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Surface roughness and/or surface imperfections are well known to significantly affect the performance of con- 
centrated contacts. Helped by improvements in computer hardware and software, related research in the field of 
Elasto Hydrodynamic Lubrication (EHL) with non-smooth surfaces is increasing. In general the configuration to 
he considered is a two dimensional transient one, since the (rough) surfaces move with respect to the contact. This 
t m e  dependent point contact problem has been studied experimentally by Kaneta and numerically by, amongst 
others, the authors. For a single feature a good correlation between experiments was observed, both quantitatively 
and qualitatively [31]. 

In the present paper the influence (transient and steady state) of a global surface feature, i.e. waviness, on 
pressure and film thickness for such a two dimensional contact is investigated for operating conditions identical 
t o  those used previously in experimental research. The transient results apply to transverse waviness which is 
c onfined to one surface. Film thickness and pressure distributions have been calculated as a function of time for 
different slide to roll ratios. As was previously observed for the infinitely wide line contact, it is shown that film 
1 hickness modulations tend to be propagated through high viscosity regions a t  the average surface speed. For the 
case of waviness this implies that the film profile in such a region will be a combination of two oscillations, i.e. one 
tomponent with the wavelength of the undeformed waviness and the second with a wavelength that is larger or 
smaller. With increasing load the latter oscillation will tend to dominate the film thickness. 

1. INTRODUCTION 

Many years after the tribological society was 
asked the question whether or not engineering 
surfaces in concentrated contacts could be suc- 
cessfully lubricated, ensuring an  “unlimited” life, 
the question has reappeared. To understand 
this renewed interest, it is necessary to recon- 
sider the original answer. Successful lubrica- 
I ion was predicted whenever the calculated lu- 
bricant film thickness exceeded three times the 
combined roughness of the two “contacting” sur- 
faces. Whatever happened with (much) thinner 
films was not specified! 

Both technological and economical pressures 
now urge the tribological community to study 
what happens under such thin film conditions. 
These factors include, higher loads, higher op- 
erating temperatures, severely starved contacts 

(grease lubrication), and the high costs of large 
safety margins concerning size (weight), power 
consumption (viscosity) and surface roughness. 

As a result, the current question is to predict 
the minimum film thickness required to  obtain a 
certain operating life, under given operating con- 
ditions and with a given surface texture. 

To answer this question much more (precise) 
information is required, not only with respect to 
the exact operating conditions and material prop- 
erties, of both bulk and surface properties of the 
lubricant and the solids, but also a precise knowl- 
edge of the roughness topography. 

It is not certain whether this problem, posed 
in its most general form, can be answered a t  all. 
Neither is it clear which approach will be the most 
fruitful in providing a (partial) answer. A possi- 
ble approach is a straightforward extension of the 
existing models of Elasto Hydrodynamic Lubri- 
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cation to include the kinematics and geometry of 
the problem of interest. This approach requires 
the solution of a number of subproblems: 
0 An efficient, (fast) and stable numerical method 
to solve the transient equations with sufficient de- 
h i l .  
0 A thorough understanding of the lubricated 
contact, behaviour under realistically starved con- 
di tions. 
0 A n  extension of the model to incorporate local 
rheological and thermal behaviour. 
0 A response to whether or not such a model 
can nse the Reynolds equation with its integra- 
tion over the height of the film. 
0 And finally, the model needs to include surface 
or interfacial behaviour, where it is different from 
the bulk behaviour. 

With the advances in numerical solution tech- 
niques and the general availability of powerful 
computers, the first step towards a more com- 
plete answer of this problem seems feasible: the 
transient EHL point contact with moving wavy 
surfaces can now be studied. Such an investi- 
gation is of interest as a prelude to the study 
of Elasto Hydrodynamic Lubrication of general 
non-smooth surfaces. Even in its own right the 
transient problem of EHL with wavy surfaces is 
of importance, because experiments using opti- 
cal interferometry, can provide detailed informa- 
tion concerning the film thickness as a function 
of space and time. As such, this problem is very 
suitcd to c-ompare film thickness calculations to 
film t.liickness measurements, and l o  investigate 
the validity of tlhe utilized viscosity pressure re- 
latioils and ultimately of the Reynolds equation 
it,sclf. 

