect to the previous early aspects

workshops. In particular there seems now to be an
agreement that early aspects refers to the aspects
that can be identified during the requirements
analysis, domain analysis and architecture design
phases. This means that aspects during the detailed
design are not counted as early aspects. In this
report we have termed the aspects at the detailed
design as intermediate-aspects. Aspects which
refer to the crosscutting concerns at the
implementation phase, testing and maintenance
phases are termed as late aspects.

Since early aspects refers to the crosscutting
concerns during the requirements analysis, domain
analysis and architecture design phases, the
research is also focused on these three phases. So
far, in general, the research on early aspects
appeared to proceed separately and independently
in each of these phases. It appears, however, that
the early aspects in the three phases are not
independent and directly impact each other. A
concern such as synchronization that is identified
during the requirements analysis phases requires
the modeling of it during the architecture design.
During the domain analysis some aspects might be
identified which were overlooked during the
requirements analysis phases. There is certainly a
relation among the concerns but so far the parity
and the semantics of the relations among the
concerns in the early phases are not completely
clear yet and more research is required to
crystallize the concepts.

This workshop and the previous workshop have
shown that early aspects exist and that they need to
be handled with care to provide better maintainable
software. In the future, we expect that the questions
addressed in this workshop will be solved
gradually.

14

9. Acknowledgements

We would like to thank the participants to the
workshops and the reviewers of the workshop
papers.

10. References

[Aksit et al., 1992] M. Aksit, L. Bergmans, and L.
Vural, “An object-oriented language-database
integration model: the composition filters
approach”, in Proc. of ECOOP 92, Springer Verlag
1992.

[Domain, 1999] Domain engineering: A model-
based approach, technical report, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 1999.
http://www.sei.cmu.edu/domain-engineering.

[Harrison & Ossher, 1993] W. Harrison &
H.Ossher, “Subject-oriented programming: a

critique of pure objects,” in Proc. OOPSLA’93, pp.
411-428.

[Kang et al. 1990] Kang, K., S. Cohen, J. Hess, W.
Novak, and A. Peterson, "Feature-Oriented Domain
Analysis (FODA): Feasibility Study" CMU/SEI-
90-TR-021.
www.sei.cmu.edu/publications/documents/90.repor
ts/ 90.tr.021.html

[Kiczales et al., 1997] G. Kiczales, J. Lamping, C.
Lopez, “Aspect-Oriented Programming,” in Proc.
ECOOP’97.

[Mili et al., 2001] H. Mili, A. Mili, S. Yacoub &
E. Addy, Reuse-Based Software Engineering,
Addison-Wesley, 2001

[Mili et al., 2004] H. Mili & A. Elkharraz, “Aspect
composition: problems and some solutions,”
LATECE Technical Report LAT-3-4-04, 12 pages,
March 2004.

15

