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Abstract 

Servo control is usually done by means of model-based 
feedback controllers, which has two difficulties. Firstly, the 
design of a well performing feedback controller requires 
extensive and time consuming modelling of the process. 
Secondly, by applying feedback control a compromise has 
to be made between performance and robust stability. The 
learning feed forward controller (LFFC) may help to over- 
come these difficulties. The LFFC consists of a feedback 
and a feed forward controller. The feedback controller is 
designed such that robust stability is guaranteed, while the 
performance is obtained by the feed forward controller. 
The feed forward controller is a function approximator that 
is adapted on the basis of the feedback signal. The LFFC is 
applied to a flexible robot arm, which has complex 
dynamics and unknown properties, such as friction. A 
stability analysis of the (idealised) LFFC i s  presented. 
Simulation experiments (with a non-idealised LFFC) 
confirm the results of this analysis and show that without 
extensive modelling a good performance can be obtained. 
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1. Introduction 

The principle of feedback control is used often to improve 
the dynamic behaviour of physical systems. Feedback 
controllers are generally model based: they are designed on 
basis of a mathematical model of the system under control. 
Application of such controllers has two difficulties. 

Firstly, an accurate model of the physical system is needed 
in order to obtain a well-performing controller. This 
implies that quite some modelling and identification is 
needed. These processes are time consuming, complicated 
and sometimes even impossible, due to: 
- process uncertainties 
- varying process parameters. 
The second drawback is that a compromise has to be made 
between performance and robustness. A high performance 
feedback controller generally does not feature a robust 
stability andlor performance. Small variations in process 
conditions deteriorate the performance and may even 

destabilise the system. On the other hand, a feedback 
controller with a large robustness often has sub-optimal 
performance. 

These problems might be overcome by using a learning 
feed forward controller (LFFC), see figure 1.1 [4]. By 
adding a (learning) feed forward component to the 
feedback controller, an extra degree of freedom in the 
design of the controller is created. The feed forward part is 
intended to generate steering signals that make the output 

I 1 

Figure 1.1 Learning feed forward control 

Ideally, the output of the feed forward part, u g  (t), is 
equal to the control signal needed to let y(t)  match r(t). In 
this case the error signal, and therefore the feedback signal, 
will equal 0. If the feed forward steering is not perfect, an 
error in y will occur. The output of the feedback part, 
up [ t ) ,  will then try to reduce the error caused by the non 
ideal ufs (t). Thus U@ (t) can be interpreted as a measure 
for the error in u f f  (t) . This implies that if the feed forward 
part is adapted such that u@[t)+ufs (t) is applied in stead 
of U# (t) when the same reference path is tracked again, 
this would result in a smaller error in y(t). 

A feed forward controller that can be adapted in Ehis way 
can be implemented by a function approximator. The 
function approximator defines a mapping form the 
reference signal r(t) to the steering signal u4(t). During 
control, the mapping is adapted according to: 

In which n is an index denoting the number of times the 
path has been tracked and y is the learning rate, 0 < y I 1. 
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In case y = 1, the function approximator will perfectly fit 
the last presented example, but forgets previous presented 
examples. If y < 1 ,  the resulting mapping is some 
combination of all presented examples. Adaptation of the 
function approximator is continued until the error in y(t) 
equals 0. In this situation the process tracks the reference 
signal perfectly. 

Using a LFFC has two advantages. Firstly, separate means 
are created for obtaining good performance and robustness. 
In feedback control, both objectives have to be obtained by 
one controller. In the LFFC, the feedback controller 
guarantees the robustness, while the feed forward controller 
obtains a good performance of the control configuration. 
Secondly, the LFFC simplifies and shortens the design 
process. Since a good performance is obtained by the feed 
forward controller, the feedback controller merely has to be 
designed such that it has robust stability. 

In previous research, the LFFC has been used to control a 
mobile robot [4]. This application concerned a process that 
had relatively simple dynamics and unmodelled properties, 
e.g. friction. The LFFC learned to deal with the 
unmodelled properties and was able to accurately control 
the mobile robot. In the research described in this paper, 
the LFFC will be applied to a flexible beam. The dynamics 
and the unmodelled properties of this process are more 
complex than those of the mobile robot. To prove that by 
learning, a well performing controller with a robust stabil- 
ity is obtained, a stability analysis will be presented. This 
analysis gives us insight in the properties of the learning 
mechanism as well. In section 2, the dynamics of the 
flexible beam are described. The theoretical background of 
the LFFC is presented in section 3. The results of 
simulation experiments are given in section 4. 