A coinbination of several factors makes that 
this problem remains difficult to solve numeri- 
cally. First of all, a spatial resolution is required 
which surpasses the one needed for the equiva- 
lent smooth contact case. Secondly, the two di- 
mensional character requires the use of (many) 
discrete points in two dimensions. Thirdly, the 
waviness requires a solution method with a sta- 
bility well beyond the one necessary to solve the 
stationary smooth problem. And finally, a time 
increment which should be comparable to the 

spatial resolution adds a third dimension to t,he 
problem, multiplies the solution time and requires 
even stricter supervision of the (propagation of) 
numerical errors. 

The combination of these difficulties has in- 
spired a number of investigators to study a sim- 
pler problem first such as the stationary one- 
or two dimensional problem: [11,12,17-21,27,29]. 
The transient one dimensiona.1 case was  studied 
in: [6-9,13,22-25,28,30], and the t,ransient two 
dimensional problem was addressed in [ 1-3,3 I]. 
Experimental results are reported in [14-16,321. 

As was shown in the theoretical paper [30] the 
solution of the general non-smooth surface con- 
tact problem requires a transient solution of the 
EHL equations. In that paper as well as in the 
present one the authors have selected Multigrid 
solvers, since they meet the two requirements nec- 
essary to tackle this particular problem; they are 
fast and robust. 

1.1. Notation 

A 
d 
b 

E 
El 

G 

h 
hmin 
H 
Hmin 

Ho 
z 
L 

M 

amplitude 
dimensionless amplitude, d = AR,/b2 
radius of Hertzian contact, 
b = ~ ( 3 w R , ) / ( 2 E 1 )  
modulus of elasticity 
reduced modulus of elasticity, 
2/E’ = (1 - vf) /EI  + (1 - v ; ) / E ~  
dimensionless materials parameter, 
G=CYEl 
film thickness 
minimum film thickness 
dimensionless film thickness, H = hR,/b2 
dimensionless minimum film thickness, 

integration constant 
intensity in pseudo interference graph 
dimensionless material parameter (Moes) , 

dimensionless load parameter (Moes), 

Hmin = hmin  &/b2 

L = ~ ( 2 ~ 9 0 . 2 5  

M = w ( 2 ~ ) - 0 . 7 5  

n,, ny number of points in 2 and y 
P pressure 
ph maximum Hertzian pressure, 

P 
P h  = (3w)/(2b2) 
dimensionless pressure, P = p / p , ,  
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reduced radius of curvature in E direction, 

reduced radius of curvature in y direction, 

dimensionless deviations from the smooth 
profile 
time 
dimensionless time, T = ( t u s ) / ( 2 6 )  
velocity of lower surface (smooth) 
velocity of upper surface (wavy) 
sum velocity, us = u1 + u2 

dimensionless speed parameter, 

velocity ratio, ur = u 2 / u S  
external load per unit width 
dimensionless load parameter, 
W = w/(E'R:)  
wavelength of surface feature 
dimensionless wavelength, W = w / b  
coordinates 
location of surface feature 
location of surface feature at  t = 0 
dimensionless coordinates, 

dimensionless location of surface feature, 

dimensionless location of surface feature 
a t  T = 0, X, = x,/b 

= l / R z i  + 1/Rx2 

1/Ry = 1/Ry1+ 1 / R y ~  

f!J = qo.S/(2E'Rx) 

X = x /b ,  J." = y / b  

'yd = X d / b  

,\ ?ibdimensionless boundaries of the domain 

I , 1 ,  }'b dimensionless boundaries of the domain 
x, = xa/b,Xb = X b / b  

y a  = y a / b ,  yb = yb/b 
viscosity index (Roelands equation) 
pressure viscosity index 
dimensionless parameter, 6 = f f p h  

dimensionless time increment 
dimensionless space increment 
coefficient in Reynolds equation, 

dimensionless speed parameter, 

viscosity 
viscosity at  ambient pressure 
dimensionless viscosity, 77 = q/qo 
density 
density a t  ambient pressure 
dimensionless density, p = p/po  
slide to roll ratio, C = 2(ul - u 2 ) / ( u 1  + u 2 )  

c = (PH3) / (17X)  

= (6qouSR2)/(b3ph) 

2. THEORY 

For completeness this section first presents the 
equations to be solved. Subsequently, the physi- 
cal parameters describing the contact, conditions 
are given. 

