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Abstract 
Dense granular materials are well known to demonstrate mechanical properties that are different from 
classical fluids or solids. An issue is the accurate prediction of mechanical properties of granular materials, 
which are controlled by the internal structure of the assembly of grains – where the internal structure itself 
depends on the history of the sample. In this work, the Discrete Element Method (DEM) approach is 
presented as a viable tool to investigate the behavior and dynamics of granular packings subjected to 
deformations. The results on uniaxial and deviatoric deformations are compared to earlier results on isotropic 
deformation. As main result, the evolution of pressure and coordination as a function of volume fraction are 
reported for both uniaxial and deviatoric deformation modes. Our findings compare astonishingly well with 
results for purely isotropic compression. The second stress response namely anisotropy, is present as the 
evolution of the deviatoric stress as a function of the deviatoric strain. Similar data can be measured from 
experiments with the true biaxial tester which is work-in-progress, and both deformation modes are 
especially simple to realize experimentally. 
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1. INTRODUCTION 

Dense granular materials are generally complex systems which show unique material properties, different 
from classical fluids or solids. Complex phenomena like dilatancy, shear band formation, history 
dependence, jamming and yield stress among others have attracted significant scientific interest over the 
past decade. A full understanding of their flow and deformation behaviour still remains a challenging 
problem.  
 
It has been shown by Luding and Perdahcioglu (2011) that isotropic and deviatoric deformation modes are 
pure modes, while the uniaxial deformation test derives from the superposition of an isotropic and a 
deviatoric test. On the other hand, the biaxial tests involve mixed stress- and strain-control instead of 
completely prescribed strains.  In this work, various deformations of polydisperse packings of non-frictional 
particles were modeled with the DEM approach. The evolution of coordination number, fraction of rattlers, 
isotropic fabric, and pressure (isotropic stress) are reported as function of volume fraction and isotropic 
strain, while the deviatoric stress is studied as function of the deviatoric strain, for different contact properties 
and system parameters. Some of these results are presented, while the comparison with experiments will be 
the focus of a future publication.   
 

2. SIMULATION PROCEDURE 

The Discrete Element Method (DEM) (Cundall and Strack 1979) was used to perform simulations in a tri-
axial box. One advantage of the tri-axial box is the possibility of realizing different deformation modes with a 
single test experiment (element test) with a direct control of stress and strain (Luding and Perdahcioglu 
2011, Tykhoniuk et al 2007). In addition, laboratory experiments with the triaxial box are also feasible in 
addition to many other (shear) testers (Roeck et al 2008, Tykhoniuk et al 2007). For initial simplicity, the 
contact model used in this work is the linear visco-elastic normal force  

 

                                                                                       �� = �� + ��	                                                                                 (1)    
  

where k is the spring stiffness, � the contact viscosity parameter, � the overlap between particle contacts and 

�	 is the relative velocity in the normal direction. Eq. (1) above determines the particle contact forces in the 
normal direction. In order to reduce dynamical effects and shorten relaxation times, an artificial viscous 
background dissipation force �
 = −�
�� proportional to the moving particle i with velocity ��  is added, 
resembling the damping due to a background medium.  
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3.1 Simulation parameters 

Simulation parameters are: system size � = 4913 particles, density � = 2000 [kg/m
3
], elastic stiffness kn = 

10
5
 [kg/s

2
], particle damping coefficient γ = 1 [kg/s], background dissipation γb = 0.1 [kg/s]. The work of 

Luding et al (2008) provides a description of these artificial units and how they can be rescaled to fit values 
obtained from experiments due to the simplicity of the contact model used. It should also be noted that the 
system has average particles radius <r> = 1 [mm], with polydispersity quantified by the width � =
���� ����⁄ = 3 of a uniform distribution defined in Göncü et al (2011) where  r��� and r� ! are the radius of 
the biggest and smallest particles respectively.  