2. Flexible beam 

In a large variety of fields, robots are used to manipulate 
objects. To obtain accurate object manipulation, rigid robot 
arms are used currently. However, rigid robot arms are 
heavy and therefore need powerful, energy consuming 
actuators. In some fields of application, like space aviation, 
light manipulators and actuators having a low energy 
consumption are wanted. When reducing its weight, the 
robot arm becomes flexible and can no longer be controlled 
accurately by conventional controllers [3]. One method to 
solve the problem of vibration phenomena is to improve 
the stiffness of the arm by changing its structure. This 
method has limited, and therefore not always satisfying, 
results. Another method, pursued in this paper, is to use 
advanced control strategies. For the research on the control 
of vibrations, an extremely flexible robot arm, an 
aluminium beam, is used (figure 2.1). 

Figure 2.1 Flexible beam 

The deflections that occur in a flexible beam can be 
modelled as the superposition of particular wave forms, the 
so called modes. Modes are identified by a mode number, 
where a higher mode number implies a shorter wave length. 
In figure 2.2 the first 3 modes of vibration are shown. 

mode  1 m o d e  2 m o d e  3 

Figure 2.2 First 3 modes offlexibility 

In previous work [2] a state-feedback controller has been 
used to control a flexible beam. To obtain a good perfor- 
mance a relatively accurate model of the process, consider- 
ing 3 modes of vibration, was needed. This required 
extensive, time consuming modelling of the process and 
identification of the process parameters. To measure the 
state of the process, strain gauches were placed on the 
beam. Using the output of the strain gauches and the 
process model, the state of the system could be estimated. 

Contrary to the state feedback controller, the feedback 
component used in the LFFC does not need an accurate 
process model. The model of the flexible beam that is used 
to design the feedback controller is a rigid, massless beam 
with a mass-spring combination at the tip (figure 2.3). 

w a l l  

Figure 2.3 SimpliJied model of the flexible beam 

3. LFFC 

Stability analysis 
For a stability analysis of the LFFC configuration (figure 
1.1 and equation (1.1)) , three assumptions are made: 

1. The process P is assumed to be linear. 
104 



2. The feed forward controller is an ideal function - FB( S) P( S) 
approximator: l y = l + y  (3.8) 

x c  a) it is able to reproduce any mapping without distortion 
b) the mapping can be adapted locally. That is, a 

particular input-output pair of the mapping can be 
adapted without influencing the remainder. 

3. The desired path, that is used as an input for the feed 
forward controller, is unique. This means that, 

Vt f t ' :  r ( t )  f r ( t ' )  (3.1) 

Using (3.7) U$ can be written as function of R and U$ : 

U;  =(w>"u; +Y(-)Z(VYR FB(s) n-l (3.9) 
XC i=o 

In which, 
The feed forward component is a mapping of the input r(t) 
to the output U ff (t). Because r(t) is unique, the output of 
the feed forward controller can be regarded as the result of 
a mapping from t to u f f ( t ) .  Hence, the feed forward 
steering can be Seen as an additional reference signal, that 
is adapted each time the path has been traversed. 

(3.10) up = o  

because in the first run the feed forward controller does not 
contain any information about the process control. 
Substituting (3.9) in (3.3) results in, 

ff 

y" = R (3.11) '=' 
x c 2  

Figure 3.1 Feed forward controller interpreted as an 
additional reference signal 

The condition for (3.11) to converge is, 

- FB( S) P( S) 
The LFFC is assumed to be stable if y(t)  is bounded, after 
presenting the any number of times: 

 ne N I3 E E R: y(t)  < E 1 

/IJ=ll+y xc 14 (3.12) 

(3.2) Therefore it is necessary that, 

Using superposition, Y and U @  can be written as: 
Jt (3.13) 
2 

and 

In which, 

x c  = l+FB(s)P(s) 

Neither (3.14) nor (3.13) can be satisfied for all s by 
choosing an appropriate learning rate y Stable control 
using LFFC therefore requires (3.13) and (3.14) to hold for 
the given process and feedback controller. (3.5) 

An interesting observation now is that (3.13) will typically 
be violated for high frequencies only. This gives rise to the 
hypothesis that if the feed forward controller is chosen to 
not be a perject function approximator, but one that will 
approximate the smooth (low frequency) part of a function 
only, LFFC will not become unstable. In that case namely, 
learning will not occur in the high frequency range and 
only the stable standard feedback controller remains in that 
range. It is now possible to choose a ysuch that also (3.14) 
is satisfied for the low frequency range. This hypothesis 
will be evaluated in simulation experiments. 