2.1. Equations 

tion is written in a dimensionless form: 
The two dimensional transient. Reynolds equa- 

The S-coordinate is chosen t,o coincide wih the 
rolling direction. The boundary conditions are 

P ( X , Y b , T )  = 0,  V1Y,1',T where *FwU, lyb, 1; arid 
Yb denote the boundaries of the domain. Furthrr- 
more, the cavitation condition P ( S ,  Y, T )  2 0, 
V S ,  Y, T must, be satisfied throughout the do- 
main. E is defined according to: 

P ( S , , Y , T )  = P ( s b , Y , T )  = P(X , I . , ,T )  = 

The density p is assumed to depend on the pres- 
sure according to the Dowson and Higginson rela- 
tion [lo] and the Roelands viscosity pressure re- 
lation [26] is used. The film thickness equation 
is made dimensionless using tlie same param('- 
ters and accounting for a moving surface feature 
reads: 

(2)  
P ( X ' ,  Y ' ,  T )  d X ' d Y '  

where H o ( T )  is an integration constant, and 
R(X, Y, T )  denotes the undeformed geometry of  
the upper body at, dimensionless time T .  R, 
stands for a transverse waviness and Ri denotes 
longitudinal waviness. Note tjhat R d ( X ,  Er, T )  
does not vary with X nor with T 
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Parameter 
Xa 
Xb 
Ya 
yb 
AT 
AX 
n, * ny 

(4) 
Value 
-2.5 
1.5 
-2.0 
2.0 
0.0156251- 
1.5625 x 10-2/7.8125 x 
257 * 2571513 * 513 

X d  = X, + 2 ~ 2 / ~ ,  T (5) 

In this paper W = 0.32 and d = 0.045 will be 
used. 
At all times the force balance condition is im- 
posed, i.e. the integral over the pressure must 
balance llie externally applied contact load. This 
condition det<erniines the value of the integration 
constant H o ( T )  in equation (2) .  Expressed in the 
dimensionless variables the force balance equation 
reads: 

(6) 
2T 

3 
P ( S , Y , T )  dXdY - - = 0 VT 

a 
x 
w 

Paramet,er I Value I Dimension 
El I 1.17 x 10'l I fFal 

12.1 
3.4 x 10-2 
2.0 x 

A4 I 77 
L I 7.9 

I/ 
G 

3.9 x lo-" 
2.63 x 103 

Table 1 Different parameters arid their values for 
the presented loading condition. 

2.2. Conditions 
The parameters used to describe the contact 

condit,ions in the calculations arc given in Ta- 
I+ 1, t,ogether with some dimensionless param- 
et,ers T h e  numerical parameters used in the cal- 
culation are given in Table 2.  When compared to 

Table 2 Different parameters in the numerical 
simulation (transient/stationar.y). 

t,he contact conditions considered before, i.e. in  
[31] the maximum Hertzian pressure is t,he same 
but the sum velocity is about 4 times larger. 

3. NUMERICAL SIMULATION 

Second order discretisation of t,he equations 
with respect to  time was conihiiied with double 
discretisation to  obtain second order accuracy in 
the spatial variables X, 1'. Multilevel F'AS was 
used to obtain fast convergencc of the solution 
(at each time step) to a numerical error below 
the (incremental) discretisation error, while M ul- 
tilevel integration for the fast calculation of tlie 
elastic deformation integrals was employed. 

The general theory of Multigrid solvers is found 
in for instance [4,5], applications to EHL are de- 
scribed in [20,29], and in the references of t,hese 
works. Details of the numerical solution of the 
transient problem can be found i n  [30,31]. 

For the t.ransient, solutions the calculational do- 
main was -2.5 < S < 1.5, -2.0 < E' < 2.0 and 
the finest grid in the multilevel cycle (level 8) 
consisted of 257 * 257 points. This corresponds 
to a mesh size AX = AY = 0.015625, the time 
increment was A T  = 0.015625. The simulation 
was started with the location of the waviness at  
,Y, = ,Yd(T = 0) = -2.0, in order t,o start the 
computation with an undisturbed (sinooth sur- 
face) solution. It is important, t,o choose t,his lo- 
cation srifficiently far in the inlet to ensure that 
possible tiunierical start-up effects have died out, 

by tlie time the waviness really sbarts t,o affect 
the solution of pressure and f i l i i i  thickness. The 
st,ationary problem was solved using the same do- 
maiii but the calculations were executed employ- 
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ing a finest grid with AX = AY = 0.0078125, 
and 513 * 513 points (level 9). 