3.2 Initial configuration 

 (a) Uniaxial 

The initial configuration is such that particles were randomly generated in a 3D box and isotropically 
compressed to a target volume fraction of �"= 0.673 above the jamming volume fraction. The isotropic 
compression stage is taken as the conditioning or preparation stage before the initiation of the test. Uniaxial 
compression is subsequently initiated at this point after allowing sufficient relaxation of the isotropic system. 
The volume fraction increases with time during compression to a maximum of ���� =0.82 and back to the 
original �" (Fig. 2a).  
 
Above the jamming volume fraction, contacts between the particles are deformed more and more with 
ongoing compression. The potential energy is an indicator of the overlap between particles hence its values 
are considerably larger than the kinetic energy (above jamming, see Fig. 2(b)). The ratio of the kinetic energy 
values to the potential energy values gives a rough indication that the system is above the jamming regime 
in the quasi-static state. Lower energy ratios can be obtained by performing slower rate simulations as seen 
in Fig. 2(b). 

(b) Deviatoric  

The initial configuration for the deviatoric deformations is such that particle configurations are taken from the 
isotropic un-loading branch below the maximum volume fraction. The deviatoric deformation mode is 
described by a three-dimensional strain matrix that has non-zero elements on the diagonal, #

$%&(−#
$, −#

$, 1). 

One wall moves twice as much inwards as the other two walls move outwards such that volume is conserved 
during deformation and relaxation. 
  

 
 

Fig. 2(a): Evolution of volume fraction as a function of time (t) for isotropic compression. Fig. 2(b): Comparison of ratio of 
kinetic energy to the potential energy in scaled time (ts=t/T) for two uniaxial compression simulations where T is the period of 
one compression-decompression cycle (()/(+ < 0.1 percent). The simulation represented by the green curve is 10 times 

slower than the red. 

3.3 Evolution of Coordination Number  

Jamming occurs at the isostatic point (Göncü et al (2011), O’Hern et al (2002, 2003), Silbert, et al (2002)). 
The definition of an isostatic packing excludes all particles that do not contribute to the force network, i.e. 
particles with exactly zero contacts are excluded. In addition to the particles with zero contacts, there may be 
particles with some finite number of contacts, for some short time, which also do not contribute to the 
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mechanical stability of the packing. The contacts of these dynamic rattlers are transient because the 
repulsive contact forces will push them away from the mechanically stable backbone (Göncü et al (2011)).  
We define frictionless particles with less than 4 contacts as rattlers since they do not contribute to the force 
chain network and are not mechanically stable. In this work, rattlers have been identified by counting the 
number of contacts each particle makes with its neighbours. This leads to the following abbreviations and 
definitions: 
  

�   : Total Number of particles 
�- ≔NC≥4  : Number of particles with at least 4 contacts 
/   : Total Number of Contacts 
/- ≔ /C≥4  : Number of contacts of particles with at least 4 contacts 

01 ≔ 2
3  : Coordination number (classical definition) 

0 = 0� ≔ 24
3  : Coordination number (modified definition) 

0∗ ≔ 24
34

  : Corrected Coordination number 

 
The values of contact number originating from particles with 0=1, 2 or 3 is so small as compared to those 
with 0=0 that it is not astonishing that 01and 0� are very similar. For our uniaxial simulations, the number 
fractions of the rattlers grow from about 2 percent at the beginning of the compression to a maximum of 
about 10 percent at the end of the compression cycle. For the deviatoric simulations, the number fraction of 
rattlers remains fairly constant since volume is conserved anyway. As expected, the ratio of M4 and N4 (the 
corrected coordination number) is slightly larger.  
 

 
Fig. 3(a): Evolution of differently defined coordination numbers (C* (red), C

r
  (green) and C

m
 (blue)) plotted against volume 

fraction for isotropic compression. Fig. 3(b): Comparison of (C*) with the numerical data (red) and the proposed fit (green) Eq. 
(2). The blue dots represent the asymptotic values of coordination numbers for various different volume fractions after 
deviatoric deformation modes. 