The feed forward controller is updated according to (1.1): 

u>+'=u$+yu;lb (3.6) 

Substituting (3.4) in (3.6) results in 

(3.7) U; =$vu;-' + y- FB(s) R 
xc 

In which, 
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In the research described in this paper, the LFFC is used in 
a real-time environment. The function approximator should 
therefore perform the following actions within one sample 
interval: 
- calculate the control signal 
- learn the desired control action 
Most neural networks are computationally expensive and 
cannot be used for real-time applications without powerful 
computers. In this research a B-spline network (BSN) [ l ]  
which is computationally attractive and learns fast, is used 
to implement the LFFC. 

In general terms, a BSN defines a mapping from input x to 
output y using B-spline basis functions. A B-spline of order 
n is a piece-wise polynomial of order n-1 (see figure 3.2). 
The interval over which a B-spline does not evaluate to 0 is 
called its support here. 

order order order 

Figure 3.2 B-splines 

Hence, to realise a mapping from t to uff with a BSN, m 
B-splines are placed on the domain of t, 8. The B-splines 
are placed such, that the sum of the evaluations of each of 
the B-splines, pi ( t ) ,  is equal to 1 for all tEU(figure 3.3). 

ff 

- + T U  
Figure 3.3 B-spline network (BSN) 

The output of the BSN at input t is calculated as a weighted 
sum of the B-spline evaluations : 

m 
u f s  ( t )  = E& (3.15) 

i=l 
Note that (3.15) is how the feed forward controller is 
actually implemented, and hence is the time domain 
representation of the realised Ug . As this is a piece-wise 

linear signal, it violates assumption 2a (see stability 

analysis). In fact, our choice of implementation by means 
of a BSN implies that only mappings with a certain 
‘smoothness’ can be approximated accurately. What this 
smoothness is depends on the width of the B-spline basis 
functions. To accurately fit a mapping that is not so smooth 
(has high frequency components), B-splines that have a 
small support are required. In case the B-splines have a 
wide support, rapid changes in the desired mapping will be 
averaged by the BSN (see figure 3.4). Hence, the BSN is fit 
to test the hypothesis formulated at the end of the stability 
analysis. 

T 

Figure 3.4 Function approximation using a BSN 

As stated, the feedback signal is a measure for the error in 
the output of the LFFC. The error in the output of the BSN 
is defined as: 

E ( t )  = q u f i ( t ) ) 2  
2 

(3.16) 

The goal of learning is to minimise E for all t. This can be 
realised in the BSN by adapting the weights, wit  according 
to the following learning rule [ 11: 

(3.17) 

In which y , 0 < y I 1, is the learning rate. Learning rule 
(3.17) has about the same effect as (1.1). However, an 
important difference is that if we apply (3.17) at a certain 
time instant, we modify the mapping over the complete 
support of basis function i, and not just the mapping at that 
particular time instant as in (1.1). Hence, our choice of 
implementation with this learning rule implies that also 
assumption 2b (see stability analysis) is violated. The 
expectation is that the somewhat differing learning 
behaviour will not influence the stability, however. 

A ~ ~ ~ i c a ~ o n  to the flexible beam 
The design of a LFFC can be split up in the following 3 
steps: 
1. definition of the reference path. 
2. design of the feedback controller. 
3. design of the feed forward controller, which consists of: 
- choice of inputs of the controller 
- definition of splines on the inputs 
- choice of the learning rate 
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The reference path is chosen to be a cycloid function, 
defined by: 

A 2n 
O r ( t ) = [ : t - G s i n [ T t ]  (3.18) 

A t c t ,  L 
Where A is the final tip angle and t ,  is the rise time. In this 
research A=l rad and t,=2 sec. As this is a smooth 
reference path, the controlled flexible beam should be able 
to track this path accurately. 

Since the feedback controller only has to guarantee robust 
stability, a relative simple controller can be used. In this 
research the feedback controller will be implemented as a 
PD controller. On the basis of the model discussed in 
section 2, the following controller is obtained, using root- 
locus techniques. 

experiments. The B-splines in figure 3.6a are too wide to 
learn frequency components of 8 rad/s in a signal, so the 
LFFC will be stable. The B-splines in figure 3.6b have a 
small width, which enables them to learn such frequency 
components, and hence are expected to cause an unstable 
LFFC controlled beam. 

U I  . U .  
'1 1 

0 i i o  i 2 
T (sec) T (sec) 

Figure 3.6a,b B-splines used in the LFFC 

The learning rate is chosen by the rule of the thumb. To 
enable fast learning and some averaging, the learning rate 
is chosen to be equal to 0.5. With this value, (3.14) is 
satisfied. 