Table 2 lists the numerical parameters used in 
the calculations. 

To facilitate the comparison with the interfer- 
ometry measurements, the film thickness results 
are presented using pseudo interference graphs. 
These pseudo interference graphs were plotted 
using the intensity Z (defined by equation (7)) 
where Z = 1 produces a white square of AX * Ay , 
Z = 0 a black square, and grey squares for 
0 < Z < 1. The area plotted extends from 
-1.5 < X < 1.5 and -1.5 < Y < 1.5. 

1 (7) 
2nH(X,Y,T) 

A 
Z(X, Y, T )  = 0.5 + 0.5 COS( 

where: A = dimensionless wavelength, A = 0.05. 

In Figure 1 the smooth surface case is depicted: 
the pseudo interference plot of the film thick- 
ness, and pressure and film thickness profiles for 
Y = 0 and X = 0 respectively. This figure dis- 
plays all classical features of a medium load EHL 
contact: constant film thickness in the central 
(high pressure) region, horse shoe shaped restric- 
tion with a minimum film thickness occuring near 
x = 0, JYI = 1. 

4. STATIONARY RESULTS 

Figure 2 displays the stationary transverse wavi- 
ness results. As has been shown before, the 
waviness is almost completely deformed in the 
high-pressure region, because of the near absence 
of pressure induced (Poiseuille) flow; the flow is 
(:ouette dominated. This flattening of the wavi- 
ricss requires large pressure ripples. The global 
film thickness depends on whether the waviness 
causes an increased flow in the inlet, or whether 
it, decreases the lubricant flow into the contact. 
I n  the side lobe region, where the pressures are 
lower, the original waviness shape is superim- 
posed upon the horse-shoe shape. 

1 

F 

I .5 

I 

0.5 

0 

2 

h luml 

1.5 

I 

0.5 

0 
-0.4 -0.2 0 0.2 0.4 

x Imml 

-0.4 -0.2 0 0.2 0.4 
Y Imml 

Figure 1. Pseudo interference plot H (top) and 
pressure and film thickness for Y = 0 (middle) 
and for X = 0 (bottom), smooth surface. 
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2 2 2 2 

P h Iuml P h luml 

I .5 1.5 1.5 1.5 

1 1 1 1 

0.5 0.5 0.5 0.5 

0 0 0 0 
-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 

x lmml Y ImI 

Figure 2. Pseudo interference plot H (top) and 
pressure and film thickness for Y = 0 (bottom), 
transverse waviness. longitudinal waviness. 

Figure 3. Pseudo interference plot H (top) and 
pressure and film thickness for X = 0 (bottom), 
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Figure 4: ur = 0.25: pseudo interference plot H (left) and pressure and film thickness on line Y = 0 
(right), for different positions Xd 
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Figure 5 :  ur = 0.50: pseudo interference plot H (left) and pressure and film thickness on line Y = 0 
(right), for different positions Xd 
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ligure 6: pseudo interference plot H (left) and pressure and film thickness on line 1’ = 0 (right), for 
different positions Xd. 
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Figure 3 displays the longitudinal waviness re- 
sults. For this particular orientfation the wavi- 
IICSS tlcfornis very little, antl Idhe pressure undula- 
[,ions a.re relatively small. The drformation is that, 
sniall beciiuse the lubricant flux into the contact 
is idrcady (corrrctly) modulated by t8he waviness 
i r r  1,Iie inlet, region. ‘l’his contrary to the case in  
which the waviness is at  iz certain angle with re- 
spect t40 the surface velocity, see [n]. 

5. TRANSIENT RESULTS 

Obviously tlie case of longituclinal roughness 
reniains a. steady state problem, even if the rough 
surface iiioves. However, in  the case of transverse 
wiiviness t,he result,s will depend on the velocity of 
t . l i c  rough surfacr compared to the average veloc- 
ity. I I I  this sect.ioii transient result,s of the trans- 
v(’rs(’ waviness moving through t,he contact are 
presr,iit.ed. The waviness i s  locakd on the upper 
surfaw iInd consequently moves with the velocity 
I / ? .  