 
The plots of variation of 0∗, 01  678 0� can be seen in Fig. 3(a). We have observed that C∗ follows a power 
law with volume fraction 

                                                                                 C∗(�) ≔ C" +  C: ; �
�<

− 1=α                                                                    (2) 

where 0" ≈ 3.921, C: ≈ 9.658 and α ≈ 0.446 are the fitted parameters to 0∗  vs � plot (Fig. 3(b)) 
above the jamming volume fraction �<  ≈ 0.665. From this fit one can get the critical jamming volume fraction 
estimate too. One interesting thing to observe is that the data for the deviatoric deformation shown in Fig. 
3(b)  which is taken at the end of deviatoric simulations with different initial volume fractsions (since volume 
is conserved under pure shear deformation) also collapse on the curves representing the isotropic and 
uniaxial deformation. This suggests that for our simulations, the coordination number evolution equation 
proposed by (Göncü et al (2011)) in Eq. (2) above is independent of the deformation mode, when the 
particles are frictionless. For frictional systems, this observation might not hold.  

3.4 Evolution of pressure under isotropic deformation 

In this section, the relation between pressure and volume fraction is studied. The non-dimensional pressure  
(Göncü et al (2011)) is defined as: 
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                                                                                            E = 2F�G
3��

H�(I)                                                                                            (3) 

 

 where H�(I) is the trace of the averaged stress tensor. The normalized average overlap F∆GJ = �J/F�G 
is related to the volumetric strain under the simplifying assumption of uniform deformation in the packing as: 
 

                                                                                         8F∆GJ = KLM                                                                                                    (4) 
 
 where  LM = L�� is the trace of the infinitesimal strain tensor and D is a proportionality constant that 
depends on the size distribution.  The integral of LM, denoted by %M is the true logarithmic volume change of 
the system relative to the reference volume N", with corresponding reference volume fraction, �" which is 
chosen without loss of generality to be equal to the critical, jamming volume fraction �" = �J, so that the 
average normalized overlap:    
 

                                                                              F∆GJ = K O LM
P

PQ
= K%M = Kln �J

�                                                                           (5) 

 
The non-dimensional pressure – strain (isotropic) relation is (Göncü et al (2011)):  
 

                                                                             E = E"
�0
�J

(−%M)T1 − �U(−%M)V                                                                             (6) 

 

and the scaled pressure is given as:  
 

                                                                         E∗ = E�J
�0 = E"(−%M)T1 − �U(−%M)V                                                                          (7) 

 

 
Fig. 4(a). Total non-dimensional pressure as a function of the volume fraction for the UNIaxial, ISOtropic and DEViatoric 
deformation Fig. 4(b). The scaled pressure as a function of the (negative) volumetric strain for the unloading cycle for an 

isotropic test (Göncü et al 2011) and the same data in (a).  

 
Fig. 4(a) shows the total pressure (non-dimensional) as a function of the volume fraction for the Uniaxial, 
Isotropic and Deviatoric deformation. As stated earlier, volume is conserved in the Deviatoric deformation 
mode so that the data points (blue) shown in Fig 4(a) are taken from the end of simulation with different initial 
volume fractions. They also almost collapse on the plots for the two other deformation modes with slight 
deviations from of the deviatoric case possibly due to dilatancy or small dynamic effects as will be discussed 
further in Imole et al (2011). The isotropic data sets have been reported in  Göncü et al (2011). Fig 4(b) 
shows the scaled pressure as a function of the (negative) volumetric strain with �J=0.665 for a comparable 
isotropic compression data set and the uniaxial compression set being studied. Astonishingly, analytical 
prediction of the scaled pressure as a function of volumetric strain for an isotropic system compares well with 
our uniaxial simulation where the particles are frictionless. Other deformation rates studied collapse with the 
same curve for small deformations. The scaled pressure is also well represented by the linear relation  
E∗ ≈ −E"%M in Eq. (6) for small deformations. For all cases (isotropic, uniaxial and deviatoric), the coefficients 
E" ≈ 0.039, �X ≈0.011 and �J ≈ 0.665 fit our data well with errors of less than one percent for all densities. 