FB(s) = s+l (3.19) 4. Simulation experiments 

The reference path is unique, and hence the LFFC can be 
realised as a mapping from t to u4. Next, the distribution 
of B-spline basis functions on the domain of t has to be 
defined. This is done on the basis of the stability analysis 
of the LFFC. In figure 3.5 the Bode-plot of stability 
criterion (3.14) and (3.13) for the flexible beam is given. 

The simulation experiments presented in this section 
consist of a number of learning cycles, denoted as 'runs'. In 
each run, the LFFC is intended to make the tip of the 
flexible beam track the reference path and learn, such that 
in the next run the tracking is more accurate. The model of 
the flexible beam that is used in the simulations considers 
the first 2 modes of flexibility only. 

In the first series of experiments a LFFC using the B- 
spline distribution given in figure 3.6a, is applied to the 
flexible beam. Figure 4.1 shows the reference path and the 
tip angle. 
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Figure 4.1 Performance of a LFFC that cannot learn 

-360 

-540 
10'' 10' 10' l o 2  l o 3  high frequencies 

Frequency (radlsec) 
Figure 3.5 Stability analysis of the system 

It can be seen that for o > 8 rad/s the phase shift of the 
criterion exceeds 90". So (3.13) is violated above this 
frequency, and a LFFC controlled beam with an ideal 
function approximator will be unstable in this frequency 
range. To verify this, the two sets of B-splines that are 
depicted in figure 3.6 will be used in simulation 

In the first run the feedback controller, which is designed 
for robust stability, is not able to make the process follow 
the reference path. By learning, the performance of the 
LFFC is improved, such that after 4 runs, the reference 
signal is tracked well. As predicted, the LFFC does not 
become unstable in case the learning is continued. 
Next the B-spline distribution that is depicted in figure 3.6b 
will be used to control the flexible beam. These B-splines 
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are able to accurately learn functions that have frequency 
components higher than 8 rad/sec. In figure 4.2 the results 
of this experiment are shown. 

C& 0.4 0.8 1.2 1.6 2.0 
-0.5 time (sec) 

ref. - runl -  run5 - run 20 

Figure 4.2 Performance of a LFFC that can learn high 
frequencies 

- 

Although the LFFC seems to have learned well after 5 runs, 
the system becomes unstable if the learning is continued. 
Apparently, the LFFC first learns the low frequency 
components, at which the LFFC is stable, and then the 
higher, unstable frequencies. 

Finally, the robust stability of the LFFC is researched. 
After a LFFC has learned to accurately control an unloaded 
flexible beam, a payload of 0.25 kg will be ‘attached’ to the 
tip. The performance of the LFFC is shown in figure 4.3. 
The performance of the controlled beam deteriorates 
initially, but the system remains stable. After 4 runs the 
LFFC has adapted itself such that the optimal performance 
is regained. The system stays stable as learning is 
continued. 

8 1.2 
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.a 0.4 

9 1.0 
0) 

1 

0.2 
0.0 

0.0 0.4 0.8 1.2 1.6 2.0 

ref ~ run1 - run 5,40 
time (sec) - 

Figure 4.3 Performance of a LFFC on a flexible beam 
with payload (mass=0.25 kg)  

5. Conclusions 

A stability analysis revealed that a linear process P(s) 
controlled by a LFFC with an ideal function approximator 
as feed forward controller and a feedback controller FB(s) 
remains stable iff 

- FB(s)P(s) 11+ I +  FB(s)P(s)  

This condition will typically be violated for high 
frequencies only. Hence, one may expect that if the feed 
forward controller is chosen to be a function approximator 
that will approximate the smooth (low frequency} part of a 
function only, a LFFC controlled system will not become 
unstable. 

Simulation experiments of a LFFC controlled flexible 
beam with a B-spline network as feed forward controller 
and a PD feedback controller confirmed this hypothesis. If 
the B-spline basis functions are given a wide support, the 
network can only learn a smooth mapping, and the 
controlled system remains stable. If the basis functions are 
given a small support, also a less smooth mapping can be 
learned and the controlled system becomes unstable. This 
indicates that a stability analysis may help to find an 
appropriate basis function distribution when designing such 
a LFFC. Further research will be done to find quantitative 
rules for this. 

The obtained LFFC combines good performance with 
robust stability. The LFFC was able learn to accurately 
control the flexible beam within a small number of learning 
cycles. Varying process parameters did not destabilise the 
system. The LFFC was able to adapt to them in a fast way, 
such that optimal performance was retained quickly. This 
result suggests that a LFFC with a B-spline network as feed 
forward controller can control processes that have difficult 
dynamics, such as flexible beams, without extensive and 
time-consuming modelling. Since the feedback controller 
used in the LFFC merely has to guarantee robust stability, a 
relatively simple model of the process is sufficient for 
controller design. 
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