5.1. ur=0.25, E = 1 
Figure 4 displays t,he waviness results for a sur- 

f a w  spwd ratio iir = u 2 / i i 8  = 0.25. These 10 
figures show through pseudo interference graphs 
it.tld cwit8ral l i t w  pressure and film thickness pro- 
files, ltie progression of the waviness t,hrough the 
ront,:ict, at, locations X,f = -1.0 to 1.5. As the 
wavy surface has a velocity lower Iliati the avera.ge 
surface speed (= lubricant, propagation speed) the 
waviness influence progresses in  front, of the wavi- 
ness itself. ‘This ca.uses an importlatit, film thick- 
iicss cl is t,ur bancc and a small pressu rc disturbance 
to a.tlvancc ahead of tlie waviness position. Pres- 
sure and film thickness disturbancrs are thus out 
of phase. Prom X d  = 1 .O onwards the fluctuations 
Iic:cortie periodic, with a period of approximately 
5/8, see Figure 7. ‘rhis figure displays Ihe rnini- 
niiirri antl central ( X  = Y = 0) film thickness as 
a function of time. ‘rhe central film t>hickness os- 
cilIa.t,es around its smooth surface value, whereas 
t , h r  minimum film t,hickness decreases by 20% and 
tins a relatively constant, value. Not,e bhe delay be- 
t,wecm the, t,ime when II,,,, and Hrnin are affected 
tiy t.Iw waviness. f l , n , i r L  occurs in the low pressure 
regioii, 1icm.e the wiivf’ propagation speed is given 

by up = tis/4, whereas H,,, is locat>ed in the high 
pressure region where up = u.,/2. 

0.6 7 1  

0.1 1 
0 ‘  I 

0 2 4 6 8 1 0  
T 

Figure 7. Central and nlinimum film thickness as 
a function of time, for ur = 0.25. 

5.2. ur=0.50, C = 0 
Figure 5 displays the waviness results for a sur- 

face speed ratio ur = u2/us = 0.50. These 10 fig- 
ures show the progression of the waviness through 
the contact, at, locations X d  = -1.0 to 2.0. As 
both surfaces have identical velocities (equal to 
the lubricant velocity) pressure and film thick- 
ness disturbances move at the same speed, and 
remain in phase. From Xd = 1.0 onwards the 
fluctuations become periodic, see Figure 8. The 
central film thickness oscillates around an average 
value which is almost 10%) larger than its smooth 
surface value, whereas the minimum film thick- 
ness decreases by 30% and varies slightly. The 
fluctuations in H,,lin and H,,,, start, simultane- 
ously and both have a period of approximately 
5/16. 

5.3. ur=0.75, C = -1 
Figure 6 displays t,tie waviness results for a sur- 

face speed ratio ur = ,u2/,uS = 0.75. These 8 fig- 
ures show the progression of the waviness through 
the contact, at, locations X d  = -1.25 to 4.0. As 
the wavy surface has a velocity larger than the av- 
erage surfaces speed, film thickness disturbances 
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6. NUMERICAL ACCURACY 

The stationary cases were calculated on a grid 
of 513 * 513 points, A x  = 0.0078125. The tran- 
sient calculations were performed on a grid of 
257*257points, AX = 0.015625, with a timestep 
AT = 0.015625. The initial position of the start 
of the waviness was X, = X d ( T  = 0)  = -2.0. 

0 L 
0 2 4 6 8 1 0  

T 

k'igure 8. Central and minimum film thickness as 
a function of time, for ur = 0.50. - 

1 0.3 
u 

trail behind the location of t,he roughness, and the 
pressure fluctuations. Pressure and film thickness 
fluctuation are thus out of phase. From Xd = 1.0 
oilwards they become periodic, with a period of 
approximately 5/24, see Figure 9. The central 
film thickness oscillates around an average value 
which is 30% larger than the smooth film value, 
tlre minimum film thickness oscillates around a 
value almost 20% smaller than the smooth film 
\ '  A I lie. 