The deviatoric mode pressure data are off by 1-2% only. 
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3.5 Deviatoric stress 

The average isotropic stress (pressure) is defined as: 
 

                                                                                  E = I�� + IYY + IZZ
3 = 1

3 H�(I)                                                                        (8) 

The deviatoric stress and strain between the moving boundary (wall with normal in z-direction) and the two 
other periodic boundary walls (x and y) is defined by: 
 

                                                         I&[P: = IZZ − I�� + IYY  
2 ;   %&[P: = ]%ZZ for UNI

%& for DEVf                                                             (9) 

 

Also, we define the second deviatoric stress, I&[Pg and deviatoric strain %&[Pg between the periodic boundary 
directions x and y in the system as:   
 

                                                                      I&[Pg = I�� − IYY
2 ;  %&[Pg =  0 for UNI and DEV                                    (10)   

 

The first deviatoric stress (I&[P:) quantifies the (stress) anisotropy between the compression/de-compression 
direction and the non-deformed direction, while the second deviatoric stress (I&[Pg) quantifies the anisotropy 
between the two equivalent non-deformed directions-which should be small for symmetry reasons. Fig. 5 
shows the evolution of the deviatoric stress during loading and unloading. In order to compare the magnitude 
of I&[P:  and I&[Pg we normalize them with the isotropic pressure E and plot them as a function of the 
compression strain %ZZ in Fig. 5(a). 

 

Fig. 5(a). Evolution of the deviatoric stress as a function of total strain for UNIaxial deformation. Fig. 4(b). Evolution of the 
deviatoric stress as a function of total strain for DEViatoric deformation for five different volume fractions. 

  
The second deviatoric stress variation between the fixed periodic walls in the x and y plane lies close to zero 
during the loading and unloading cycles reflecting the symmetry in x-y-directions. In contrast, I&[P: shows 
some interesting profile. The stress increases up to ≈ 0.12 (12 ± 2 percent) from the commencement of the 
loading cycle and thereafter remains fairly constant till the end of the loading cycle. During unloading, it 

decreases almost linearly until it gets to the isotropic state (  klmn
U = 0 ) and goes to ≈ −0.2 (−20 ± 2 percent) 

relative to the start-up point. Interestingly, the initial zero deviatoric stress at strain %ZZ ≈ 0.066 is not 
recovered when the initial value of volume fraction is reached. This means the system stays anisotropic after 
the complete cyclic path, visible as a hysteretic loop, indicating history (memory) effects.   
The loading response for our deviatoric simulations is shown in Fig 5(b) and is similar to the UNI loading 
branch, but here we have five different normalized shear stresses for different initial volume fractions. For 
each volume fraction, stresses evolve linearly until an asymptote is reached, where the values stays almost 
constant. Systems with higher volume fractions have smaller normalized stress values.  

  

4. CONCLUSION 
 

We have presented simulation results from the strain controlled uniaxial compression and deviatoric 
deformation of frictionless polydisperse spheres as far as coordination number and pressure are concerned. 
An important result in this study is the agreement obtained for the analytical predictions of the scaled pressure 
as function of volumetric strain for a purely isotropic system and our simulations with different deformation 
modes. It is also interesting that the asymptotic values (after large deviatoric strain applied) of the pressure for 
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different volume fractions all collapse on the uniaxial and purely isotropic data set.  This tells us that the 
deformation mode is not significant during the deformation of frictionless polydisperse spheres. This suggests 
an advantage of the ‘cheaper’ uniaxial and deviatoric deformation experimental setup over isotropic 
deformation. Three walls have to be moved simultaneously in the isotropic case while less movement is 
required in the other modes. The second observation is the confirmation of symmetry in the two non-mobile 
directions, and the observation of particular stress anisotropy evolution for the uniaxial case, as similar to the 
deviatoric case 

For further work, more realistic contact models to incorporate friction and cohesion need to be implemented 
and physical experiments on cohesive powders with the bi-axial box needs to be performed and compared. 
The theory for different deformation modes (Luding et al 2011) also need to be fine-tuned. 
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