0.6 I I 

0.1 1 
0 '  

0 2 4 6 8 1 0  
T 

Figure 9. Central and minimurn film thickness as 
ii function of time, for ur = 0.75. 

0 '  " " " ' 

0 1 2 3 4 5 6 7 8  
T 

Figure 10. Minimum film thickness for UT = 0.5 
as a function of time, second order discretisation 
on levels 7 and 8, first order discretisation on 
level 8. 

The stationary results have a film thickness er- 
ror well below 1%, see [31]. The transient results 
are less accurate, for two reasons. First of all they 
have a mesh size twice as large, secondly because 
the total error accumulates over time. Figures 10 
and 11 show the difference in minimum and cen- 
tral film thickness as a function of time, for second 
order discretisation on level 7 and 8 and first order 
on level 8. From these figures it can be concluded 
that the second order error on level 8, in the min- 
imum film thickness is of the order of 5%, the 
error in the central film thickness is much larger. 
The error in the first order scheme on level 8 is, 
somewhat surprisingly, smaller than the second 
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0.1 o.2 t 
0 u 

0 1 2 3 4 5 6 7 8  
T 

Figure 1 1 .  Central film thickness for ur = 0.5 as 
a function of time, second order discretisation on 
levels 7 and 8, first order discretisation on level 8. 

order level 7 error. The reduction in the wavi- 
ness amplitude in Figure 5 is another expression 
of this discretisation error (artificial damping). 

7. DISCUSSION 

Whereas the agreement between the experi- 
mentally obtained film thickness profiles [15] and 
the numerical ones [30] was both qualitatively 
and quantitatively very good, for a single feature, 
t,he continuous waviness has not shown a similar 
agreement. First of all it was not possible to nu- 
merically reproduce Kaneta’s low speed experi- 
mental conditions [l6], U = 9 x because 
negative film thicknesses were obtained. Sec- 
ondly, the waviness amplitude in the calculations 
was only half the value used in [16]. From Figure 
4 and 6 it can be observed that the pressure vari- 
ations have an amplitude of roughly ph/2, hence 
doubling the waviness would result in local cavi- 
tation, which the current algorithm cannot cope 
with. Hence, the authors think that in the ex- 
periment,s the flow is “reset” between the wavi- 
ness crests, because the low pressure allows the 
Poiseuille component to compete with the Cou- 

ette flow, locally inside the contact. As a result 
the experimental pressure and film thickness can- 
not develop independently, and thus cannot show 
the phase difference calculated numerically. 

8. CONCLUSION 

This paper has studied in detail the pressure 
and film thickness variations in a transient two di- 
mensional circular contact with longitudinal and 
transverse waviness. 

For the transient waviness results, the case of 
pure rolling ur = 0.5 gives the smallest mini- 
mum film thickness, and by far the largest cen- 
tral film thickness variations. Because sliding is 
completely absent, no additional lubricant moves 
over, and flattens (averages) the waviness. This 
does not imply that the pure rolling condition 
is therefore the most dangerous with respect to 
failure. The energy dissipation in any contact de- 
pends strongly on the surface speed difference, 
which is zero in the case of pure rolling, and the 
maximum pressure is also the smallest. 

A comparison of Figures 7 and 9 shows an in- 
teresting phenomenon. The periodic variations 
of H,,, for ur = 0.75 as a function of T are the 
inverse of the ones for ur = 0.25 albeit a t  a differ- 
ent time scale. A comparison of Figures 4 and 6 
shows that the film thickness profiles as a function 
of X are completely different. This indicates that 
this film thickness is caused by a combination of 
several waves propagating through the contact a t  
different speeds, as explained by Greenwood and 
Morales Espejel [13,24]. 

More precise information about these two 
waves comes from a closer examination of Fig- 
ure 7. It shows the start of a harmonic variation 
in H,,, around T = 2.5. This is the induced 
wave, that is propagating through the contact a t  
up = us/2.  A t  approximately ’I’ = 3.5 a second 
wave arrives at  X = 0 and interferes with the 
the variation in H,,,. This wave has a propaga- 
tion speed of up = u2 = us/4 and is caused by the 
waviness geometry itself. Contrary to the incuced 
wave, this wave also exists in the low pressure re- 
gion, as is indicated by the variations in tinlirl, 
which also start at  T = 3.5. 
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